首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
中华绒螯蟹与合浦绒螯蟹两地理亚种的线粒体DNA序列变异   总被引:9,自引:0,他引:9  
根据线粒体16SrDNA的PCR/RFLP鉴定和对Cyt b基因全序列的分析对中国大陆7水系绒螯蟹地理种群的遗传分化进行探讨。结果表明:中华绒螯蟹与合浦绒螯蟹两亚种在17条Cyt b全序列上以40个固定的碱基变异位点相区别。前者分布在瓯江及其以北的水系;后者主要分布在瓯江及其以南的水系。发现了4种在鸭绿江以南的北方水系中生活的合浦亚种单元型,对这些单元型的形成提出了3种可能的解释[动物学报51(5):862—866,2005]。  相似文献   

2.
1. Genetic variation at five microsatellite loci was investigated in six sea trout ( Salmo trutta ) populations to describe their spatio-temporal genetic variation in north-western Spain. We observed significant genetic variation between river basins, and isolation by distance with restricted gene flow between neighbouring rivers, which suggests an important homing behaviour.
2. Despite these populations suffering a serious demographic decline during 1998, we did not detect any reduction in their genetic variation, suggesting a reasonably high effective population size and temporal stability.
3. Genetic differences among rivers should be taken into account in future management activities. Given the high genetic variability and the temporal stability observed, we believe that no supportive breeding programmes are presently needed in these populations.  相似文献   

3.
Eucalyptus camaldulensis is one of the most widely utilised eucalypts. It is also the only eucalypt that occurs across the Australian continent, playing a key ecological role as fauna habitat and in riverbank stabilisation. Despite its ecological and economic importance, uncertainty remains regarding the delineation of genetic and morphological variants. Nine hundred and ninety trees from 97 populations, representing the species’ geographic range were genotyped using 15 microsatellite loci and patterns of diversity compared with restriction fragment length polymorphisms in 29 of these populations. Both markers showed that despite having a riverine distribution, downstream seed dispersal has had less influence than geographic distance on dispersal patterns. Spatial patterns in the distribution of microsatellite genotypes were compared with environmental parameters and boundaries defined by river systems, drainage basins and proposed subspecies. Significant genetic differences among populations within river systems indicated that rivers should not be treated as a single genetic entity in conservation or breeding programmes. Strong geographic trends were evident with 40% of variation in genetic diversity explained by latitude and moisture index. Isolation by distance and significant correlations between genetic distance and environmental parameters for most loci suggest historical factors have had more influence than selection on current patterns of distribution of genetic diversity. Geographic structuring of molecular variation, together with congruence between genetic and morphological variation indicate that E. camaldulensis should be treated as a number of subspecies rather than a single variable taxon. High levels of genetic diversity and geographic trends in the distribution of variation provide a firm basis for further exploration of the species’ genetic resources.  相似文献   

4.
Acorus gramineus Soland. (Araceae) is a rheophyte and is distributed in southeastern Asia. Its populations are restricted to riparian habitats. The discontinuous distribution might result in high genetic diversification among plants of different river systems. In the present study, leaf samples were collected from populations along six river systems in western Taiwan and the genetic variation was investigated by employing RAPD markers. A total of 255 samples from 17 sampling sites was studied. Eighty random 10-mer primers were screened and six of them, which showed better amplification results, were selected to analyse all of the samples. Data of 34 high-intensity and highly reproducible polymorphic fragments were used in statistical analyses. The results of AMOVA analyses indicated that, of the total variation, 46.84% was attributable to differences among river systems, 16.88% to differences among sampling sites within river systems, and 36.28% to differences among individuals within sampling sites. The results of cluster analysis and principal coordinate analysis revealed that sampling sites of each river system formed distinct clusters and the sampling sites of six river systems were clustered into three main groups according to latitudinal relationships. The results of the present study indicated that the population genetic structure of the plants of different river systems is highly diversified, which seems to imply that the gene flow among them is very limited.  相似文献   

5.
Mitochondrial DNA (mtDNA) variation was studied using restriction fragment length polymorphism (RFLP) in chum salmon populations from three rivers in southern Primorye and one river in Sakhalin Island. Significant differences were detected between the samples from Primorye and Sakhalin Island. No differences were found between the samples from the rivers of Primorye, which can be explained by a high rate of gene flow due to transplantation of spawn from one river to another. The effect of fish breeding on the chum salmon populations correlated with the indices of haplotype and nucleotide diversity (h and pi, respectively). The lowest diversity was found in the completely artificial population from the Ryazanovka River; the highest, in natural populations from the Narva and Naiba rivers. Frequencies of haplotypes in consecutive generations were significantly different, which confirms the effects of genetic drift on the small-size chum salmon populations of Primorye.  相似文献   

6.
The increasing fragmentation of natural habitats may strongly affect patterns of dispersal and gene flow among populations, and thus alter evolutionary dynamics. We examined genetic variation at twelve microsatellite loci in the Agile frog (Rana dalmatina) from 22 breeding ponds in the Iberian Peninsula, the southwest limit of its range, where populations of this species are severely fragmented and are of conservation concern. We investigated genetic diversity, structure and gene flow within and among populations. Diversity as observed heterozygosities ranged from 0.257 to 0.586. The mean number of alleles was 3.6. Just one population showed a significant F IS value. Four populations show evidence of recent bottlenecks. Strong pattern of structure was observed due to isolation by distance and to landscape structure. The average degree of genetic differentiation among populations was F ST = 0.185. Three operational conservation units with metapopulation structure were identified. Additionally, there are some other isolated populations. The results reinforce the view that amphibian populations are highly structured even in small geographic areas. The knowledge of genetic structure pattern and gene flow is fundamental information for developing programmes for the preservation of R. dalmatina at the limits of its geographic distribution.  相似文献   

7.
Aim Free‐ranging benthopelagic fishes often have large population sizes and high rates of dispersal. These traits can act to homogenize population structure across the distributional range of a species and to reduce the likelihood of allopatric speciation. The apparent absence of any barriers to gene flow among populations, together with prior molecular evidence for panmixia across the ranges of three species, has resulted in Diplotaxodon, a genus of benthopelagic cichlid fishes of Lake Malawi, being proposed as a candidate case of sympatric speciation. Our aim was to further investigate this possibility by testing for intraspecific genetic subdivision among breeding populations, and intraspecific differences in breeding habitat. Location Lake Malawi, central‐east Africa. Methods We analysed eight microsatellite DNA loci to test for spatial genetic differences among populations on breeding grounds of eight Diplotaxodon species. We also tested for temporal population genetic differences within breeding grounds of three species. Records of ripe Diplotaxodon encountered during sampling were analysed to test if spatial variation in assemblage structure was linked to nearshore water depth and geographic proximity of sampling sites. Results Consistent with previous molecular evidence, within four of the eight species tested we found no evidence of spatial genetic structuring among breeding populations. However, within the other four species we found slight yet significant spatial genetic differences, indicating restricted gene flow among breeding grounds. There was no evidence of temporal genetic differences within sites. Analyses of the distributions of ripe Diplotaxodon revealed differences in assemblage structure linked to nearshore water depth. Main conclusions Together, these results demonstrate both the evolution of fidelity to deep‐water breeding locations in some Diplotaxodon species, and differences in breeding habitat among species. These findings are consistent with a role for divergence of breeding habitat in speciation of these cichlids, possibly promoted by dispersal limitation among geographically segregated spawning aggregations.  相似文献   

8.
We sampled 17 populations of a rare autotetraploid Aster kantoensis (Asteraceae) from three river systems located in central Japan, and studied them for allelic variation at 22 enzyme loci. There was no significant correlation between the actual population size and three genetic diversity parameters, suggesting that the effective population size was very small even for the large populations, i.e., even large populations may still have a high probability of being of recent origin and remain influenced by the founder effect. Compared to other autotetraploid species, the total genetic variation of A. kantoensis is small. The number of alleles and gene diversity of a population were not significantly different among the river systems, although the percentage of polymorphic loci was different. Genetic differentiation among river systems was larger than between populations within the river systems, thereby indicating that gene flow between river systems is small, especially between the Kinu River system and Tama or Sagami River systems.  相似文献   

9.
The genetic diversity and genetic structure of Potamogeton maackianus A. Benn. in seven lakes of the middle reaches of the Yangtze River were studied using random amplified polymorphic DNA (RAPD). The gene flow and genetic relationships between populations were analyzed in combination with the geographic distribution and the river system of the lakes. A total of 112 bands were amplified and 59 bands (52.7%) were polymorphic. Each of the 86 individuals investigated exhibited a unique genotype. The Shannon index was used to measure genetic diversity, and the total genetic diversity was 0.414 and the mean genetic diversity of populations was 0.148. P. maackianus showed a relatively high level of genetic diversity. Analyses of molecular variance (AMOVA) revealed that 63.8% of the total genetic diversity existed among populations and 36.2% within them, which was consistent with the genetic structure computed by the Shannon index: among-population variation and within population variation accounted for 64.4 and 35.7%, respectively. The gene flow among populations was very limited, and genetic isolation among populations occurred even though they were connected through the Yangtze River. Cluster analysis divided the seven populations into two groups, and the genetic relationships among the populations had no obvious association with their geographic distribution, or the historical relations with the river system of the lakes where they occurred. Mantel tests revealed that distance was an important factor affecting the genetic structure in populations. The development history of P. maackianus populations in Honghu Lake had an obvious effect on its genetic structure.  相似文献   

10.
The hypothesis that levels of gene flow among populations are correlated with dispersal ability has typically been tested by comparing gene flow among species that differ in dispersal abilities, an approach that potentially confounds dispersal ability with other species-specific differences. In this study, we take advantage of geographic variation in the dispersal strategies of two wing-dimorphic planthopper species, Prokelisia marginata and P. dolus, to examine for the first time whether levels of gene flow among populations are correlated with intraspecific variation in dispersal ability. We found that in both of these coastal salt marsh–inhabiting species, population-genetic subdivision, as assessed using allozyme electrophoresis, parallels geographic variation in the proportion of flight-capable adults (macropters) in a population; in regions where levels of macroptery are high, population genetic subdivision is less than in regions where levels of macroptery are low. We found no evidence that geographic variation in dispersal capability influences the degree to which gene flow declines with distance in either species. Thus, both species provided evidence that intraspecific variation in dispersal strategies influences the genetic structure of populations, and that this effect is manifested in population-genetic structure at the scale of large, coastal regions, rather than in genetic isolation by distance within a region. This conclusion was supported by interspecific comparisons revealing that: (1) population-genetic structure (GST) of the two Prokelisia species correlated negatively with the mean proportion of flight-capable adults within a region; and (2) there was no evidence that the degree of isolation by distance increased with decreasing dispersal capability. Populations of the relatively sedentary P. dolus clustered by geographic region (using Nei's distances), but this was not the case for the more mobile P. marginata. Furthermore, gene flow among the two major regions we surveyed (Atlantic and Gulf Coasts) has been substantial in P. marginata, but relatively less in P. dolus. The results for P. marginata suggest that differences in the dispersal strategies of Atlantic and Gulf Coast populations occur despite extensive gene flow. We argue that gene flow is biased from Atlantic to Gulf Coast populations, indicating that selection favoring a reduction in flight capability must be intense along the Gulf. Together, the results of this study provide the first rigorous evidence of a negative relationship within a species between dispersal ability and the genetic structure of populations. Furthermore, regional variation in dispersal ability is apparently maintained by selective differences that outweigh high levels of gene flow among regions.  相似文献   

11.
Observed patterns of genetic structure result from the interactions of demographic, physical, and historical influences on gene flow. The particular strength of various factors in governing gene flow, however, may differ between species in biologically relevant ways. We investigated the role of demographic factors (population size and sex-biased dispersal) and physical features (geographic distance, island size and climatological winds) on patterns of genetic structure and gene flow for two lineages of Greater Antillean bats. We used microsatellite genetic data to estimate demographic characteristics, infer population genetic structure, and estimate gene flow among island populations of Erophylla sezekorni/E. bombifrons and Macrotus waterhousii (Chiroptera: Phyllostomidae). Using a landscape genetics approach, we asked if geographic distance, island size, or climatological winds mediate historical gene flow in this system. Samples from 13 islands spanning Erophylla's range clustered into five genetically distinct populations. Samples of M. waterhousii from eight islands represented eight genetically distinct populations. While we found evidence that a majority of historical gene flow between genetic populations was asymmetric for both lineages, we were not able to entirely rule out incomplete lineage sorting in generating this pattern. We found no evidence of contemporary gene flow except between two genetic populations of Erophylla. Both lineages exhibited significant isolation by geographic distance. Patterns of genetic structure and gene flow, however, were not explained by differences in relative effective population sizes, island area, sex-biased dispersal (tested only for Erophylla), or surface-level climatological winds. Gene flow among islands appears to be highly restricted, particularly for M. waterhousii, and we suggest that this species deserves increased taxonomic attention and conservation concern.  相似文献   

12.
Man-made habitat fragmentation is a major concern in river ecology and is expected to have particularly detrimental effects on aquatic species with limited dispersal abilities, like the bullhead (Cottus gobio). We used ten microsatellite markers to investigate small-scale patterns of gene flow, current dispersal and neutral genetic diversity in a morphologically diverse river where fragmented and unfragmented sections could be compared. We found high genetic differentiation between sampling sites with a maximum F ST of 0.32 between sites separated by only 35 km. A significant increase of genetic differentiation with geographical distance was observed in the continuous river section as well as in the full dataset which included headwater populations isolated by anthropogenic barriers. Several lines of evidence are consistent with the hypothesis that such barriers completely block upstream movement while downstream dispersal may be little affected. In the unfragmented habitat, dispersal rates were also higher in the direction of water flow than against it. The resulting asymmetry in gene flow likely contributes to the decrease of genetic variation observed from the lower reaches towards the headwaters, which is particularly pronounced in physically isolated populations. Our findings suggest that headwater populations, due to their isolation and low genetic variation, may be particularly vulnerable to extinction.  相似文献   

13.
Genetic isolation by distance (IBD) has rarely been described in marine species with high potential for dispersal at both the larval and adult life-history stages. Here, we report significant relationships between inferred levels of gene flow and geographic distance in the Atlantic cod, Gadus morhua, at 10 nuclear restriction-fragment-length-polymorphism (RFLP) loci at small regional scales in the western north Atlantic region (< 1,600 km) that mirror those previously detected over its entire geographic range (up to 7,300 km). Highly significant allele frequency differences were observed among eight northwestern Atlantic populations, although the mean FST for all 10 loci was only 0.014. Despite this weak population structuring, the distance separating populations explained between 54% and 62% of the variation in gene flow depending on whether nine or 10 loci were used to estimate Nm. Across the species' entire geographic range, highly significant differences were observed among six regional populations at nine of the 10 loci (mean FST = 0.068) and seven loci exhibited significant negative relationships between gene flow and distance. At this large geographic scale, natural selection acting in the vicinity of one RFLP locus (GM798) had a significant effect on the correlation between gene flow and distance, and eliminating it from the analysis caused the coefficient of determination to increase from 17% to 62%. The role of vicariance was assessed by sequentially removing populations from the analysis and was found to play a minor role in contributing to the relationship between gene flow and distance at either geographic scale. The correlation between gene flow and distance detected in G. morhua at small and large spatial scales suggests that dispersal distances and effective population sizes are much smaller than predicted for the species and that the recent age of populations, rather than extensive gene flow, may be responsible for its weak population structure. Our results suggest that interpreting limited genetic differences among populations as reflecting high levels of ongoing gene flow should be made with caution.  相似文献   

14.
Gene flow has the potential to both constrain and facilitate adaptation to local environmental conditions. The early stages of population divergence can be unstable because of fluctuating levels of gene flow. Investigating temporal variation in gene flow during the initial stages of population divergence can therefore provide insights to the role of gene flow in adaptive evolution. Since the recent colonization of Lake Lesjaskogsvatnet in Norway by European grayling (Thymallus thymallus), local populations have been established in over 20 tributaries. Multiple founder events appear to have resulted in reduced neutral variation. Nevertheless, there is evidence for local adaptation in early life-history traits to different temperature regimes. In this study, microsatellite data from almost a decade of sampling were assessed to infer population structuring and its temporal stability. Several alternative analyses indicated that spatial variation explained 2-3 times more of the divergence in the system than temporal variation. Over all samples and years, there was a significant correlation between genetic and geographic distance. However, decomposed pairwise regression analysis revealed differing patterns of genetic structure among local populations and indicated that migration outweighs genetic drift in the majority of populations. In addition, isolation by distance was observable in only three of the six years, and signals of population bottlenecks were observed in the majority of samples. Combined, the results suggest that habitat-specific adaptation in this system has preceded the development of consistent population substructuring in the face of high levels of gene flow from divergent environments.  相似文献   

15.
Erodium maritimum L. is an annual species presenting heterogeneous, sometimes very small, and distant populations, distributed along a discontinuous coastal strip of the European Atlantic and the central and western Mediterranean basin. The aim of this study is to investigate genetic variation and geographic structure changes across its large distribution. Fourteen populations of E. maritimum were studied using AFLP fingerprints, together with their population sizes, reproductive systems and flower visitors. AFLP markers revealed the genetic structure of the species to be weak. Many individuals from one population clustered together with those of other populations, showing a high degree of genetic admixture. Despite having a self‐compatible reproductive system, populations (especially the largest ones) showed high levels of genetic polymorphism, and the majority of genetic variation was contained within populations. The low genetic structure suggests high levels of gene flow, which might be explained through the dispersability of the species’ fruits. Finally, recommendations are provided for management strategies to facilitate the conservation of this endangered species.  相似文献   

16.
Zeuxine gracilis, Zeuxine strateumatica, and Eulophia sinensis are wild orchids with different breeding systems and colonizing abilities. Zeuxine gracilis is an outcrosser with restricted distribution, whereas S. strateumatica is an apomictic colonizer found only in newly available open habitats. Eulophia sinensis is an outcrossing colonizer. This study investigates the levels of genetic variation and patterns of population structure in these wild orchids to provide genetic information for the development of suitable conservation strategies. Lack of allozyme variation was characteristic of all three species, especially in populations of the two colonizing orchids, Z. strateumatica and E. sinensis. More variable markers, randomly amplified polymorphic DNAs (RAPDs), were further employed to characterize population structure of these species. Substantial genetic variation was found at the RAPD loci within populations of Z. gracilis (p = 21.65 ± 15.88%, A = 1.217 ± 0.159, and H = 0.076 ± 0.054) and E. sinensis (p = 17.82 ± 20.97%, A = 1.179 ± 0.209, and H = 0.070 ± 0.084), but little variation existed within populations of Z. strateumatica (p = 2.84 ± 2.58%, A = 1.029 ± 0.026, and H = 0.011 ± 0.011). Regardless of the breeding system, the total gene diversity at the species level was partitioned primarily between populations, as shown by high G(ST) values, in all three species. An extremely high level of population differentiation (G(ST) = 0.924) was found in the apomictic colonizer Z. strateumatica. The patterns of genetic variation in these wild orchids are apparently related to their differences in breeding system and colonizing ability. Different conservation strategies are needed for the long-term survival of these species.  相似文献   

17.
Female preference for local cultural traits has been proposed as a barrier to breeding among animal populations. As such, several studies have found correlations between male bird song dialects and population genetics over relatively large distances. To investigate whether female choice for local dialects could act as a barrier to breeding between nearby and contiguous populations, we tested whether variation in male song dialects explains genetic structure among eight populations of rufous‐collared sparrows (Zonotrichia capensis) in Ecuador. Our study sites lay along a transect, and adjacent study sites were separated by approximately 25 km, an order of magnitude less than previously examined for this and most other species. This transect crossed an Andean ridge and through the Quijos River Valley, both of which may be barriers to gene flow. Using a variance partitioning approach, we show that song dialect is important in explaining population genetics, independent of the geographic variables: distance, the river valley and the Andean Ridge. This result is consistent with the hypothesis that song acts as a barrier to breeding among populations in close proximity. In addition, songs of contiguous populations differed by the same degree or more than between two populations previously shown to exhibit female preference for local dialect, suggesting that birds from these populations would also breed preferentially with locals. As expected, all geographic variables (distance, the river valley and the Andean Ridge) also predicted population genetic structure. Our results have important implications for the understanding whether, and at what spatial scale, culture can affect population divergence.  相似文献   

18.
Swordtail fish have been studied extensively in relation to diverse aspects of biology; however, little attention has been paid to the patterns of genetic variation within and among populations of swordtails. In this study, we sequenced the mtDNA control region from 65 individuals and 10 populations of Xiphophorus cortezi to investigate the genetic variation within and among populations, including tests for correlations between genetic and geographic distances and tests for species monophyly. We found low gene and nucleotide diversity within populations and high degrees of genetic differentiation among populations. Significant and positive correlations between genetic distance and both river and straight-line geographic distance indicate that genetic differentiation among X. cortezi populations can be explained, to some extent, by an isolation-by-distance model and provide evidence of stream capture. Phylogenetic analyses suggest that X. cortezi is paraphyletic relative to X. malinche, raising questions concerning the status of these taxa as separate species.  相似文献   

19.
Eight German populations of the land snail Balea biplicata(Mollusca: Clausiliidae) were studied using the randomly amplified polymorphic DNA-polymerase chain reaction and morphometrics (principal component and discriminant analysis) to examine population structure and gene flow patterns in a fragmented landscape mosaic along the Elster/Saale riparian system, Germany. A variety of population genetic analyses targeting either more on the geographic scale of gene flow (genetic distances, F statistics, Mantel test) or on local genotypic structure (heterozygosity, linkage disequilibrium, bottleneck probability) showed that (1) the population system in total is governed by high gene flow independent of geographic distance, (2) genetic structure on the narrower sampling scale is mainly determined by stochastic processes due to genetic drift in small isolated and frequently recolonized populations, and (3) the morphometrical variation of the populations was related neither to habitat nor to genetic heterogeneity. The potentials for active and passive dispersal capacity of the snails and possible environmental impacts on their population structure are discussed.  相似文献   

20.
Túngara frogs (Physalaemus pustulosus) are a model system for sexual selection and communication. Population dynamics and gene flow are of major interest in this species because they influence speciation processes and microevolution, and could consequently provide a deeper understanding of the evolutionary processes involved in mate recognition. Although earlier studies have documented genetic variation across the species' range, attempts to investigate dispersal on a local level have been limited to mark-recapture studies. These behavioural studies indicated high mobility at a scale of several hundred metres. In this study we used seven highly polymorphic microsatellite loci to investigate fine-scaled genetic variation in the túngara frog. We analysed the influence of geographical distance on observed genetic patterns, examined the influence of a river on gene flow, and tested for sex-biased dispersal. Data for 668 individuals from 17 populations ranging in distance from 0.26 to 11.8 km revealed significant levels of genetic differentiation among populations. Genetic differentiation was significantly correlated with geographic distance. A river acted as an efficient barrier to gene flow. Several tests of sex-biased dispersal were conducted. Most of them showed no difference between the sexes, but variance of Assignment Indices exhibited a statistically significant male bias in dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号