首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Saturable sodium-independent taurine binding to mouse and rat brain synaptic membranes was exposed after two freezing-thawing cycles combined with Triton X-100 treatments. The amount of saturable taurine binding was fairly low but was enhanced after depletion of brain taurine. Saturable taurine binding was displaceable by some convulsants and anticonvulsants but is specificity still remains to be established.  相似文献   

2.
A Closse  D Hauser 《Life sciences》1976,19(12):1851-1863
3H-dihydroergotamine, which is used clinically to treat orthostatic hypotension and migraine, binds saturably, reversibly and with high affinity (KD = 0.2 nM) to rat brain membranes. The binding is time, temperature and pH dependent and is highest in the hippocampus and the corpus striatum. Serotonin was the only neurotransmitter tested capable of inhibiting 3H-DHE binding.  相似文献   

3.
The binding of [14C]NAD to rat brain synaptic membranes is reversible and depends on incubation time, temperature and protein concentration in the reaction mixture. The value of the rate constant for [14C]NAD binding to the synaptic membranes at 24 degrees C (kl) is 1.1 X 10(-6) M-1 S-1, the rate constant for dissociation of the [14C]NAD-receptor complex (k-1) is 3.3 X 10(-3) S-1. The value of the constant for the ligand dissociation from this complex (Kd) is 3.0 nmole. Treatment of the experimental results in the Scatchard plots for the equilibrium binding of [14C]NAD to the synaptic membranes demonstrated that the receptor sites with high and low affinities for the ligand (Kd1 = 3.3 nmol, Kd2 = 14.4 nmole) and with binding capacities of 44 and 77 pmole of [14C]NAD, respectively. It was found that the synaptosomal membrane components which bind the labelled NAD have a protein nature. Data from [14C]NAD and [nicotinamide-3H]NAD binding suggest that brain synaptic membranes bind NAD at the nicotinamide and adenylic moieties.  相似文献   

4.
Rat brain homogenate preparations exhibited two types of glutamine binding, one a high-affinity (K1 = 0.2 μM) and the other a low-affinity type (K2 = 4.4 μM). The high-affinity binding was primarily associated with the plasma membrane subcellular fractions and in particular with the synaptic membrane subfraction. This l-glutamate binding was found to be strongly stereospecific for the l-form and was almost totally reversible. The synaptic membrane glutamate binding was partialy inhibited by neuro-excitatory and neuro-inhibitory amino acids but was not affected by amino acids lacking in neuropharmacologic activity. The membrane-associated l-glutamate binding system could be solubilized by Triton X-100 without loss of its high-affinity binding activity. The chemical nature of this glutamate binding component was found to be that of a glycolipoprotein. It is proposed that this glutamate binding system represents the physiologic receptor on neuronal membranes of this amino acid.  相似文献   

5.
6.
The interaction of 5-aminolevulinic acid (ALA) with GABAA receptors has been proposed to underlie the neurological dysfunctions of ALA-accumulating disorders, such as acute intermittent porphyria. The effects of ALA on [3H]muscimol binding to human and rat cerebral cortical membranes were compared. ALA (0.1–10 mM) significantly inhibited the binding of [3H]muscimol (12 nM), with a similar potency in rat and human membranes (IC50 = 199 vs. 228 M, respectively). Kinetical analysis revealed that ALA (1 mM) significantly increased the Kd and decreased the Bmax of [3H]muscimol to both rat (100 and 50%, respectively) and human (200 and 40%, respectively) membranes, indicating a mixed-type inhibition. The similarity in the potency and mechanism of the ALA-induced inhibition of muscimol binding in rat and human membranes indicate that rat studies are useful to evaluate the neurotoxic properties of ALA towards the human GABAergic system, and may help to understand the pathophysiology of porphyria.  相似文献   

7.
8.
There is evidence suggestive of the possible neuromodulatory role forl-proline in the mammalian brain. The binding of proline to whole mouse brain synaptic membranes has been partially characterized. Several binding sites for this imino acid have been identified; one in the nanomolar range and at least two in the submicromolar range. The binding of proline is inhibited by NaCl. Pipecolic acid (40 M), ornithine, aminooxyacetic acid (AOAA), glycine, GABA, and glutamate were capable of significantly inhibiting proline binding. Although detailed pharmacological and functional studies are needed, these results are consistent with a brain-specific function for this imino acid, as well as, with the presence of specific binding site(s) for proline.  相似文献   

9.
10.
Results from this study indicate that adult rat brain posesses guanylate cyclase activity sensitive to serotonin (5-HT) and localized in the synaptic plasma membrane. The enzyme appears to have multiple activation sites for 5-HT with specific activity maxima at the 5-HT concentrations of 5 × 10?10M and 7 × 10?8M respectively. The rates of guanosine-3′:5′-monophosphate (cyclic GMP) formation at these concentrations of 5-HT are, respectively, 170% and 307% above the endogenous or basal production rate of 2.7±0.3picomoles/minute/milligram of synaptosomal membrane protein. We have also been able to identify four distinct types (Type #1, #2, #3, and #4) of high affinity, specific binding sites for 5-HT on isolated synaptosomal membranes from rat brain. Dissociation constants of 2.6 × 10?10M, 2.5 × 10?9M, 7.0 × 10?9M, and 4.6 × 10?8M, characterize the binding of 5-HT to our sites of Type #1 through Type #4 respectively. The specific, high affinity binding was saturated at 5-HT concentrations of 5 × 10?10M for the Type #1 sites, 5 × 10?9M for our Type #2 sites, 1 × 10?8M for our Type #3 sites, and 7 × 10?8M for our Type #4 sites. The 5-HT concentrations producing saturation of our specific binding sites of Type #1 and Type #4 are virtually identical to those that elicit the two maxima of 5-HT stimulated cyclic GMP production, indicating that a membrane-bound guanylase cyclase may be closely associated with certain 5-HT receptors and/or re-uptake sites.  相似文献   

11.
Regulation of certain central nervous system (CNS) functions by the immune system may involve interferons (IFNs) acting through opioid receptors. Human recombinant interferon alpha (hrIFN alpha), as well as natural IFN alpha, have been reported to modulate a variety of physiological CNS functions both in vivo and in vitro. If the mechanism is via opioid receptors then IFN alpha should inhibit the binding of certain opioid radioligands to brain membranes. This study reports the inhibitory effect of hrIFN alpha on the binding of 3H-naloxone to rat brain membranes in vitro. The inhibitory effect at 37 degrees C is hrIFN alpha concentration dependent over the range of 500 to 6000 antiviral units per ml (U/ml) with 500 micrograms of membrane protein. The presence of NaCl (100mM) increases specific binding of naloxone and attenuates the inhibitory effect of hrIFN alpha. The inhibitory effect of hrIFN alpha is sensitive to temperature with maximum inhibition observed at 37 degrees C, and less as incubation temperature is reduced. These data suggest that IFN alpha may modulate certain physiologic functions via opioid pathways in the brain.  相似文献   

12.
The treatment of the membranes from cerebellum of rat brain with 0.5% Triton X-100 increases both the affinity and the density of the Na+-independent binding sites for 3H-GABA (γ-aminobutyric acid) from the values obtained from membranes of rat brain after an extensive freezing and thawing treatment (Young et al., 1976). Upon repeated washings of the Triton-treated membranes, the binding of 3H-GABA is further increased and follows biphasic kinetics which indicates two binding components having dissociation constants of 5.9 and 27 nM and densities of 1.35 and 3.9 pmole/mg protein, respectively. GABA agonist, imidazoleacetic acid, and the GABA antagonists, bicuculline and d-tubocurarine, inhibit 50% of 3H-GABA binding at 1, 47 and 85 μM concentrations (IC50 values), respectively. The IC50 values for these compounds are unchanged by Na+. Thus, the Na+-independent binding of 3H-GABA to the Triton-treated membranes may represent binding to the synaptic GABA receptors.  相似文献   

13.
Synaptic plasma membranes (SPM) of rat brain contained a 5'-nucleotidase that was specifically released by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PIPLC). About 30% of the enzyme was readily released and the remainder was less susceptible. Purified 5'-nucleotidase was treated with PIPLC and the resultant enzyme was almost totally partitioned into the detergent-poor phase following phase-separation in Triton X-114 indicating that PIPLC converted the enzyme from an amphipathic to a hydrophilic form. The results suggest that 5'-nucleotidase is anchored into SPM by a covalently attached phosphatidylinositol moiety.  相似文献   

14.
A membrane preparation from rat brain catalyzed the hydrolysis of [2-3H]glycerol-labeled lysophosphatidylinositol (lysoPI) to yield monoacylglycerol (MG) and inositolphosphates. This phospholipase C activity had an optimal pH of 8.2. The membrane preparation did not require the addition of Ca2+ for its maximum activity, but the activity was inhibited by addition of 0.1 mM EDTA to the assay mixture and was restored by simultaneous addition of 0.2 mM Ca2+. The activity was found to be localized in synaptic plasma membranes prepared by Ficoll and Percoll density gradients. The phospholipase C was highly specific for lysoPI; diacylglycerol formation from phosphatidylinositol, and MG formation from lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylserine were below 5% of that observed with lysoPI under the conditions used. We concluded that there is a pathway for phosphatidylinositol metabolism in brain synaptic membranes which is different from the well-characterized phosphoinositide-specific phospholipase C pathway.Abbreviations PI phosphatidylinositol - lysoPI lysophosphatidylinositol - lysoPI-PLC lysophosphoinositide-specific phospholipase C - PI-PLC phosphoinositide-specific phospholipase C - MG monoacylglycerol - PLC phospholipase C To whom to address reprint requests.  相似文献   

15.
Affinity of beta-adrenoreceptors in the rat brain synaptic membranes to agonists isoproterenol and norepinephrine, as well as to antagonist 125I-hydroxybenzylpindolol is lower in young (1 month) and old (24--26 months) than in mature (8--12 months) rats. Desensitization toward isoproterenol is expressed in the young ones only. In the old but not in other groups simultaneous action of isoproterenol and N-ethylmaleimide decreases the following binding of the antagonist while the same agents added separately produced no effect. It is suggested that beta-adrenoreceptors undergo age-related changes in their conformational state due to modification of the membrane environment.  相似文献   

16.
3H-Isoguvacine, a gamma aminobutyric acid (GABA) agonist, has been shown to bind to a mouse forebrain synaptic membrane preparation. The specific binding is displaceable by GABA, muscimol and bicuculline but not by picrotoxin or diaminobutyric acid. Kinetic data suggest two binding affinities. Highest levels of binding are observed in the cerebellum, cortex and hippocampus. It is suggested that isoguvacine binds to GABA binding sites and therefore represents a new ligand for measuring GABA receptor binding.  相似文献   

17.
Ganglioside-specific binding protein on rat brain membranes   总被引:6,自引:0,他引:6  
A derivative of ganglioside GT1b (IV3NeuAc,II3(NeuAc)2-GgOse4) with an active ester in its lipid portion was synthesized and covalently attached to bovine serum albumin (BSA). The conjugate, having four GT1b molecules per albumin molecule [GT1b)4BSA) was radioiodinated and used to probe rat brain membranes for ganglioside binding proteins. A ganglioside-specific, high affinity (KD = 2-4 nM), saturable (Bmax = 13-20 pmol/mg membrane protein) binding site for 125I-(GT1b)4BSA was demonstrated on detergent-solubilized rat brain membranes adsorbed to filters. 125I-(GT1b)4BSA binding was tissue-specific (more than 35-fold greater to brain than to liver membranes) and was nearly eliminated by pretreatment of brain membrane-adsorbed filters with trypsin (1 microgram/ml). Underivatized gangliosides added as mixed detergent-lipid micelles blocked 125I-(GT1b)4BSA binding to brain membranes; structurally related GQ1b, GT1b, and GD1b were the most potent (half-maximal inhibition at 70-110 nM), while half-maximal inhibition by other gangliosides (GD3, GD1a, GM3, GM2, and GM1) required 5-20-fold higher concentrations. Other sphingolipids, neutral glycosphingolipids, and glycoproteins were poor inhibitors, and treatment of (GT1b)4BSA with neuraminidase attenuated its binding. Although most phospholipids were noninhibitory, phosphatidylinositol and phosphatidylglycerol inhibited half-maximally at 400-600 nM. However, inhibition of 125I-(GT1b)4BSA binding by gangliosides was competitive and reversible while that by phosphatidylinositol and phosphatidylglycerol was not. Ganglioside-protein conjugate binding reveals ganglioside-specific brain membrane receptors.  相似文献   

18.
The binding of [125I] alpha-latrotoxin to synaptosomes from the rat brain is studied. It is shown that the constant rate of toxin association with the synaptosome receptor at 37 degrees C is equal to 8.2 +/- 1.3 x 10(7) M-1.s-1, while that of synaptosomal membrane -7.6 +/- 2.7 x 10(6) M-1 s-1. Depolarization of the synaptosome membrane induced by 55 mM KCl decreases the binding rate of toxin to the receptor, the rate constant being equal to 3.9 +/- 1.5 x 10(7) m-1 s-1. The pattern of the dissociation process of the toxin-receptor complex of synaptosomes and of synaptosomal membrane is different. In the first case dissociation follows two stages with the rate constants 3.6 x 10(-3) s-1 and 1.2/10(-4) s-1, in the second case it follows one stage with the constant equalled 2.0 x 10(-5) s-1. The quantity of the toxin binding sites on synaptosomes may vary under the action of agents modifying the activity of calcium fluxes which are induced by alpha-latrotoxin. It is supposed that a decrease in the ATP level in synaptosomes as well as deenergy of the surface membrane leads to a change in the state of the alpha-latrotoxin receptor.  相似文献   

19.
E Varga  G Toth  S Benyhe  S Hosztafi  A Borsodi 《Life sciences》1987,40(16):1579-1588
Oxymorphazone is a 14-hydroxydihydromorphinone derivative which contains a C-6 hydrazone group and hence could serve as an irreversible label for opioid receptors. 3H-oxymorphazone was synthesized by the reaction of 3H-oxymorphone with excess hydrazine. A specific radioactivity of 640 GBq/mmol (17,3 Ci/mmol) was achieved. Both the unlabelled compound and the tritiated ligand show high affinity to mu and kappa opiate receptor subtypes in rat brain membranes. Two binding sites were detected by equilibrium binding studies, with apparent Kd values of 0.62 nM and 28 nM. About 20% of the H-oxymorphazone specific binding is irreversible after reaction at 1 nM ligand concentration, and this can be enhanced by a higher concentration of tritiated ligand. No azine formation was detected. Preincubation of the membranes with unlabelled oxymorphazone resulted in an irreversible blockade of the high affinity 3H-naloxone binding sites.  相似文献   

20.
3H-Clozapine binds specifically and with high affinity (KD = 1.3 nM) to rat brain membranes. About two thirds of reversibly bound 3H-clozapine are displaced by hyoscyamine in a stereospecific manner, suggesting interaction of clozapine with muscarinic cholinergic receptors. Most of the remaining 3H-clozapine binding is stereospecifically inhibited by butaclamol, but this binding component seems not to be related to dopamine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号