首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Somersalo  G. H. Krause 《Planta》1989,177(3):409-416
The effects of moderate light at chilling temperature on the photosynthesis of unhardened (acclimated to +18° C) and hardened (cold-acclimated) spinach (Spinacea oleracea L.) leaves were studied by means of fluorescence-induction measurements at 20° C and 77K and by determination of quantum yield of O2 evolution. Exposure to 550 mol photons·m-2·s-1 at +4° C induced a strong photoinhibition in the unhardened leaves within a few hours. Photoinhibition manifested by a decline in quantum yield was characterized by an increase in initial fluorescence (F o) and a decrease in variable fluorescence (F v) and in the ratio of variable to maximum fluorescence (F V/F M), both at 77K and 20° C. The decline in quantum yield was more closely related to the decrease in the F V/F M ratio measured at 20° C, as compared with F V/F M at 77K. Quenching of the variable fluorescence of photosystem II was accompanied by a decline in photosystem-I fluorescence at 77K, indicating increased thermal de-excitation of pigments as the main consequence of the light treatment. All these changes detected in fluorescence parameters as well as in the quantum yield of O2 evolution were fully reversible within 1–3 h at a higher temperature in low light. The fast recovery led us to the view that this photoinhibition represents a regulatory mechanism protecting the photosynthetic apparatus from the adverse effects of excess light by increasing thermal energy dissipation. Long-term cold acclimation probably enforces other protective mechanisms, as the hardened leaves were insensitive to the same light treatment that induced strong inhibition of photosynthesis in unhardened leaves.Abbreviations F 0 initial fluorescence - F M maximum fluorescence - F V variable fluorescence (F M-F 0 - PFD photon flux density - PS photosystem  相似文献   

2.
The photoinhibition of photosynthesis at chilling temperatures was investigated in cold-acclimated and unhardened (acclimated to +18° C) spinach (Spinacia oleracea L.) leaves. In unhardened leaves, reversible photoinhibition caused by exposure to moderate light at +4° C was based on reduced activity of photosystem (PS) II. This is shown by determination of quantum yield and capacity of electron transport in thylakoids isolated subsequent to photoinhibition and recovery treatments. The activity of PSII declined to approximately the same extent as the quantum yield of photosynthesis of photoinhibited leaves whereas PSI activity was only marginally affected. Leaves from plants acclimated to cold either in the field or in a growth chamber (+1° C), were considerably less susceptible to the light treatment. Only relatively high light levels led to photoinhibition, characterized by quenching of variable chlorophyll a fluorescence (FV) and slight inhibition of PSII-driven electron transport. Fluorescence data obtained at 77 K indicated that the photoinhibition of cold-acclimated leaves (like that of the unhardened ones) was related to increased thermal energy dissipation. But in contrast to the unhardened leaves, 77 K fluorescence of cold-acclimated leaves did not reveal a relative increase of PSI excitation. High-light-treated, cold-acclimated leaves showed increased rates of dark respiration and a higher light compensation point. The photoinhibitory fluorescence quenching was fully reversible in low light levels both at +18° C and +4° C; the recovery was much faster than in unhardened leaves. Reversible photoinhibition is discussed as a protective mechanism against excess light based on transformation of PSII reaction centers to fluorescence quenchers.Abbreviations FO initial fluorescence - FM maximal fluorescence - FV devariable fluorescence (fm-fo) - PFD photon flux density - PS photosystem - SD standard deviation The authors thank the Deutsche Forschungsgemeinschaft and the Academy of Finland for financial support.  相似文献   

3.
In order to investigate the effect of vesicular-arbuscular mycorrhizae on the chilling resistance of Zea mays, seeds of two hybrids (Pioneer 3902 and Pride 5) were grown in soil inoculated with Glomus mosseae. Germination tests at 10° C and 25° C showed that Pride 5 was more resistant to chilling than Pioneer 3902. Plants grown at 25° C for 6 weeks were given a 1-week chilling treatment at 10° C and the responses of mycorrhizal and nonmycorrhizal plants of the two hybrids were compared. At 10° C, the mycorrhizal plants had greater biomass, carbohydrate, and protein content than the nonmycorrhizal plants.  相似文献   

4.
Leaf tolerance to high temperatures, as determined by electrolyte leakage and chlorophyll a fluorescence, was compared for Artemisia tridentata (Asteraceae), a widespread shrub of the Great Basin, Colorado Plateau, and western slope of the Rocky Mountains, and Potentilla gracilis (Rosaceae), a herbaceous forb common to high-elevation meadows of the western United States. Species-specific and treatment-specific differences in leaf temperature, high-temperature tolerance and chlorophyll a fluorescence from photosystem II were compared, to test the hypothesis that plants at ecosystem borders will exhibit species-specific responses to climate change. Measurements were made for plants exposed to a climate change warming manipulation on a major ecosystem border at the Rocky Mountain Biological Laboratory, Colorado, United States, in July and August 1995. In July, daily maximal leaf temperatures were significantly higher for P. gracilis than for A. tridentata. Leaf temperatures were slightly lower in August than July for leaves of both species, on control and heated plots, despite the fact that daily maximum air temperatures were not significantly different for the two months. High-temperature tolerance was determined for leaves treated for 1 h at temperatures ranging from 15°C to 65°C. LT50 was approximately 46°C for both species on control plots, but was 43°C for leaves of both species from heated plots, contrary to the predictions of the hypothesis. No shift in LT50 (acclimation) was apparent between July and August. Changes in chlorophyll a fluorescence from photosystem II (F V /F M ) were used to characterize the photosynthetic response to high temperatures. For both A. tridentata and P. gracilis in July, F V /F M was about 0.7, but decreased for temperatures above 40°C. The results suggest that plant responses to global warming at ecosystem borders may be influenced by factors other than leaf-level physiological tolerance to elevated temperatures.  相似文献   

5.
Eastern gamagrass (Trypsacum dactyloides) is a C4 perennial grass, native to the USA with desirable characteristics that warrants further investigation as a new lignocellulosic crop for bioethanol production. Chemical composition assays showed that eastern gamagrass had comparable cellulose, hemicellulose and lignin compositions to those of switchgrass (Panicum virgatum). With the cellulose solvent-based lignocellulose fractionation (CSLF) pretreatment and subsequent enzymatic saccharification, 80.5–99.8% of cellulosic glucose was released from the gamagrass biomass, which was 10–17% greater than the glucose release efficiency from switchgrass (73.5–87.1%). Furthermore, the hydrolysate of gamagrass supported greater ethanol fermentation yield (up to 0.496 g/g glucose) than the hydrolysates of switchgrass. As such, in the whole process of biomass-to-ethanol conversion, gamagrass could yield 13–35% more ethanol per gram of biomass than switchgrass, indicating that gamagrass has high potential as an alternative energy feedstock for lignocellulosic ethanol production.  相似文献   

6.
Smillie, R. M., Nott, R., Hetherington, S. E. and Öyustt, G. 1987. Chilling injury and recovery in detached and attached leaves measured by chlorophyll fluorescence Chilling injury was compared in detached and attached leaves chilled at 0 or 0.5°C by measuring the decrease in induced chlorophyll fluorescence in vivo. The fluorescence parameter measured was FR, the maximal rate of rise of induced chlorophyll fluorescence emission after irradiating dark-adapted leaves. The plants used were bean, Phaseolus vulgaris L. cv. Pioneer, and maize, Zea mays L. cvs hybrid GH 390 and Northern Belle. Leaves were detached and placed on wet paper and covered with thin polyethylene film to prevent water loss during chilling. Leaves left attached on plants were treated similarly. When chilled in this way at 100% relative humidity, the chilling-induced decrease in FR was the same in detached and attached leaves. For the attached leaves, the same result was obtained whether just a single leaf was chilled or the whole plant. Expression of chilling injury was greatest in fully turgid leaves and comparisons can be invalid unless the water status of the detached and attached leaves are the same. Problems arising from diurnal fluctuations in water potential of plants grown in a glasshouse were circumvented by placing leaves on the wet filter paper under polyethylene film prior to chilling, which allowed high water potentials to be regained, or mist sprays in the glasshouse were employed. Determinations of the time course for changes in FR of maize (cv. Northern Belle) during chilling at 0°C showed that FR decreased exponentially, at the same rate (time to 50% decrease in FR was 9.3 h) in detached and attached leaves. Chilling injury was largely reversible for the first 20 h of chilling stress as both detached and attached leaves recovered their pre-chilling values of FR after a further 20 h at 20°C in darkness. Leaves chilled for 48 h showed partial recovery, while those chilled for 72 h did not recover. Recovery was impeded by light. Inability to recover from chilling as indicated by measurements of FR was paralleled by the incidence of visible symptoms of injury. It is concluded that detached and attached leaves behave similarly during chilling and short-term recovery, provided a similarity in treatments is rigorously maintained.  相似文献   

7.
In our previous study, it was found that abscisic acid (ABA) improved the chilling resistance of Stylosanthes guianensis. In order to determine the effects of ABA on photosynthesis and photochemistry of S. guianensis, an experiment was conducted under controlled condition to determine the effects of exogenous ABA on stomatal conductance (gs), transpiration (E), photosynthetic rate (A) and chlorophyll a fluorescence of this pasture legume. The results showed that ABA treatment reduced A, gs, and E under both chilling (8 °C) and control temperature (28 °C). A of the ABA treated plants returned to a high rate, while that of the water-treated plants remained low when plants were rewarmed after chilling treatment. ABA-treated plants had higher maximum photochemical efficiency (Fv/Fm), non-photochemical quenching (NPQ), quantum efficiency of PS II photochemistry (Φps ii) than water-treated ones during chilling. Although the biomass of S. guianensis was reduced by ABA under control temperature, ABA-treated plants had higher biomass than water-treated ones after 7 days of recovery.  相似文献   

8.
 DNA fingerprinting verified hybrid plants obtained by crossing Eastern gamagrass, Tripsacum dactyloides L., and perennial teosinte, Zea diploperennis Iltis, Doebley & R. Guzmán. Pistillate inflorescences on these hybrids exhibit characteristics intermediate to the key morphological traits that differentiate domesticated maize from its wild relatives: (1) a pair of female spikelets in each cupule; (2) exposed kernels not completely covered by the cupule and outer glumes; (3) a rigid, non-shattering rachis; (4) a polystichous ear. RFLP analysis was employed to investigate the possibility that traits of domesticated maize were derived from hybridization between perennial teosinte and Tripsacum. Southern blots of restriction digested genomic DNA of parent plants, F1, and F2 progeny from two different crosses were probed with RFLP markers specifically associated with changes in pistillate inflorescence architecture that signal maize domestication. Pairwise analysis of restriction patterns showed traits considered missing links in the origin of maize correlate with alleles derived from Tripsacum, and the same alleles are stably inherited in second generation progeny from crosses between Tripsacum and perennial teosinte. Received: 11 October 1996/Accepted:8 November 1996  相似文献   

9.
Eastern gamagrass, (Tripsacum dactyloides L.) is a perennial, warm-season grass that is being developed as a forage plant. Shoots were derived from callus initiated from immature embryos and immature inflorescences of diploid (2n=2x=36) gynomonoecious eastern gamagrass. These shoots were induced to microtiller in the presence of 3 mg/l benzyladenine. Amiprophosmethyl (10, 15, or 20 μm) was applied to 27 microtillers for 3–5 days to induce chromosome doubling. All 14 surviving plants were tetraploid, (2n=4x=72), as determined by flow cytometry or chromosome counts. These plants were morphologically normal and produced seed. Test crosses were made with a known diploid. Flow cytometry and chromosome counts showed that the progeny were triploid, proving that the induced tetraploids reproduce sexually. Received: 12 February 1997 / Revision received: 18 February 1998 / Accepted: 13 March 1998  相似文献   

10.
Random samples, consisting of at least 100 individual seedlings, were taken from the diploid (2n=2x=36) eastern gamagrass (Tripsacum dactyloides var.dactyloides) and assayed to determine which of 12 enzyme marker loci and isozyme systems would be most informative in providing satisfactory resolution of both maize andTripsacum isozyme systems. For comparison, eight maize inbreds were included in the study to aid evaluation and comparison of the various isozyme systems. In addition, evaluations were conducted to identify if the identified optimum isozyme system could be used to detectTripsacum introgression in maize following a maize ×Tripsacum backcrossing scheme. Using the established isozyme techniques for maize (Zea mays L.), theAdh, Pgd, Cat, Est, B-Glu, Got, Idh, Tpi isozyme systems detected no polymorphism among theTripsacum individuals assayed. TheEst andB-Glu systems forTripsacum were unscorable due to poor staining and resolution. TheAcp, Mdh, Pgm, andPhi isozyme systems were found to be satisfactory markers for differentiating between eastern gamagrass individuals as well as detectingTripsacum introgression in maize. The availability of useful isozyme systems which can simultaneously provide significant isozyme resolution of maize,Tripsacum and maize-Tripsacum backcross hybrids, on a single gel system, will be useful for the detection of marker assistedTripsacum introgression into maize. In addition, the identification of a set of variable biochemical markers should also assist breeding, selection and genetic manipulations in eastern gamagrass.The use of company names in this publication does not imply endorsement by the USDA-ARS, or the product names of criticism of similar ones not mentioned. All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, age, marital status, or handicap.  相似文献   

11.
Summary Cold acclimation responses of latitudinal ecotypes of Cornus sericea L. (C. stolonifera Michx.) and F1, F2 and BC1 hybrid progenies were measured under natural photoperiod conditions in St. Paul, MN and artificially shortened photoperiods in the glass-house. The 65 °N and 62 °N ecotypes (Alaska and Northwest Territories, respectively) were characterized by a short night length for hardiness induction, the 42 °N ecotype (Utah A and B) by a long night length for hardiness induction, while the F1 was intermediate to the parents. Results from reciprocal crosses indicated there was no significant unilateral maternal influence on cold acclimation. Acclimation responses of the F2 were highly variable but generally ranged between the parental extremes. However, three individuals from the 42 ° × 62 °N crosses exhibited greater cold resistance than the northern parent on two successive freezing test dates. F2 plants were also found with less freezing resistance than the southern parent. Backcrosses to the southern parent produced progeny with acclimation patterns resembling that of the southern parent and were significantly less hardy than the F2 in early freezing tests.Scientific Journal Series Paper No. 12,075 of the Minnesota Agricultural Experiment Station  相似文献   

12.
Over-expression of chloroplastic glycerol-3-phosphate acyltransferase gene (LeGPAT) increased unsaturated fatty acid contents in phosphatidylglycerol (PG) of thylakoid membrane in tomato. The effect of this increase on the xanthophyll cycle and chloroplast antioxidant enzymes was examined by comparing wild type (WT) tomato with the transgenic (TG) lines at chilling temperature (4 °C) under low irradiance (100 μmol m−2 s−1). Net photosynthetic rate and the maximal photochemical efficiency of photosystem (PS) 2 (Fv/Fm) in TG plants decreased more slowly during chilling stress and Fv/Fm recovered faster than that in WT plants under optimal conditions. The oxidizable P700 in both WT and TG plants decreased during chilling stress under low irradiance, but recovered faster in TG plants than in the WT ones. During chilling stress, non-photochemical quenching (NPQ) and the de-epoxidized ratio of xanthophyll cycle in WT plants were lower than those of TG tomatoes. The higher activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in TG plants resulted in the reduction of O2 −· and H2O2 contents during chilling stress. Hence the increase in content of unsaturated fatty acids in PG by the over-expression of LeGPAT could alleviate photoinhibition of PS2 and PS1 by improving the de-epoxidized ratio of xanthophyll cycle and activities of SOD and APX in chloroplast.  相似文献   

13.
Using two different inbred lines of Momordica charantia (bitter gourd), Y-106-5 and Z-1-4, the cell membrane stability, leaf water potential, pigment contents and the chlorophyll a fluorescence were investigated with different low night temperature (LNT) treatments over a 7 day time period and the sequent a 7 day recovery. Under LNT treatments, electrolyte leakage increased in both inbred lines and it increased more significantly in Y-106-5 plants than that in Z-1-4. The content of Chl b and total Chl decreased, while the Chl a/b ratio increased in stressed plants of the two lines. Almost all LNT treatments induced little change in Chl a content in Z-1-4 whereas obvious decreases in 5 and 8°C treated Y-106-5 plants were observed. Chilling changed the water status of plants and induced decreases of leaf water potential (LWP) in 5 and 8°C treated plants. LNT treatments also resulted in changes in the chlorophyll fluorescence parameters in bitter gourd leaves. The potential PSII activity (F v/F o) was reduced obviously by LNT stress and showed more sensitive to LNT than the maximum quantum efficiency of PSII primary photochemistry (F v/F m). The efficiency of open PSII centers exhibited a slight decrease whereas the photochemical quenching efficient (q P) was affected more seriously by LNT stress in both two inbred lines. The allocation of energy was rearranged by LNT stress. The light fraction used for PSII photochemistry (P) was reduced, while that used for heat dissipation (D) and the third fraction of absorbed light defines excess energy (E) increased due to the chilling stress. The impacts of LNT stress on bitter gourd generally increased with the number of LNT chilling and the severe night chilling. Plants were little affected by 12°C night chilling and the most acute damage was found in 5°C night chilling treatments. A 7 day recovery mitigated the adverse effects of LNT for both lines and almost all LNT treated plants restored to control levels except 5°C night chilling treated Y-106-5 plants. The two lines have a variance in tolerance to LNT stress and display obvious differences of phenotypes under extreme conditions.  相似文献   

14.
Starck  Z.  Niemyska  B.  Bogdan  J.  Akour Tawalbeh  R. N. 《Plant and Soil》2000,226(1):99-106
The experiments were conducted on two tomato cultivars: Garbo and Robin. Mineral starvation due to plant growth in 20-fold diluted nutrient solution (DNS) combined with chilling reduced the rate of photosynthesis (P N) and stomatal conductance (g) to a greater extent than in plants grown in full nutrient solution (FNS). In phosphate-starved tomato plants the P N rate and stomatal conductance decreased more after chilling than in plants grown on FNS. In low-P plants even 2 days after chilling the recovery of CO2 assimilation rate and stomatal conductance was low. A resupply of phosphorus to low-P plants (low P + P) did not improve the rate of photosynthesis in non-chilled plants (NCh) but prevented PN inhibition in chilled (Ch) plants. The greatest effect of P resupply was expressed as a better recovery of photosynthesis and stomatal conductance, especially in non-chilled low P + P plants. The F v/F m (ratio of variable to maximal chlorophyll fluorescence) decreased more during P starvation than as an effect of chilling. Supplying phosphorus to low-P plants caused the slight increase in the F v/F mratio. In conclusion, after a short-term chilling in darkness a much more drastic inhibition of photosynthesis was observed in nutrient-starved or P-insufficient tomato plants than in plants from FNS. This inhibition was caused by the decrease in both photochemical efficiency of photosystems and the reduction of stomatal conductance. The presented results support the hypothesis that tomato plants with limited supply of mineral nutrients or phosphorus are more susceptible to chilling.  相似文献   

15.
Summary Gossypium hirsutum L. var. Delta Pine 61 was cultivated in controlled-environment chambers at 1000–1100 mol photosynthetically active photons m-2 s-1 (medium photon flux density) and at 1800–2000 mol photons m-2 s-1 (high photon flux density), respectively. Air temperatures ranged from 20° to 34°C during 12-h light periods, whereas during dark periods temperature was 25° C in all experiments. As the leaf temperature decreased from about 33° to 27° C, marked reductions in dry matter production, leaf chlorophyll content and photosynthetic capacity occurred in plants growing under high light conditions, to values far below those in plants growing at 27° C and medium photon flux densities. The results show that slightly suboptimum temperatures, well above the so-called chilling range (0–12° C), greatly reduce dry matter production in cotton when combined with high photon flux densities equivalent to full sunlight.Abbreviations DW dry weight - F v variable fluorescence yield - F M maximum fluorescence yield - PFD photon flux density (400–700 nm)  相似文献   

16.
T. Janda  G. Szalai  I. Tari  E. Páldi 《Planta》1999,208(2):175-180
The addition of 0.5 mM salicylic acid (SA) to the hydroponic growth solution of young maize (Zea mays L.) plants under normal growth conditions provided protection against subsequent low-temperature stress. This observation was confirmed by chlorophyll fluorescence parameters and electrolyte leakage measurements. In addition, 1 d of 0.5 mM SA pre-treatment decreased net photosynthesis, stomatal conductivity and transpiration at the growth temperature (22/20 °C). Since there was only a slight decrease in the ratio of variable to maximal fluorescence (Fv/Fm) the decrease in photosynthetic activity is not due to a depression in photosystem II. The analysis of antioxidant enzymes showed that whereas SA treatment did not cause any change in ascorbate peroxidase (EC 1.11.1.11) and superoxide dismutase (EC 1.15.1.1) activities, there was a decrease in catalase (EC 1.11.1.6) activity, and an increase in guaiacol peroxidase (EC 1.11.1.7) and glutathione reductase (EC 1.6.4.2) activities after the 1-d SA treatment at 22/20 °C. In native polyacrylamide gels there was, among the peroxidase isoenzymes, a band which could be seen only in SA-treated plants. It is suggested that the pre-treatment of maize plants with SA at normal growth temperature may induce antioxidant enzymes which lead to increased chilling tolerance. Received: 4 June 1998 / Accepted: 23 November 1998  相似文献   

17.
Chilling temperatures (0–15°C) inhibit photosynthesis in most C4 grasses, yet photosynthesis is chilling tolerant in the ‘Illinois’ clone of the C4 grass Miscanthus x giganteus, a candidate cellulosic bioenergy crop. M. x giganteus is a hybrid between Miscanthus sacchariflorus and Miscanthus sinensis; therefore chilling‐tolerant parent lines might produce hybrids superior to the current clone. Recently a collection of M. sacchariflorus from Siberia, the apparent low temperature limit of natural distribution, became available, which may be a source for chilling tolerance. The collection was screened for chilling tolerance of photosynthesis by measuring dark‐adapted maximum quantum yield of PSII photochemistry (Fv/Fm) on plants in the field in cool weather. Superior accessions were selected for further phenotyping: plants were grown at 25°C, transferred to 10°C (chilling) for 15 days, and returned to 25°C for 7 days (recovery). Two experiments assessed: (a) light‐saturated net photosynthetic rate (Asat) and operating quantum yield of PSII photochemistry (ΦPSII), (b) response of net leaf CO2 uptake (A) to intercellular [CO2] (ci). Three accessions showed superior chilling tolerance: RU2012‐069 and RU2012‐114 achieved Asat up to double that of M. x giganteus prior to and during chilling, due to increased ci ‐ saturated photosynthesis (Vmax). RU2012‐069 and RU2012‐114 also maintained greater levels of ΦPSII during chilling, indicating reduced photodamage. Additionally, accession RU2012‐112 maintained a stable Asat throughout the 15‐day chilling period, while Asat continuously declined in other accessions; this suggests RU2012‐112 could outperform others in lengthy chilling periods. Plants were returned to 25°C after the chilling period; M. x giganteus showed the weakest recovery after 1 day, but a strong recovery after 1 week. This study has therefore identified important genetic resources for the synthesis of improved lines of M. x giganteus, which could facilitate the displacement of fossil fuels by cellulosic bioenergy.  相似文献   

18.
Summary Cotton (Gossypium hirsutum L. var. DP 61) was grown at different temperatures during 12-h light periods, with either 1800–2000 mol photons m–2 s–1 (high photon flux density, PFD) or 1000–1100 mol m–2 s–1 (medium PFD) incident on the plants. Night temperature was 25°C in all experiments. Growth was less when leaf temperatures were below 30°C during illumination, the effect being greater in plants grown with high PFD (Winter and Königer 1991). Leaf pigment composition and the photon-use efficiency of photosynthesis were analysed to assess whether plants grown with high PFD and suboptimal temperatures experienced a higher degree of high irradiance stress during development than those grown with medium PFD. The chlorophyll content per unit area was 3–4 times less, and the content of total carotenoids about 2 times less, with the proportion of the three xanthophylls zeaxanthin + antheraxanthin + violaxanthin being greater in leaves grown at 20–21°C than in leaves grown at 33–34°C. In leaves from plants grown at 21°C and 1800–2000 mol photons m–2 s–1, zeaxanthin accounted for as much as 34% of total carotenoids in the middle of the photoperiod, the highest level recorded in this study. This finding is consistent with a protective role of zeaxanthin under conditions of excess light. At the lower temperatures, the photochemical efficiency of photosystem II, measured as the ratio of variable to maximum fluorescence yield (F V/F M) after 12-h dark adaptation, was 0.76 in medium PFD plants and 0.75 in high PFD plants compared with 0.83 and 0.79, respectively, at the higher temperatures. The photon-use efficiency of O2 evolution () based on absorbed light between 630 and 700nm, decreased with decrease in temperature from 0.102 to 0.07 under conditions of high PFD, but remained above 0.1 at medium PFD. Owing to compensatory reactions in these long-term growth experiments, sustained differences inF V/F M and were much less pronounced than the differences in chlorophyll content and dry matter, particularly in plants which had developed at high PFD and low temperature. In fact, in these plants, which exhibited pronounced photobleaching, a largely functional photosynthetic apparatus was still maintained in cells adjacent to the lower leaf surfaces. This was indicated by measurements of photon use efficiencies of photosynthetic O2 evolution with leaves illuminated first at the upper, and then at the lower surface.Abbreviations F O yield of dark level fluorescence - F M maximum yield of fluorescence, induced in a pulse of saturating light - F V yield of variable fluorescence (=F M-F o) - PFD photon flux density - iw photon use efficiency of O2 evolution based on white (400–700 nm) incident light - ir photon use efficiency based on red (630–700 nm) incident light - aw photon use efficiency based on white absorbed light - ar photon use efficiency based on red absorbed light  相似文献   

19.
The occurrence of photoinhibition of photosynthesis in leaves of a willow canopy was examined by measuring the chlorophyll-a fluorescence ratio of F V/F M (FM is the maximum fluorescence level of the induction curve, and FV is the variable fluorescence, F V=F MF 0, where F0 is the minimal fluorescence). The majority of the leaves situated on the upper parts of peripheral shoots showed an afternoon inhibition of this ratio on clear days. This was the consequence of both a decrease in F M and a rise in F O. In the same leaves the diurnal variation in intercepted photosynthetic photon flux density (PPFD) was monitored using leaf-mounted sensors. Using the multivariate method, partial least squares in latent variables, it is shown that the dose of PPFD, integrated and linearly weighted over the last 6-h period, best predicts photoinhibition. Photoinhibition occurred even among leaves that did not intercept PPFDs above 1000 mol·m–2·s–1. Exposure of leaves to a standard photoinhibitory treatment demonstrated that the depression in the F V/F M ratio was paralleled by an equal depression in the maximal quantum yield of CO2 uptake and a nearly equal depression in the rate of bending (convexity) of the light-response curve of CO2 uptake. As a result, the rate of net photosynthesis is depressed over the whole natural range of PPFD. By simulating the daily course in the rate of net photosynthesis, it is estimated that in the order of one-tenth of the potential carbon gain of peripheral willow shoots is lost on clear days as a result of photoinhibition. This applies to conditions of optimal temperatures. Photoinhibition is even more pronounced at air temperatures below 23° C, as judged from measurements of the FV/FM ratio on clear days: the afternoon inhibition of this ratio increased in a curvilinear manner from 15% to 25% with a temperature decrease from 23° to 14° C.Abbreviations and Symbols FO minimum fluorescence - FV variable fluorescence - FM maximum fluorescence - PLS partial least squares in latent variables - PPFD photosynthetic photon flux density - VPD water vapour-pressure deficit This study was supported by the Swedish Natural Science Research Council. We are indebted to Dr. Jerry Leverenz (Department of Plant Physiology, University of Umeå, Sweden) for guidance with the modelling of the photosynthesis data.  相似文献   

20.
Parvanova  D.  Popova  A.  Zaharieva  I.  Lambrev  P.  Konstantinova  T.  Taneva  S.  Atanassov  A.  Goltsev  V.  Djilianov  D. 《Photosynthetica》2004,42(2):179-185
Tobacco (Nicotiana tabacum L.) has been transformed to accumulate different compatible solutes (proline, fructans, or glycine betaine) in order to improve its tolerance to abiotic stress. Photosynthetic activity of wild Type (wt) and transformed tobacco plants before and after freezing stress was studied by measuring chlorophyll (Chl) fluorescence. The JIP test of Chl fluorescence induction was used to analyze in details the functional activity of photosystem 2. No significant differences were found among wild Type and transgenic plants after 12 h of freezing. Both plant Types maintained the same values of the measured parameters [FV/FM, PI(CSM), ABS/RC, TR0/RC, ET/RC] after recovery of stress. The studied Chl fluorescence parameters decreased only for the wild Type plants, stressed for 24 h at –2 °C. The strong inhibition of photosynthetic reactions in the wt plant after 24 h of freezing could not be restored. The evaluated parameters of transgenic plants did not change significantly after 24 h at –2 °C and successfully survived freezing stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号