首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An antibody was raised to cross-linked ox-heart mitochondrial inhibitor protein, which cross-reacts with the free inhibitor but with no other mitochondrial membrane protein. This antibody yields an immunoprecipitate with the cross-linked inhibitor protein, but a soluble antibody-antigen complex with free inhibitor. The antibody binds well to inhibitor protein whether the latter is complexed with F1-ATPase or not. Antibody binding has no effect on the ability of the inhibitor protein to inhibit the ATPase activity of F1. These findings suggest that the antibody does not block the site of interaction between the inhibitor and F1. The inhibitor protein content of submitochondrial membrane preparations was determined by radioimmunoassay, activity measurements and an immunochemical 'back titration' technique. The inhibitor content of the membranes is shown to decrease after energisation, suggesting a loss of inhibitor from the membranes into solution. Binding antibody to the inhibitor protein on submitochondrial particles has no effect on the steady-state rate of phosphorylation, but it increases the lag phase preceding phosphorylation from 30 to 54 s. The rate constant for the approach to the steady state drops from 0.078 to 0.052 s-1. This effect confirms that the lag phase is due to inhibition of phosphorylation by the inhibitor protein. The increase in ATPase activity following energisation takes place by a fast phase (80% maximal activity reached within 90 s) and a slower phase (lasting about 10 min.). The rate constant of the rapid phase (0.017 s-1) is of the same order as that for the activation of phosphorylation. It is concluded that the rapid phase of ATPase induction is fast enough for this process to occur simultaneously with the activation of phosphorylation.  相似文献   

3.
1. Beef heart mitochondrial ATPase, in both the membrane-bound and isolated form, contains tightly bound ATP and ADP. Each mol of ATPase contains about 2.2 mol ATP and 1.3 mol ADP. 2. In the absence of ATPase activity, these nucleotides exchange only slowly with nucleotides in solution. The exchange rate is increased during coupled ATPase activity, but not when the ATPase is uncoupled. 3. Oligomycin and dicyclohexylcarbodiimide inhibit exchange of the bound nucleotides, as does the ATPase inhibitor protein, although in each case some residual exchange occurs. Aurovertin, although inhibiting phosphorylation, does not inhibit the exchange. This is discussed in terms of the reversibility of these inhibitors. 4. The stimulation of exchange seen during coupled ATPase activity requires energisation of the ATPase molecule. Using the exchange reaction as a probe of energisation, it is deduced that energy can be transferred between different ATPase molecules. 5. It is proposed that coupled ATPase activity and phosphorylation in submitochondrial particles involve the tight nucleotide binding sites and the (weak) ATPase site, while uncoupled ATPase activity involves only the weak site.  相似文献   

4.
1. Beef heart mitochondrial ATPase, in both the membrane-bound and isolated form, contains tightly bound ATP and ADP. Each mol of ATPase contains about 2.2 mol ATP and 1.3 mol ADP.2. In the absence of ATPase activity, these nucleotides exchange only slowly with nucleotides in solution. The exchange rate is increased during coupled ATPase activity, but not when the ATPase is uncoupled.3. Oligomycin and dicyclohexylcarbodiimide inhibit exchange of the bound nucleotides, as does the ATPase inhibitor protein, although in each case some residual exchange occurs. Aurovertin, although inhibiting phosphorylation, does not inhibit the exchange. This is discussed in terms of the reversibility of these inhibitors.4. The stimulation of exchange seen during coupled ATPase activity requires energisation of the ATPase molecule. Using the exchange reaction as a probe of energisation, it is deduced that energy can be transferred between different ATPase molecules.5. It is proposed that coupled ATPase activity and phosphorylation in submitochondrial particles involve the tight nucleotide binding sites and the (weak) ATPase site, while uncoupled ATPase activity involves only the weak site.  相似文献   

5.
1. The coupling ATPase of Paracoccus denitrificans can be removed from the membrane by washing coupled membrane fragments at low salt concentrations. 2. This ATPase resembles coupling ATPases of mitochondria, chloroplasts and other bacteria. It is a negatively charged protein of molecular weight about 300,000. An inhibitor protein in bound tightly to the ATPase in vivo, and can be destroyed by trypsin treatment. 3. ATP and ADP are found tightly bound to the coupling ATPase of P. denitrificans, both in its membrane-bound and isolated state. The ATP/ADP ratio on the enzyme is greater than one. 4. Under de-energised condtions, the bound nucleotides are not available to the suspending medium. When the membrane is energised however, the bound nucleotides can exchange with added nucleotides and incorporate 32Pi. 32Ppi is incorporated into the beta and gamma positions of the bound nucleotides, but beta-labelling probably does not occur on the coupling ATPase. 5. Uncouplers inhibit the exchange of the free nucleotides or 32Pi into the bound nucleotides, while venturicidin (an energy transfer inhibitor) and aurovertin stimulate the exchange. 6. The response of the bound nucleotides to energisation is consistent with their being involved directly in the mechanism of oxidative phosphorylation.  相似文献   

6.
The ox heart mitochondrial inhibitor protein may be iodinated with up to 0.8 mol 125I per mol inhibitor with no loss of inhibitory activity, with no change in binding affinity to submitochondrial particles, and without alteration in the response of membrane-bound inhibitor to energisation. Tryptic peptide maps reveal a single labelled peptide, consistent with modification of the single tyrosine residue of the protein. A single type of high-affinity binding site (Kd=96 . 10 (-9)M) for the inhibitor protein has been measured in submitochondrial particles. The concentration of this site is proportional to the amount of membrane-bound F1, and there appears to be one such site per F1 molecule. The ATp hydrolytic activity of submitochondrial particles is inversely proportional to the occupancy of the high-affinity binding site for the inhibitor protein. No evidence is found for a non-inhibitory binding site on the membrane or on other mitochondrial proteins. In intact mitochondria from bovine heart, the inhibitor protein is present in an approx. 1:1 ratio with F1. Submitochondrial particles prepared by sonication of these mitochondria with MgATP contain about 0.75 mol inhibitor protein per mol F1, and show about 25% of the ATPase activity of inhibitor-free submitochondrial particles. Additional inhibitor protein can be bound to these particles to a level of 0.2 mol/mol F1, with consequent loss of ATPase activity. If MgATP is omitted from the medium, or inhibitors of ATP hydrolysis are present, the rate of combination between F1 and its inhibitor protein is very much reduced. The equilibrium level of binding is, however, unaltered. These results suggest the presence of a single, high-affinity, inhibitory binding site for inhibitor protein on membrane-bound F1. The energisation of coupled submitochondrial particles by succinate oxidation or by ATP hydrolysis results in both the dissociation of inhibitor protein into solution, and the activation of ATP hydrolysis. At least 80% of the membrane-bound F1-inhibitor complex responds to this energisation by participating in a new equilibrium between bound and free inhibitor protein. This finding suggests that a delocalised energy pool is important in promoting inhibitor protein release from F1. Dissipation of the electrochemical gradient by uncouplers, or the binding of oligomycin or efrapetin effectively blocks energised release of the inhibitor protein. Conversely, the addition of aurovertin or adenosine 5'--[beta, lambda--imido]triphosphate enhances energy-driven release. The mode of action of various inhibitors on binding and energised release of the protein inhibitor is discussed.  相似文献   

7.
Iqbal Husain  David A. Harris   《FEBS letters》1983,160(1-2):110-114
ATP hydrolysis or succinate oxidation by inhibitor-rich submitochondrial particles leads to a 3-fold increase in ATPase activity, with concomitant loss of about 30% of bound inhibitor protein. An acid—base transition causes similar, but smaller, effects (a 30% ATPase increase, and a loss of 8% of the inhibitor). Omitting the electrical component of the gradient completely abolished these effects. The inhibitor protein inhibits ADP phosphorylation induced by an acid—base transition but not by NADH oxidation. This is suggested to reflect the slow movement of the inhibitor protein and the brief period of acid—base jump phosphorylation.  相似文献   

8.
Yeast mitochondrial ATP synthase has three regulatory proteins; ATPase inhibitor, 9K protein, and 15K protein. A mutant yeast lacking these three regulatory factors was constructed by gene disruption. Rates of ATP synthesis of both wild-type and the mutant yeast mitochondria decreased with decrease of respiration, while their membrane potential was maintained at 170-160 mV under various respiration rates. When mitochondrial respiration was blocked by antimycin A, the membrane potential of both types of mitochondria was maintained at about 160 mV by ATP hydrolysis. ATP hydrolyzing activity of F(1)FoATPase solubilized from normal mitochondria decreased in proportion to the rate of ATP synthesis, while the activity of the mutant F(1)FoATPase was constant regardless of changes in the rate of phosphorylation. These observations strongly suggest that F(1)FoATPase in the phosphorylating mitochondria is a mixture of two types of enzyme, phosphorylating and non-phosphorylating enzymes, whose ratio is determined by the rate of respiration and that the ATPase inhibitor binds preferentially to the non-phosphorylating enzyme.  相似文献   

9.
In an attempt to determine whether the natural ATPase inhibitor (IF1) plays a role in oxidative phosphorylation, the time course of ATP synthesis and ATP hydrolysis in inside-out submitochondrial particles from beef heart mitochondria either possessing IF1 (Mg-ATP particles) or devoid of IF1 (AS particles) was investigated and compared to movements of IF1, as assessed by an isotopic assay. The responses of the above reactions to preincubation of the particles in aerobiosis with NADH or succinate were as follows: (1) The few seconds lag that preceded the steady-rate phase of ATP synthesis was shortened and even abolished both in Mg-ATP particles and AS particles. The rate of ATP synthesis in the steady state was independent of the length of the lag. (2) ATPase was slowly activated, maximal activation being obtained after a 50-min preincubation; there was no direct link between the development of the protonmotive force (maximal within 1 sec) and ATPase activation. (3) Bound IF1 was slowly released; the release of bound IF1 as a function of the preincubation period was parallel to the enhancement of ATPase activity; the maximal amount of IF1 released was a small fraction of the total IF1 bound to the particles (less than 20%). (4) The double reciprocal plots of the rates of ATP and ITP hydrolysis vs. substrate concentrations that were curvilinear in the absence of preincubation with a respiratory substrate became linear after aerobic preincubation with the substrate. The data conclusively show that only ATPase activity in submitochondrial particles is correlated with the release of IF1, and that the total extent of IF1 release induced by respiration is limited. On the other hand, the kinetics of ATPase in control and activated particles are consistent with the existence of two conformations of the membrane-bound F1-ATPase, directed to ATP synthesis or ATP hydrolysis and distinguishable by their affinity for IF1.  相似文献   

10.
1. The uncoupler-stimulated ATPase activity of castor bean endosperm mitochondria and submitchondrial particles has been studied. The rate of ATP hydrolysis catalyzed by intact mitochondria was slow and little enhanced by addition of uncouplers at the concentration required for uncoupling the oxidative phosphorylation. ATP-ase activity was stimulated at higher concentrations of uncouplers. 2. 1-Anilinonaphthalene 8-sulfonate fluorescence was decreased when the mitochondria were oxidizing succinate. Carbonylcyanide-p-trifluoromethoxyphenylhydrazone and antimycin reversed the succinate-induced fluorescence diminution. ATP did not induce the fluorescence response. 3. The addition of succinate, NADH or ascorbate/N,N,N'-N'-tetramethyl-p-phenylenediamine as electron donor induced high ATPase activity in the presence of low concentrations of uncouplers. Stimulating effect of uncouplers was completely abolished by further addition of antimycin. 4. Submitochondrial particles were prepared by sonication. The particles catalyzed a rapid hydrolysis of ATP and carbonylcyanide-p-trifluoromethoxyphenylhydrazone at 10-8 M did not stimulate the ATPase activity. Addition of succinate induced uncoupler-stimulated ATPase activity. The effect of succinate was completely abolished by further addition of antimycin. 5. The treatment of submitochondrial particles by trypsin or high pH also induced uncoupler-stimulated ATPase activity. 6. The above results were interpreted to indicate that ATPase inhibitor regulated the back-flow reaction of mitochondrial oxidative phosphorylation.  相似文献   

11.
The rates of both forward and reverse electron transfer in phosphorylating submitochondrial particles from bovine heart can be controlled by the thermodynamic phosphorylation potential (deltaGp) of the adenine nucleotide system. deltaGp is the Gibbs free energy of ATP synthesis and is defined by the relationship deltaGp = -deltaG'o + RTln([ATP]/[ADP][Pi]) where deltaG'o is the standard free energy of ATP hydrolysis. Studies of the effects of deltaGp on NADH respiration and the reduction of NAD+ by succinate show that increasing values of deltaGp cause an inhibition of forward electron transfer and a stimulation of reverse electron transfer. Between deltaGp values of 7.6 and 13.0 kcal/mol the rate of NADH respiration decreased 3-fold and the rate of NAD+ reduction by succinate increased 3-fold. Indirect phosphorylation potential titration experiments as well as direct chemical measurements indicate that steady state levels of ATP, ADP, and Pi are established during NADH respiration which correspond to a deltaGp equal to 10.7 to 11.4 kcal/mol.  相似文献   

12.
1. The coupling ATPase of Paracoccus denitrificans can be removed from the membrane by washing coupled membrane fragments at low salt concentrations.2. This ATPase resembles coupling ATPases of mitochondria, chloroplasts and other bacteria. It is a negatively charged protein of molecular weight about 300 000. An inhibitor protein is bound tightly to the ATPase in vivo, and can be destroyed by trypsin treatment.3. ATP and ADP are found tightly bound to the coupling ATPase of P. denitrificans, both in its membrane-bound and isolated state. The ATP/ADP ratio on the enzyme is greater than one.4. Under de-energised conditions, the bound nucleotides are not available to the suspending medium. When the membrane is energised however, the bound nucleotides can exchange with added nucleotides and incorporate 32Pi. 32Pi is incorporated into the β and γ positions of the bound nucleotides, but β-labelling probably does not occur on the coupling ATPase.5. Uncouplers inhibit the exchange of the free nucleotides or 32Pi into the bound nucleotides, while venturicidin (an energy transfer inhibitor) and aurovertin stimulate the exchange.6. The response of the bound nucleotides to energisation is consistent with their being involved directly in the mechanism of oxidative phosphorylation.  相似文献   

13.
Delipidation of beef heart electron transport particles with phospholipase A2 has been examined. When the particles were treated with the lipase and subjected to a low bovine serum albumin wash, ATPase activity was unaffected as was the lipid/protein ratio of the particles. However, energisation by ATP/Mg2+ was abolished. Furthermore, unsaturated but not saturated fatty acids discharged the steady-state ATP-driven membrane potential of control samples. When the phospholipase A2 hydrolysis products were removed, inhibition of energy-linked reactions in the lipid-depleted particles was still observed and was interpreted in terms of non-specific leaks in the vesicle membranes, and 'specific' leaks through impaired H+-ATPase complexes. ATPase activity was less susceptible to delipidation than energisation but was, nevertheless, strongly inhibited at 50 percent lipid depletion. Spin label studies indicated a decrease in the fluidity of particle membranes accompanying delipidation. Moreover, the discontinuity seen in Arrhenius plots of ATPase activity was shifted from 17 degrees C (control) to 22 degrees C at 50 percent phospholipid depletion. The data are consistent with a release of unsaturated fatty acids by phospholipase A2 rendering the transport particles both leakier and the membranes less fluid than controls.  相似文献   

14.
A phosphorylation potential deltaGp, where deltaGp = deltaGo' + RT2.303 log ([ATP]/([ADP][Pi])), of approx. 44.3 kJ.mol-1 (10.6 kcal.mol-1) was generated by submitochondrial particles that were oxidizing either NADH or succinate. Addition of adenylyl imidodiphosphate, which should suppress adenosine triphosphatase activity of any uncoupled particles, did not raise the phosphorylation potential. Raising the Pi concentration slightly increased the magnitude of the value for [ATP]/[ADP], but this did not fully compensate for the increased Pi concentration, so that the phosphorylation potential decreased slightly as the Pi concentration was raised. The phosphorylation potential developed by submitochondrial particles is lower than that generated by phosphorylating membrane vesicles from some bacteria, and is also less than that developed externally by mitochondria, but is strikingly close to the phosphorylation potential that is generated internally by mitochondria.  相似文献   

15.
The action of the natural ATPase inhibitor protein of Pullman and Monroy (Pullman, M. E., and Monroy, G. C. (1963) J. Biol. Chem. 238, 3762-3769) on the mechanisms of energy conservation of heart mitochondria has been explored. The synthesis and hydrolysis of ATP and the Pi-ATP exchange reaction were studied in submitochondrial particles that possess the ATPase-inhibitor protein complex in two distinguishable states. In addition to their different rates of hydrolysis, the two states of the complex have been identified from their different accessibility to antibodies directed against the inhibitor protein, and from the different action of antibodies and trypsin on the ATPase activity of the two types of particles studied. The steady state rates of hydrolysis and of the Pi-ATP exchange reaction of the particles are determined by the state in which the ATPase-inhibitor complex exists. Apparently by modifying the rate of one of the steps involved in the catalytic reaction of the ATPase, the inhibitor protein determines the extent to which the enzyme is able to catalyze ATP hydrolysis and the Pi-ATP exchange reaction. This action of the inhibitor protein also reflects the rate at which the particles carry out oxidative phosphorylation.  相似文献   

16.
T(1), a mutant yeast lacking three regulatory proteins of F(1)F(o)ATPase, namely ATPase inhibitor, 9K protein and 15K protein, grew on non-fermentable carbon source at the same rate as normal cells but was less viable when incubated in water. During the incubation, the cellular ATP content decreased rapidly in the T(1) cells but not in normal cells, and respiration-deficient cells appeared among the T(1) cells. The same mutation was also induced in D26 cells lacking only the ATPase inhibitor. Overexpression of the ATPase inhibitor in YC63 cells, which were derived from the D26 strain harboring an expression vector containing the gene of the ATPase inhibitor, prevented the decrease of cellular ATP level and the mutation. Isolated T(1) mitochondria exhibited ATP hydrolysis for maintenance of membrane potential when antimycin A was added to the mitochondrial suspension, while normal and YC63 mitochondria continued to show low hydrolytic activity and low membrane potential. Thus, it is likely that deletion of the ATPase inhibitor induces ATPase activity of F(1)F(o)ATPase to create a dispensable membrane potential under the non-nutritional conditions and that this depletes mitochondrial and cellular ATP. The depletion of mitochondrial ATP in turn leads to occurrence of aberrant DNA in mitochondria.  相似文献   

17.
NAD+ reduction catalyzed by transhydrogenase (EC 1.6.1.1) from E. coli membrane particles at the expense of NADPH oxidation is coupled with phenyldicarbaundecaborate (PCB-) absorption by the particles. This process is inhibited by oxidative phosphorylation protonophorous uncouplers and by equilibration of concentrations of the substrates and products of the transhydrogenase reaction. Elimination of the water-soluble part of membrane ATPase results in the inhibition of PCB- absorption at the expense of the transhydrogenase reaction energy. Treatment of the particles by dicyclohexyl carbodiimide increases the transhydrogenase-coupled absorption of PCB-. The transhydrogenase-induced increase of pPCB in the suspension of particles is directly correlated with the ratio of ([NADPH].[NAD+])/([NADP+].[NADH]). When this value is equal to 1, no energy-dependent increase of pPCB was observed. NADP+ reduction at the expense of NADH oxidation leads to a decrease in the amount of PCB- absorbed by the particles at the expense of ATP hydrolysis energy. The experimental data suggest that NADPH oxidation in the course of the transhydrogenase reaction is coupled with the formation of a membrane potential with a positive charge localized inside the particles.  相似文献   

18.
1. The magnitude of the protonmotive force in respiring bovine heart submitochondrial particles was estimated. The membrane-potential component was determined from the uptake of S14CN-ions, and the pH-gradient component from the uptake of [14C]methylamine. In each case a flow-dialysis technique was used to monitor uptake. 2. With NADH as substrate the membrane potential was approx. 145mV and the pH gradient was between 0 and 0.5 unit when the particles were suspended in a Pi/Tris reaction medium. The addition of the permeant NO3-ion decreased the membrane potential with a corresponding increase in the pH gradient. In a medium containing 200mM-sucrose, 50mM-KCl and Hepes as buffer, the total protonmotive force was 185mV, comprising a membrane potential of 90mV and a pH gradient of 1.6 units. Thus the protonmotive force was slightly larger in the high-osmolarity medium. 3. The phosphorylation potential (= deltaG0' + RT ln[ATP]/[ADP][Pi]) was approx. 43.1 kJ/mol (10.3kcal/mol) in all the reaction media tested. Comparison of this value with the protonmotive force indicates that more than 2 and up to 3 protons must be moved across the membrane for each molecule of ATP synthesized by a chemiosmotic mechanism. 4. Succinate generated both a protonmotive force and a phosphorylation potential that were of similar magnitude to those observed with NADH as substrate. 5. Although oxidation of NADH supports a rate of ATP synthesis that is approximately twice that observed with succinate, respiration with either of these substrates generated a very similar protonmotive force. Thus there seemed to be no strict relation between the size of the protonmotive force and the phosphorylation rate. 6. In the presence of antimycin and/or 2-n-heptyl-4-hydroxyquinoline N-oxide, ascorbate oxidation with either NNN'N'-tetramethyl-p-phenylenediamine or 2,3,5,6-tetramethyl-p-phenylenediamine as electron mediator generated a membrane potential of approx. 90mV, but no pH gradient was detected, even in the presence of NO3-. These data are discussed with reference to the proposal that cytochrome oxidase contains a proton pump.  相似文献   

19.
The hydrolytic and phosphorylation activities of the ATPase complex of bovine heart mitochondria are regulated by the ATPase inhibitor of Pullman and Monroy [1]. The inhibiting action of the peptide on ATPase activity can be overcome by a proton-motive force. Submitochondrial particles that contain the inhibitor, either intrinsically or externally added, show a lag that precedes phosphorylation. Particles devoid of the inhibitor, of particles that are in an 'active' state fail to present the lag. Accordingly, the data indicate that, prior to the onset of phosphorylation, the ATPase complex undergoes a transition to an active state through a process that involves the inhibitor. The transition depends on the concentration of ATP, 50 microM ATP giving 50% inhibition of the proton-motive force-induced transition.  相似文献   

20.
Yasuaki Takeuchi 《BBA》1975,376(3):505-518
1. The uncoupler-stimulated ATPase activity of castor bean endosperm mitochondria and submitochondrial particles has been studied. The rate of ATP hydrolysis catalyzed by intact mitochondria was slow and little enhanced by addition of uncouplers at the concentration required for uncoupling the oxidative phosphorylation. ATPase activity was stimulated at higher concentrations of uncouplers.

2. 1-Anilinonaphthalene 8-sulfonate fluorescence was decreased when the mitochondria were oxidizing succinate. Carbonylcyanide-p-trifluoromethoxyphenylhydrazone and antimycin reversed the succinate-induced fluorescence diminution. ATP did not induce the fluorescence response.

3. The addition of succinate, NADH or ascorbate/N,N,N′,N′-tetramethyl-p-phenylenediamine as electron donor induced high ATPase activity in the presence of low concentrations of uncouplers. Stimulating effect of uncouplers was completely abolished by further addition of antimycin.

4. Submitochondrial particles were prepared by sonication. The particles catalyzed a rapid hydrolysis of ATP and carbonylcyanide-p-trifluoromethoxyphenylhydrazone at 10-8 M did not stimulate the ATPase activity. Addition of succinate induced uncoupler-stimulated ATPase activity. The effect of succinate was completely abolished by further addition of antimycin.

5. The treatment of submitochondrial particles by trypsin or high pH also induced uncoupler-stimulated ATPase activity.

6. The above results were interpreted to indicate that ATPase inhibitor regulated the back-flow reaction of mitochondrial oxidative phosphorylation.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号