首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Centre of Theoretical and Computational Neuroscience, University of Plymouth, UK Basing on the hypothesis about the mechanisms of the theta rhythm generation, the article presents mathematical and computational models of theta activity in the hippocampus. The problem of the theta rhythm modeling is nontrivial because the slow theta oscillations (about 5 Hz) should be generated by a neural system composed of frequently firing neural populations. We studied a model of neural pacemakers in the septum. In this model, the pacemaker follows the frequency of the external signal if this frequency does not deviate too far from the natural frequency of the pacemaker, otherwise the pacemaker returns to the frequency of its own oscillations. These results are in agreement with the experimental records of medial septum neurons. Our model of the septal pacemaker of the theta rhythm is based on the hypothesis that the hippocampal theta appears as a result of the influence of the assemblies of neurons in the medial septum which are under control of pacemaker neurons. Though the model of the pacemaker satisfies many experimental facts, the synchronization of activity in different neural assemblies of the model is not as strong as it should be. Another model of the theta generation is based on the anatomical data about the existence of the inhibitory GABAergic loop between the medial septum and the hippocampus. This model shows stable oscillations at the frequency of the theta rhythm in a broad range of parameter values. It also provides explanation to the experimental data about the variation of the frequency and the amplitude of the theta rhythm under different external stimulations of the system. The role of the theta rhythm for information processing in the hippocampus is discussed.  相似文献   

2.
Inter-neuronal interactions within the medial septum/diagonal band complex (MSDB) are of great interest as this region is believed to be the hippocampal theta rhythm pacemaker. However, the role of glutamatergic system in functioning of the septal cells is yet unclear. Here, we demonstrate for the first time the effects of glutamate in physiological concentration (1 microM) on the MSDB neuronal spontaneous and evoked activities in vitro. These effects (activation of 70% and inhibition of 30% of responsive neurons) differed in pacemaker and non-pacemaker cells. Pacemaker cells were always activated under glutamate, whereas non-pacemaker neurons could be either activated or inhibited. Indeed, in the burst pacemakers, glutamate increased the frequency of rhythmic activity. In a total MSDB neuron population, in 30% of neurons glutamate applications modified responses to the electrical stimulation by unifying the temporal parameters of neuron responses. Along with the increase in the theta-burst frequency, this indicates that the glutamatergic system is involved in the process ofintraseptal synchronization. Obtained data shed light on the role ofglutamatergic system in septal neuron interactions and broaden our understanding of theta oscillation mechanisms in the septo-hippocampal system.  相似文献   

3.
As a basis for the study of sinus rhythm determination, a model is proposed of bidirectionally-coupled oscillators as a system of difference equations based on the phase response curve of sinoatrial pacemaker cells. Solutions corresponding to the one-to-one synchronization of the two pacemakers are obtained, and the relation among those solutions is examined: It is revealed that two different solutions with different cycle length coexist, and the synchronized frequency can be higher or lower than the original intrinsic frequencies of the two pacemaker cells. The experimental results of the cultured cells of cardiac pacemakers are interpreted by the analytical result of the model.  相似文献   

4.
Chronic experiments were conducted on 46 rabbits; a study was made of the changes in cardiac activity arising in prolonged (up to 1--2 weeks) electric stimulation of the ventro-median nuclei of the hypothalamus. Disturbances of the cardiac rhythm in the form of tachycardia, atrial flutter and fibrillation, ventricular extrasystole and paroxysmal ventricular tachysystole occurred mostly during the first days of stimulation and ceased after inderal infusion. Functional "weakness" of the cardiac pacemakers was revealed in the animals subjected to 1--2-week stimulation of the ventromedian nuclei. This was indicated by the post-stimulation suppression of the pacemaker automaticity and the appearance of Liciani's periods. Disturbances of the cardiac rhythm originating in stimulation of the ventromedian nuclei ceased in stimulation of the lateral hypothalamic field.  相似文献   

5.
Transesophageal stimulation of the left cardiac atrium in the treatment of paroxysmal atrial flutter was assessed. An attempt of such a therapy in paroxysmal atrial flutter involved 20 patients. Cardiac atrium was stimulated with overdrive technique, with single or pair of stimuli and multiple impulses of various frequency and duration. Reversal to sinus rhythm was achieved in 10 patients (in 3 out of them through phase of atrial fibrillation transitory). Results confirm therapeutical value of the transesophageal stimulation of the left cardiac atrium in atrial flutter.  相似文献   

6.
An 84-year-old female patient presented to the coronary care unit with dizziness. A DDD-R minute ventilation sensor pacemaker had been implanted eight years previously. The ECG showed an atrial and ventricular paced rhythm of 140 beats/min. After disconnecting the patient from the cardiac monitor the pacemaker rate dropped gradually to 90 beats/min. The cardiac rhythm monitoring system applies low-amplitude electrical pulses in order to measure respiration rate by transthoracic impedance (TTI) measurement. The minute ventilation pacemaker sensor is driven by the same TTI measurement for rate response. Inappropriate interference between these two systems caused a sensor-driven high pacemaker rate. The dizziness was not related to the sensor-driven high rate.  相似文献   

7.
Effects of GABA, pentobarbital and picrotoxin upon spontaneous and evoked activity of neurones of the medial septal nucleus and the nucleus of the diagonal band (MS-DB) were investigated in the guinea pig septal slices. GABA and pentobarbital have similar effect upon all neurones, but the cells with a regular single spike and rhythmic burst activity of pacemaker type were less sensitive to their inhibitory influence. Picrotoxin affects neither frequency, nor pattern of activity. Electrical stimulation of the medial forebrain bundle evoked initial suppression of activity in majority of the neurones (74%); the remaining cells reacted mainly with an initial burst. GABA and pentobarbital increased the duration of the initial inhibition and revealed it in all cells with initial excitation in the control state. Picrotoxin did not influence this type of response, but revealed initial short-latency bursts in the cells with inhibitory effect in control state. The experiments show double nature of the effect of afferent stimulation controlling the activity of the MS-DB neurones. The mechanism of synchronization of the rhythmic activity in MS-DB, resulting in generation of the hippocampal theta-rhythm, is discussed.  相似文献   

8.
The pacemaker neurons of the heart ganglion are innervated from the CNS through two pairs of acceleratory nerves. The effect of acceleratory nerve stimulation was examined with intracellular electrodes from the pacemaker cells. The major effects on the pacemaker potential were an increase in the rate of rise of the spontaneous depolarization and in the duration of the plateau. The aftereffect of stimulation could last for minutes. No clear excitatory postsynaptic potential (EPSP) was observed, however. On high frequency stimulation, a small depolarizing response (the initial response) was sometimes observed, but the major postsynaptic event was the following slow depolarization, or the enhancement of the pacemaker potential (the late response). With hyperpolarization the initial response did not significantly change its amplitude, but the late response disappeared, showing that the latter has the property of the local response. The membrane conductance did not increase with acceleratory stimulation. The injection of depolarizing current increased the rate of rise of the spontaneous depolarization, but only slightly in comparison with acceleratory stimulation, and did not increase the burst duration. It is concluded that the acceleratory effect is not mediated by the EPSP but is due to a direct action of the transmitter on the pacemaker membrane.  相似文献   

9.
M. E. Mazurov 《Biophysics》2006,51(6):959-965
The most significant experimental data on the formation of the common rhythm of the heart sinoatrial node are presented for both the intact heart sinoatrial node and cardiomyocytes in cell structures. The basic mathematical models for studying the synchronization processes in the sinoatrial node, including the Noble equation, Bonhoffer-van der Pol model, and modified axiomatic models, are described. The basic results obtained with the mathematical models are presented. The most important causes affecting the formation of the common rhythm—the pacemaker potential shape in the slow diastolic depolarization phase, its porosity, the coupling force between pacemakers, and the electrical power of pacemakers—are revealed. Rhythmogenesis is studied using the modified axiomatic model. The method allows the calculation of the common rhythm of the sinoatrial node, with allowance for the mutual effect of the pacemaker cells, including the coupling force, electric power of cells, and possibility of the cells clustering. It has been shown that the common rhythm of the sinoatrial node is generally formed at the intermediate level of the rhythms of all pacemaker cells.  相似文献   

10.
Mazurov ME 《Biofizika》2006,51(6):1092-1099
The most significant experimental data about the formation of a uniform rhythm of the sinoatrial unit of the heart for both the intact sinoatrial unit of the heart and cardiomyocytes in cellular structures are presented. The basic mathematical models for studying the processes of synchronization in the sinoatrial unit of the heart are described, including equations of Noble, Bonhoffer, and van der Pol and modified axiomatic models. The basic results obtained using the mathematical models are presented. The major reasons influencing the formation of a uniform rhythm were revealed: the form of a potential pacemaker in the phase of slow diastolic depolarization, its porosity, the force of connection between pacemaker and electric capacity of pacemakers. A study of rhythmogenisis on the basis of the modified axiomatic model was carrud out. The method allows one to calculate the uniform rhythm of the sinoatrial unit of the heart in view of the mutual influence of pacemaker cells, including the force of connection, electric capacity of cells, their possible clusterization. It was shown that generally the uniform rhythm of the sinoatrial unit of the heart is formed on an intermediate level of all pacemaker cells.  相似文献   

11.
Lakatta EG 《Cell calcium》2004,35(6):629-642
The ability of the heart to acutely beat faster and stronger is central to the vertebrate survival instinct. Released neurotransmitters, norepinephrine and epinephrine, bind to beta-adrenergic receptors (beta-AR) on pacemaker cells comprising the sinoatrial node, and to beta-AR on ventricular myocytes to modulate cellular mechanisms that govern the frequency and amplitude, respectively, of the duty cycles of these cells. While a role for sarcoplasmic reticulum Ca(2+) cycling via SERCA2 and ryanodine receptors (RyR) has long been appreciated with respect to cardiac inotropy, recent evidence also implicates Ca(2+) cycling with respect to chronotropy. In spontaneously beating primary sinoatrial nodal pacemaker cells, RyR Ca(2+) releases occurring during diastolic depolarization activate the Na(+)-Ca(2+) exchanger (NCX) to produce an inward current that enhances their diastolic depolarization rate, and thus increases their beating rate. beta-AR stimulation synchronizes RyR activation and Ca(2+) release to effect an increased beating rate in pacemaker cells and contraction amplitude in myocytes: in pacemaker cells, the beta-AR stimulation synchronization of RyR activation occurs during the diastolic depolarization, and augments the NCX inward current; in ventricular myocytes, beta-AR stimulation synchronizes the openings of unitary L-type Ca(2+) channel activation following the action potential, and also synchronizes RyR Ca(2+) releases following depolarization, and in the absence of depolarization, both leading to the generation of a global cytosolic Ca(i) transient of increased amplitude and accelerated kinetics. Thus, beta-AR stimulation induced synchronization of RyR activation (recruitment of additional RyRs to fire) and of the ensuing Ca(2+) release cause the heart to beat both stronger and faster, and is thus, a common mechanism that links both the maximum achievable cardiac inotropy and chronotropy.  相似文献   

12.
Non-linear parameters were computed to assess the extent of spatial organization in the atria in terms of coupling/synchronization between electrograms recorded in different atrial sites. Recordings of 9 patients suffering from paroxysmal atrial fibrillation were tested during four clinical experimental conditions: sinus rhythm and atrial fibrillation, both before and after isoproterenol infusion, a drug mimicking adrenergic activation. Two non-linear metrics were investigated: an index of non-linear association (NLA) and a synchronization (S) index based on the cross-conditional entropy. Results evidence the presence of reduced coupling after drug infusion in both sinus rhythm and atrial fibrillation. Moreover, passing from the NLA to the S index, the capability of the parameter to capture the subtle changes due to isoproterenol administration increased.  相似文献   

13.
Verapamil was administered by intravenous injection to 181 patients with various cardiac arrhythmias. The automaticity of the cardiac pacemaker was slowed in sinus, idionodal, and idioventricular tachycardia. In atrial fibrillation the drug usually slowed the ventricular response and often made it regular. In some cases atrial flutter was converted to sinus rhythm, the ventricular response being reduced in the remainder. Conversion of paroxysmal supraventricular tachycardia to sinus rhythm was consistently achieved. A favourable response occurred in four patients in whom arrhythmias were associated with pre-excitation syndromes. There were no adverse clinical side effects.  相似文献   

14.
The influence of pacemaker shifts on sinoatrial conduction time (SACT) was studied by investigating the effects of vagal stimulation on SACT and atrial conduction in anesthetized open-chest dogs. Isochronal maps were drawn from unipolar electrograms simultaneously recorded at 60 epicardial sites on the right atrial free wall and the inferior and superior vena cava. Vagal stimulation caused atrial conduction velocity to increase from 0.99 +/- 0.10 m/s (mean +/- SD) to 1.23 +/- 0.23 m/s (p less than 0.01), and the pacemaker to shift to lower positions along the superior vena cava - right atrial junction. As a result of the changes, the distances and the atrial conduction times from the stimulating and recording electrodes to the pacemaker site varied, and hence, the SACT values obtained indirectly by premature atrial stimulation varied. The isochronal maps were used to measure the atrial conduction times from stimulating to recording electrodes (a), from stimulating electrode to pacemaker site (b), and from pacemaker site to recording electrode (c). Indirect SACT was lengthened by vagal stimulation from 43 +/- 16 to 64 +/- 22 ms (p less than 0.02). After correcting by subtracting the atrial conduction time (b + c - a), these values became 26 +/- 6 ms (control) and 40 +/- 11 ms (vagal stimulation) (p less than 0.01). SACT values measured directly from the electrograms were 27 +/- 7 ms (control) and 42 +/- 10 ms (vagal stimulation) (p less than 0.01). Corrected indirect SACTs were closer to direct SACTs than were the uncorrected indirect SACTs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The dynamics of establishing a unified sinoatrial node rhythm are considered. Mutual synchronization is shown to result in phase shifts and excitation delays. Rhythmogenesis in systems of two or many interacting pacemaker cells is examined in several point models and distributed models (Noble, Bonhoeffer-van der Pol, FitzHugh, Hodgkin-Huxley, Morris-Lecar).  相似文献   

16.
Single units which discharged with regular spontaneous rhythms without intentional stimulation were observed in the ventral nerve cord by intracellular recording close to the sixth abdominal ganglion. These units were divided into two groups: group A units in which interspike intervals varied less than 10 msec.; group B units in which interspike intervals varied within a range of 10 to 30 msec. Group A units maintained "constant" interspike intervals and could not be discharged by sensory inputs, while the majority of group B units could be discharged by appropriate sensory nerve stimulation. Both group A and B units discharged to direct stimulation when the stimulating and recording electrodes were placed in the same ganglionic intersegment, and directly evoked single spikes reset the spontaneous rhythm. In group B units, presynaptic volleys reset the spontaneous rhythm of some units; but in others, synaptically evoked spikes were interpolated within the spontaneous rhythm without resetting. The phenomenon of enhancement could also be demonstrated in spontaneously active units as a result of repetitive stimulation. It is concluded that endogenous pacemaker activity is responsible for much of the regular spontaneous firing observed in crayfish central neurons, and that interaction of evoked responses with such pacemaker sites can produce a variety of effects dependent upon the anatomical relationships between pacemaker and synaptic regions.  相似文献   

17.
The origin of sinoatrial node (SAN) pacemaker activity in the heart is controversial. The leading candidates are diastolic depolarization by “funny” current (If) through HCN4 channels (the “Membrane Clock“ hypothesis), depolarization by cardiac Na-Ca exchange (NCX1) in response to intracellular Ca cycling (the "Calcium Clock" hypothesis), and a combination of the two (“Coupled Clock”). To address this controversy, we used Cre/loxP technology to generate atrial-specific NCX1 KO mice. NCX1 protein was undetectable in KO atrial tissue, including the SAN. Surface ECG and intracardiac electrograms showed no atrial depolarization and a slow junctional escape rhythm in KO that responded appropriately to β-adrenergic and muscarinic stimulation. Although KO atria were quiescent they could be stimulated by external pacing suggesting that electrical coupling between cells remained intact. Despite normal electrophysiological properties of If in isolated patch clamped KO SAN cells, pacemaker activity was absent. Recurring Ca sparks were present in all KO SAN cells, suggesting that Ca cycling persists but is uncoupled from the sarcolemma. We conclude that NCX1 is required for normal pacemaker activity in murine SAN.  相似文献   

18.
We tested the hypothesis that pacemaker neurons generate breathing rhythm in mammals. We monitored respiratory-related motor nerve rhythm in neonatal rodent slice preparations. Blockade of the persistent sodium current (I(NaP)), which was postulated to underlie voltage-dependent bursting in respiratory pacemaker neurons, with riluzole (< or =200 microM) did not alter the frequency of respiratory-related motor output. Yet, in every pacemaker neuron recorded (50/50), bursting was abolished at much lower concentrations of riluzole (< or =20 microM). Thus, eliminating the pacemaker population (our statistics confirm that this population is reduced at least 94%, p < 0.05) does not affect respiratory rhythm. These results suggest that voltage-dependent bursting in pacemaker neurons is not essential for respiratory rhythmogenesis, which may instead be an emergent network property.  相似文献   

19.
In crayfish, one very well-studied circadian rhythm is that of electroretinogram (ERG) amplitude. The cerebroid ganglion has been considered a plausible site for the circadian pacemaker of this rhythm and for the retinular photoreceptors, as the corresponding effectors. The pigment dispersing hormone (PDH) appears to synchronize ERG rhythm, but its characterization as a synchronizer cue remains incomplete. The main purposes of this work were a) to determine whether PDH acts on the cerebroid ganglion, and b) to complete its characterization as a non-photic synchronizer. Here we show that PDH increases the number of the spontaneous potentials of the cerebroid ganglion, reaching 149.92±6.42% of the activity recorded in the controls, and that daily application of PDH for 15 consecutive days adjusts the ERG circadian rhythm period to 24.0±0.2h and the end of the activity period of the rhythm coincides with the injection of the hormone. In this work, we hypothesized that in crayfish, PDH transmits the "day" signal to the ERG circadian system and acts upon both the presumptive circadian pacemaker and the corresponding effectors to reinforce the synchronization of the system.  相似文献   

20.
An 83-year-old female patient with symptomatic atrial fibrillation was referred to the Department of Cardiology for a scheduled electrocardioversion. Because of a junctional escape rhythm after the electrocardioversion she received a DDD pacemaker which was complicated by dyspnoea and ST-segment elevations in the inferior and precordial leads. Because of suspicion of an acute myocardial infarction she was transferred to a PCI centre. The coronary angiogram showed no abnormalities. In the initial phase, an echocardiogram was performed. The echocardiogram showed apical akinesis and a reduced left ventricular function. During follow-up left ventricular function improved and was completely normal nine weeks after the event. The clinical picture was interpreted as a takotsubo cardiomyopathy after a pacemaker implantation. (Neth Heart J 2009;17:487–90.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号