首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A seasonal study of the distribution of lysogenic bacteria in Tampa Bay, Florida, was conducted over a 13-month period. Biweekly water samples were collected and either were left unaltered or had the viral population reduced by filtration (pore size, 0.2 μm) and resuspension in filtered (pore size, 0.2 μm) water. Virus-reduced and unaltered samples were then treated by adding mitomycin C (0.5 μg ml−1) to induce prophage or were left untreated. In order to test the hypothesis that prophage induction was phosphate limited, additional induction experiments were performed in the presence and absence of phosphate. Induction was assessed as an increase in viral direct counts, relative to those obtained in controls, as detected by epifluorescence microscopy. Induction of prophage was observed in 5 of 25 (20%) unaltered samples which were obtained during or after the month of February, paralleling the results from a previous seasonal study. Induction of prophage was observed in 9 of 25 (36%) of the virus-reduced samples, primarily those obtained in the winter months, which was not observed in a prior seasonal study (P. K. Cochran and J. H. Paul, Appl. Environ. Microbiol. 64:2308-2312, 1998). Induction was noted in the months of lowest bacterial and primary production, suggesting that lysogeny was favored under conditions of poor host growth. Phosphate addition enabled prophage induction in two of nine (22%) experiments. These results indicate that prophage induction may occasionally be phosphate limited or respond to increases in phosphate concentration, suggesting that phosphate concentration may modulate the lysogenic response of natural populations.  相似文献   

2.
Seasonal Abundance of Lysogenic Bacteria in a Subtropical Estuary   总被引:15,自引:2,他引:13       下载免费PDF全文
Seasonal changes in the abundance of inducible lysogenic bacteria in a eutrophic estuarine environment were investigated over a 13-month period. Biweekly water samples were collected from Tampa Bay, Fla., and examined for prophage induction by mitomycin C treatment. At the conclusion of the study, we determined that 52.2% of the samples displayed prophage induction, as indicated by significant increases in viral direct counts compared with uninduced controls. Samples that displayed prophage induction occurred during the warmer months (February through October), when surface water temperatures were above 19°C, and no induction was observed in November, December, or January. This study presents clear evidence that there is seasonal variation in the number of inducible lysogenic bacteria in an estuarine environment.  相似文献   

3.
A series of experiments were conducted with samples collected in both Tampa Bay and the Gulf of Mexico to assess the impact of nutrient addition on cyanophage induction in natural populations of Synechococcus sp. The samples were virus reduced to decrease the background level of cyanophage and then either left untreated or amended with nitrate, ammonium, urea, or phosphate. Replicate samples were treated with mitomycin C to stimulate cyanophage induction. In five of the nine total experiments performed, cyanophage induction was present in the non-nutrient-amended control samples. Stimulation of cyanophage induction in response to nutrient addition (phosphate) occurred in only one Tampa Bay sample. Nutrient additions caused a decrease in lytic (or control) phage production in three of three offshore stations, in one of three estuarine experiments, and in a lysogenic marine Synechococcus in culture. These results suggest that the process of cyanophage induction as an assay of Synechococcus lysogeny was not inorganically nutrient limited, at least in the samples examined. More importantly, it was observed that the level of cyanophage induction (cyanophage milliliter−1) was inversely correlated to Synechococcus and cyanophage abundance. Thus, the intensity of the prophage induction response is defined by ambient population size and cyanophage abundance. This corroborates prior observations that lysogeny in Synechococcus is favored during times of low host abundance.  相似文献   

4.
1) Hydroxyurea, a reversible DNA synthesis inhibitor, was used to study the mechanism of prophage λ induction in Escherichia coli K12. Induction of prophage was judged on two criteria: increase of phage-producing cells and loss of colony-forming ability of the cells. 2) Hydroxyurea induced an increase of phage-producing cells only in lysogenic strains known to be inducible with ultraviolet irradiation for prophage development and not in strains such as E. coli K12 (λind) or E. coli K12 recA (λ+). 3) When protein synthesis was inhibited, hydroxyurea did not increase phage-producing cells of lysogenic strains; it showed a bacteriocidal effect on lysogenic recA+ strains, but not on nonlysogenic strains. 4) The sensitivity of E. coli K12 recA to hydroxyurea was independent of whether or not the cells were lysogenic. 5) From the results it is suggested that certain steps leading to loss of colony-forming ability (i.e. prophage induction) do not require de novo protein synthesis but require the presence of the host recA+ gene.  相似文献   

5.
Lysogenic strains of Bacillus subtilis 168 were reduced in their level of transformation as compared to non-lysogenic strains. The level of transformation decreased even further if the competent lysogenic cells were allowed to incubate in growth media prior to selection on minimal agar. This reduction in the frequency of transformation was attributable to the selective elimination of transformed lysogenic cells from the competent population. Concurrent with the decrease in the number of transformants from a lysogenic competent population was the release of bacteriophage by these cells. The lysogenic bacteria demonstrated this dramatic release of bacteriophage only if the cells were grown to competence. Both the selective elimination of transformed lysogens and the induction of prophage was prevented by the inhibition of protein synthesis. Additionally, competent lysogenic cells released significantly higher amounts of exogenous donor transforming deoxyribonucleic acid than did competent non-lysogenic cells or competent lysogenic cells incubated with erythromycin. These data establish that the induction of the prophage from the competent lysogenic cells was responsible for the selective elmination of the lysogenic transformants. A model is presented that accounts for the induction of the prophage from competent lysogenic bacteria via the induction of a repair system. It is postulated that a repair system is induced or derepressed by the accumulation of gaps in the chromosomes of competent bacteria. This hypothetical enzyme(s) is ultimately responsible for the induction of the prophage and the selective elimination of transformants.  相似文献   

6.
A series of experiments were conducted with samples collected in both Tampa Bay and the Gulf of Mexico to assess the impact of nutrient addition on cyanophage induction in natural populations of Synechococcus sp. The samples were virus reduced to decrease the background level of cyanophage and then either left untreated or amended with nitrate, ammonium, urea, or phosphate. Replicate samples were treated with mitomycin C to stimulate cyanophage induction. In five of the nine total experiments performed, cyanophage induction was present in the non-nutrient-amended control samples. Stimulation of cyanophage induction in response to nutrient addition (phosphate) occurred in only one Tampa Bay sample. Nutrient additions caused a decrease in lytic (or control) phage production in three of three offshore stations, in one of three estuarine experiments, and in a lysogenic marine Synechococcus in culture. These results suggest that the process of cyanophage induction as an assay of Synechococcus lysogeny was not inorganically nutrient limited, at least in the samples examined. More importantly, it was observed that the level of cyanophage induction (cyanophage milliliter(-1)) was inversely correlated to Synechococcus and cyanophage abundance. Thus, the intensity of the prophage induction response is defined by ambient population size and cyanophage abundance. This corroborates prior observations that lysogeny in Synechococcus is favored during times of low host abundance.  相似文献   

7.
A study was made of the influence of the repair genotype on lambda prophage induction by ionizing radiation of different LET in lysogenic E. coli cells. Bacterial strains W3110, P3478, GC244, and 30SO were exposed to gamma-rays and helium ions of 22 keV/microns. Induction of the prophage in GC244 and 30SO strains deficient by lexA and recA genes was either inhibited (GC244) or lacking (30SO). Inducibility of P3478 carrying polA mutation was 12 and 5 times as high as that of the wild type strain after exposure to gamma-radiation and helium ions, respectively.  相似文献   

8.
Prophage Induction of Noninducible Coliphage 186   总被引:10,自引:3,他引:7       下载免费PDF全文
Coliphage 186 has been regarded as a member of the noninducible group of coliphages. Evidence that prophage 186 is induced by ultraviolet irradiation or by treatment with nalidixic acid or mitomycin C is now presented. The phage yields were similar to those from lysogens of the inducible phage lambda, and the induction required a recA(+) host. A noninducible mutant of 186 was isolated from its heat-inducible derivative, 186cIts, that was no longer inducible by ultraviolet irradiation but remained heat inducible. That zygotic induction of 186 after transfer from a lysogenic male to a non-lysogenic recipient did not occur is indicated by the following findings: (i) there was only a slight increase in phage titer; (ii) similar levels of recombinants were obtained for markers adjacent or distal to the phage integration site, whether the recipient was lysogenic or not, and there was no effect on the gradient of marker transfer; (iii) lysogenic recombinants were readily found and the co-transfer of 186 with adjacent markers was the same to lysogenic or non-lysogenic recipients. Thus, 186 formed an inducible prophage that did not display zygotic induction. Nevertheless, it shared many properties with the noninducible phage P2 as outlined in the discussion.  相似文献   

9.
Cocultures of Salmonella strains carrying or lacking specific prophages undergo swift composition changes as a result of phage-mediated killing of sensitive bacteria and lysogenic conversion of survivors. Thus, spontaneous prophage induction in a few lysogenic cells enhances the competitive fitness of the lysogen population as a whole, setting a selection regime that forces maintenance and spread of viral DNA. This is likely to account for the profusion of prophage sequences in bacterial genomes and may contribute to the evolutionary success of certain phylogenetic lineages.  相似文献   

10.
Induction of c-mutations in extracellular bacteriophage and prophage lambda cI857 ind-treated with 1 M O-methylhydroxylamine (OMHA) at 32 degrees and pH 5.6 has been studied. The frequency of c-mutations increases proportionally to the time of treatment of extracellular phage and does not depend on cellular recA+ or polA+ functions and on induction of SOS-repair system caused by UV-irradiation of host cells. Prophage is inactivated and mutagenized approximately 10-fold faster than extracellular phage immediately after treatment of lysogenic cells during prophage induction. Thus, prophage survival does not depend on repair functions of the host cells, and the frequency of c-mutations in recA and, especially, in polA lysogens is significantly lower, than in the wild-type cells.Delayed thermoinduction (90 min) of prophage causes significant enhancement of survival and decreases the frequency of c-mutations in all strains studied. Preliminary treatment of non-lysogens with OMHA does not increase the frequency of c-mutations in undamaged phage or in phage treated with OMHA in vitro.  相似文献   

11.
12.
Bacteriophages are a common and constant threat to proper milk fermentation. It has become evident that lysogeny is widespread in lactic acid bacteria, and in this work the temperate lactococcal bacteriophage phi LC3 was used as a model to study prophage stability in lactococci. The stability was analyzed in six phi LC3 lysogenic Lactococcus lactis subsp. cremoris host strains when they were growing at 15 and 30 degrees C. In order to perform these analyses, a real-time PCR assay was developed. The stability of the phi LC3 prophage was found to vary with the growth phase of its host L. lactis IMN-C1814, in which the induction rate increased during the exponential growth phase and reached a maximum level when the strain was entering the stationary phase. The maximum spontaneous induction frequency of the phi LC3 prophage varied between 0.32 and 9.1% (28-fold) in the six lysogenic strains. No correlation was observed between growth rates of the host cells and the spontaneous prophage induction frequencies. Furthermore, the level of extrachromosomal phage DNA after induction of the prophage varied between the strains (1.9 to 390%), and the estimated burst sizes varied up to eightfold. These results show that the host cells have a significant impact on the lytic and lysogenic life styles of temperate bacteriophages. The present study shows the power of the real-time PCR technique in the analysis of temperate phage biology and will be useful in work to reveal the impact of temperate phages and lysogenic bacteria in various ecological fields.  相似文献   

13.
The effect of glutathione (GSH) on the ultraviolet (UV) induction of lambda prophage was investigated in lysogenic Escherichia coli. The data showed that extracellular GSH could inhibit the UV induction of lambda prophage. The inhibitory rates were concentration dependent, and the maximal rate obtained was 94% with 3.0 M GSH. The effect was also measured in three different lambda lysogens: a wild-type strain (wt), an isogenic GSH-deficient strain, and an isogenic strain producing increased amounts of GSH. The result showed that when subjected to UV irradiation (254 nm, 60 J m−2), GSH-deficient strain was approximately fivefold more sensitive to be lysed than wt, whereas the strain with higher intracellular GSH levels was only 28% susceptible to be lysed. With electron spin resonance and spin trapping techniques, we observed that free radical signals occurred in the suspensions of UV irradiated lysogenic cells and the intensity of signals was influenced by GSH levels. These results indicate that GSH can significantly inhibit the UV induction of lambda prophage, and that this effect is correlated to its capacity to scavenge free radicals generated after UV irradiation.  相似文献   

14.
Prophage induction and mutation by alkylaminosulfonates, ethyl aminosulfonate and alkyl methanesulfonates were examined comparatively. Prophage induction was carried out with a lysozyme lysis technique on the lysogenic strain Micrococcus lysodeikticus 53-40 (N5). The sulfonic ester derivatives show a slight lysogenic induction. At higher concentrations their toxicity seems to mask phage detection. Only methyl isopropylaminosulfonate and ethyl aminosulfonate exhibit no or negligible toxic effects, and with these compounds at higher concentrations a strong prophage induction is found. Alkyl sulfonate derivatives induce mutations in the tester strain of Salmonella typhimurium TA1535. Methyl methylaminosulfonate and ethyl N-methyl-N-2-chloroethyl aminosulfonate show a mutagenicity comparable to that of the well-known methyl methanesulfonate or ethyl methanesulfonate. With ethyl aminosulfonate, however, which does not show inactivation, no significant mutagenic effect was observed. DNA alterations were found in the polymerase-deficient strain E. coli P3478. The results of prophage induction and mutagenicity are compared and discussed.  相似文献   

15.
Bacillus subtilis lysogenic for SPO2 wild type was induced under conditions preventing synthesis of both bacterial and phage DNA. The infectivity of phage DNA in transfection is strongly decreased under these conditions, whereas the activity of single phage genes as measured by marker rescue with superinfecting phage is unaffected. DNA from induced cells was sedimented in neutral sucrose gradients. After induction, phage DNA was detected at a position in the gradients, which was different from the bulk of the bacterial DNA, corresponding to linear double-stranded DNA of about 25 x 10(6) daltons. Similar results were obtained with bacteria lysogenic for a SPO2 prophage carrying a DNA-negative mutation. No separation of phage and bacterial DNA activity was detected when chloramphenicol was present during the induction period. These experiments show that prophage SPO2 can excise from the bacterial chromosome without previous replication.  相似文献   

16.
Induction of prophage in lysogenic cultures, Pseudomonas aeruginosa (strain PA01 (PM63)) and Escherichia coli K-12 (strain AB1157 (lambda) pKM101), was proposed as a test for biological indication of gamma-irradiation with relatively low doses. Sufficient resolving power (the sensitivity threshold of the method was 0.25 to 0.5 Gy) and relative simplicity of the practical use of the method were demonstrated. Within the dose range from 0.25 to 10 Gy, the relationship between the value of the prophage induction and radiation dose was linear.  相似文献   

17.
Lysogens of Nocardia erythropolis were mated with nonlysogenic strains to study the inheritance of the phi EC prophage. Crosses between lysogenic strains of the Mat-Ce mating type and nonlysogenic Mat-cE strains produced Mat-cE lysogens at a recovery rate of 17%, whereas recombination frequencies between chromosomal traits were about 2.3 x 10(-5). Crosses of lysogenic Mat-cE mating types with nonlysogenic Mat-Ce produced Mat-Ce lysogens at a recovery rate of 19%, whereas recombinants for chromosomal traits were recovered at only 1.8 x 10(-5). Crosses of homologous mating types, lysogenic Mat-Ce with nonlysogenic Mat-Ce or lysogenic Mat-cE with nonlysogenic Mat-cE, failed to transfer the prophage. It was concluded that the phi EC prophage exists as a plasmid and can be transferred at high frequencies with patterns of transfer controlled like typical nocardial fertility. Evidence that the prophage may also exist as an integrated element was observed from recombination analyses.  相似文献   

18.
Plate-cultured bacterial colonies are intriguing models to study host-parasite interactions in senescent populations. During the growth of bacteriophage-infected colonies there is a synchronous prophage induction episode among lysogenic cells that allows a dramatic but time-restricted amplification of viral particles. We report here that the dynamics of phage spread depends on the history of the lysogenic cell that establishes the clonal population, the duration of the pre-burst period being shorter when the founder, infected cell derives from older colonies. These results offer a physiologic explanation for the self-contained progression of the viral spread in closed environments, that ensures both viral dissemination but also survival of most of the host cells.  相似文献   

19.
Bacteriophages are a common and constant threat to proper milk fermentation. It has become evident that lysogeny is widespread in lactic acid bacteria, and in this work the temperate lactococcal bacteriophage LC3 was used as a model to study prophage stability in lactococci. The stability was analyzed in six LC3 lysogenic Lactococcus lactis subsp. cremoris host strains when they were growing at 15 and 30°C. In order to perform these analyses, a real-time PCR assay was developed. The stability of the LC3 prophage was found to vary with the growth phase of its host L. lactis IMN-C1814, in which the induction rate increased during the exponential growth phase and reached a maximum level when the strain was entering the stationary phase. The maximum spontaneous induction frequency of the LC3 prophage varied between 0.32 and 9.1% (28-fold) in the six lysogenic strains. No correlation was observed between growth rates of the host cells and the spontaneous prophage induction frequencies. Furthermore, the level of extrachromosomal phage DNA after induction of the prophage varied between the strains (1.9 to 390%), and the estimated burst sizes varied up to eightfold. These results show that the host cells have a significant impact on the lytic and lysogenic life styles of temperate bacteriophages. The present study shows the power of the real-time PCR technique in the analysis of temperate phage biology and will be useful in work to reveal the impact of temperate phages and lysogenic bacteria in various ecological fields.  相似文献   

20.
The marine phage PhiHSIC has been previously reported to enter into a lysogenic relationship with its host, HSIC, identified as Listonella pelagia. This phage produces a variety of plaques on its host, including turbid and haloed plaques, from which lysogens were previously isolated. These lysogens were unstable during long-term storage at -80( degrees ) C and were lost. When HSIC was reinfected with phage PhiHSIC, pseudolysogen-like interactions between the phage and its host were observed. The cells (termed HSIC-2 or HSIC-2e) produced high viral titers (10(11) ml(-1)) in the absence of inoculating phage and yet reached culture densities of nearly 10(9) ml(-1). Prophages were not induced by mitomycin C or the polyaromatic hydrocarbon naphthalene in cells harboring such infections. However, such cells were homoimmune to superinfection. Colonies hybridized strongly with a gene probe from a 100-bp fragment of the PhiHSIC genome, while the host did not. Analysis of chromosomal DNA preparations suggested the presence of a chromosomally integrated prophage. Phage adsorption experiments suggested that HSIC-2 was adsorption impaired. Because of the chromosomal prophage integration and homoimmunity, we interpret these results to indicate that PhiHSIC establishes a lysogenic relationship with its host that involves an extremely high level of spontaneous induction. This could be caused by a weak repressor of phage production. Additionally, poor phage adsorption of HSIC-2 compared to the wild type probably helped maintain this pseudolysogen-like relationship. In many ways, pseudolysogenic phage-host interactions may provide a paradigm for phage-host interactions in the marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号