首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between renal perfusion pressure and urinary sodium is involved in arterial pressure regulation. The aim of this study was to investigate the role of renal nerves and angiotensin II in the pressure-natriuresis relationship. Experiments were performed in anaesthetised cats in which one kidney was surgically denervated. Renal perfusion pressure (RPP), renal blood flow (RBF) glomerular filtration rate (GFR, creatinine clearance), urinary volume (V) and sodium excretion (Una + V) were separately measured from both kidneys. RPP was progressively reduced in two consecutive steps by a suprarenal aortic snare. Two groups of animals were studied: the first without any pharmacological treatment (Untreated), the second during treatment with an angiotensin converting enzyme inhibitor (Captopril, 0.4 mg/Kg intravenously followed by an infusion of 0.4 mg/Kg/h). In the Untreated group RPP was reduced from 152.4 +/- 7.3 to 113.6 +/- 5.8 and 83.0 +/- 4.4 mmHg during the first and second step respectively. RBF and GFR were only slightly reduced during the second step of reduced RPP. In control conditions V and UNa + V were greater in the denervated compared to the innervated kidney. The graded decrease in RPP reduced both V and UNa + V in the innervated as well as in the denervated kidney. In the Captopril group V and UNa + V were larger than in the Untreated group in both the innervated and the denervated kidney. A decrease of RPP similar to that observed in the Untreated group, produced similar haemodynamic changes. Also in the Captopril group the graded decrease in RPP reduced both V and UNa + V in the innervated as well as in the denervated kidney. Matching UNa + V against RPP values significant correlations were found in the innervated and denervated kidneys of both groups. Both renal denervation and ACE inhibition were accompanied by an increased gain of the pressure-natriuresis curve, but only renal denervation shifted the crossing of the pressure axis to the left. In the ACE inhibited animals renal denervation only shifted the curve to the left. In conclusion our data suggest that i) at each level of RPP renal nerves and angiotensin II decrease renal sodium excretion, ii) renal nerves and angiotensin II increase the slope of the renal function curve, iii) renal nerves shift to the right the renal function curve.  相似文献   

2.
Studies were carried out to evaluate the influence of variations in sodium balance on the renal response to low-dose infusion of 1-desamino-8- D -arginine vasopressin (dDAVP), and the functional interaction between dDAVP and renal prostanoids. The studies were performed on healthy women in conditions of extracellular fluid volume expansion (SR group, n =9) and depletion (SD2 group, n=6), respectively. The study protocol included hypotonic polyuria (induced by oral water load) and subsequent antidiuresis (induced by low-dose infusion of dDAVP). Three 60-min clearance (cl.) periods were performed during polyuria (cl. P), early (cl. A1) and late (cl. A2) antidiuresis. The urinary concentrations of prostaglandin (PG) E(2) and the stable metabolites of PGI(2) and thromboxane (Tx) A(2), 6-keto-PGF(1alpha) (6KPGF) and TxB(2), were estimated. Paired renal functional explorations were performed in salt retention and salt depletion both in absence and presence of indomethacin (SR.I and SD2.I groups). In both paired and unpaired studies, the early and late effects of dDAVP on the functional excretory variables and the excretion of prostanoids were assessed as percentage variations, (A1-P)% P and (A2-A1)% A1. (I) dDAVP in salt retention and depletion. During early infusion dDAVP produced in both conditions a significant reduction in urinary flow rate, creatinine cl., absolute and fractional excretions of sodium, chloride and potassium; during late infusion dDAVP was effective in inducing a further significant reduction in urinary flow rate. In salt retention compared to depletion the early reductions in sodium and chloride (absolute and fractional) excretions were significantly lower. (II) Indomethacin pretreatment. During early infusion the dDAVP-induced reductions in the urinary flow rate and 6KPGF excretion were enhanced in both conditions. In salt depletion the dDAVP effects in reduction of creatinine cl. and urinary electrolyte excretions were also enhanced. During late infusion the antidiuretic effect of dDAVP was suppressed in salt retention, while in salt depletion creatinine cl., the urinary excretions of electrolytes and both 6KPGF and TxB(2) showed increases significantly different from the dDAVP effects in the absence of indomethacin. In conclusion, (a) the salt-retaining effect of dDAVP was less effective in salt retention compared to depletion. (b) Indomethacin pretreatment affected the renal action of dDAVP in a time-dependent pattern. The early effects in both conditions were consistent with an inhibited synthesis of modulator PGs. On the contrary, the late effects were consistent with the occurrence, at least in salt depletion, of an escape from dDAVP renal action. This escape phenomenon probably depended on a partial regression of the pharmacological inhibition of the modulating PGs.  相似文献   

3.
Renal function studies on bitches with pyometra and normal bitches have included determinations of glomerular filtration rate (GFR), effective renal plasma flow (ERPF), solute excretion rate per unit functioning renal mass, maximum urine osmolarity (max. Uosm), and — for the normal bitches — max. Uosm after increasing osmotic load with mannitol infusions. GFR for the pyometra bitches varied from normal to greatly reduced values; the mean GFR was statistically significantly lower than that for normal bitches. There were also wide variations in ERPF; there was no significant deviation from normal values but the two pyometra bitches with the greatest reduction in GFR also had greatly reduced ERPF values. The ratio between GFR and ERPF (filtration fraction) varied within normal limits but there was a tendency towards reduction (0.05 < P < 0.01). After dehydration the max. Uosm for all the pyometra bitches was below the lower limit for max. Uosm for normal bitches. The rates of solute excretion per unit functioning renal mass for most bitches with pyometra were less than the level (468 µ Osm/min./100 GFR) above which the osmotic load begins to reduce max. Uosm in normal bitches. Even in those bitches in which the solute excretion rate reached values over 468 µOsm/min./100 GFR (because of reduction in the number of functioning nephrons) max. Uosm was far below the max. Uosm values for normal dogs at the same rates of solute excretion. Consequently, in bitches with pyometra, factors other than osmotic diuresis appear to be mainly responsible for the reduction in concentrating ability and polyuria.  相似文献   

4.
We examined the effects of hypotension and fluid depletion on water and sodium ingestion in rats in response to intracerebroventricular infusions of ANG II. Hypotension was produced by intravenous infusion of the vasodilator drug minoxidil (25 microg x kg(-1) x min(-1)) concurrently with the angiotensin-converting enzyme inhibitor captopril (0.33 mg/min) to prevent endogenous ANG II formation. Hypotension increased water intake in response to intracerebroventricular ANG II (30 ng/h) but not intake of 0.3 M NaCl solution and caused significant urinary retention of water and sodium. Acute fluid depletion was produced by subcutaneous injections of furosemide (10 mg/kg body wt) either alone or with captopril (100 mg/kg body wt sc) before intracerebroventricular ANG II (15 or 30 ng/h) administration. Fluid depletion increased water intake in response to the highest dose of intracerebroventricular ANG II but did not affect saline intake. In the presence of captopril, fluid depletion increased intakes of both water and saline in response to both doses of intracerebroventricular ANG II. Because captopril administration causes hypotension in fluid-depleted animals, the results of the two experiments suggest that hypotension in fluid-replete animals preferentially increases water intake in response to intracerebroventricular ANG II and in fluid-depleted animals increases both salt and water intake in response to intracerebroventricular ANG II.  相似文献   

5.
The renal function in healthy man with salt and water depletion induced by natriuretic treatment was explored during steady hypotonic polyuria. Four 15 min clearance (cl.) periods, before, during and after dopamine (DA) infusion in a subpressor dose were performed. The 12 examined subjects showed different renal hemodynamic responses in the early stage of DA infusion, i.e. hyperemic (4 subjects, subgroup A) or ischemic (8 subjects, subgroup B). A decrease in urinary sodium excretion and increase in tubular sodium reabsorption, in particular at the diluting segment level, were induced by DA in both subgroups, at least in the late stage of infusion. During the control cl. period in subgroup A as compared with B the renal plasma flow was lower and the tubular sodium reabsorption higher, suggesting a relatively higher level of renal adrenergic activity.  相似文献   

6.
In healthy women submitted to a short-term expansion in extracellular fluid volume we have evaluated the urinary excretory profile of the stable metabolites of prostaglandin(PG) I2 and thromboxane(TX) A2, 6-keto-PGF1 alpha(6KPGF) and TXB2 respectively, and assessed the physiological role played by the prostanoids in this experimental condition. Salt retention (SR group, n=9) was induced by repeated i.v. infusion of saline solution (0.9% NaCl). At the end of the treatment the body weight had increased by 0.7+/-0.2 kg (mean+/-SEM) (P<0.05). Renal functional exploration [clearance (cl.) method] was performed during hypotonic polyuria (induced by oral water load) and subsequent moderate antidiuresis (induced by low-dose infusion of an antidiuretic hormone analogue). Urinary 6KPGF and TXB2 concentrations were estimated by RIA method during polyuria (P cl. period), early and late antidiuresis (A1 and A2 cl. periods). Paired functional explorations were performed in absence (control study) and presence of indomethacin. Basal values of plasma sodium and potassium concentrations, plasma renin activity (PRA) and urinary aldosterone excretion were determined just before the control study. The results in salt retention were compared to those previously obtained in healthy women submitted to a moderate salt depletion (SD2 group, n=6), in absence and presence of the drug. Women in salt retention received 100 mg i.m. of the drug, whereas salt-depleted women received only a halved dose as in previous studies in salt depletion the full dose produced prolonged anuria. (I) Salt retention vs salt depletion. The basal values of PRA and urinary aldosterone excretion were significantly lower. During polyuria, urinary excretion of 6KPGF, 6KPGF/TXB2 ratio, urinary flow rate, creatinine cl. and absolute and fractional excretions of sodium and chloride were significantly higher. In salt retention during polyuria, significant positive correlations were found between 6KPGF excretion and functional excretory parameters. (II) Indomethacin in salt retention. The following effects were significant: (a) a reduction in prostanoid excretions in P and A1 cl. periods only; (b) during polyuria, an increase in arterial pressure, a reduction in urinary flow rate and creatinine cl. (saluresis showed not significant reduction). During polyuria significant positive correlations occurred between the absolute effects of indomethacin on 6KPGF excretion and those on functional excretory parameters. (III) Comparative effects of indomethacin in salt retention and salt depletion. Despite the double dosage of the drug, the significant reductions in urinary metabolite excretions were not significantly different during P cl. period and significantly lower in A1 cl. period compared to the corresponding significant reductions in salt depletion. During polyuria, the significant increase in arterial pressure was significantly different from the not significant effect in salt depletion; the not significant effect on saluresis was significantly different from the significant reduction in salt depletion. The results suggest the following conclusions: (1) The present model showed the functional pattern of the volume-natriuresis; (2) In salt retention, in contrast with salt depletion, indomethacin induced an increase in arterial pressure consistent with the inhibition of a PG-dependent vasodilator mechanism active at the systemic level; (3) In salt retention, in contrast with salt depletion, indomethacin failed to induce a significant reduction in saluresis. This failure can be attributed to the drug's blunted effectiveness in inhibiting the renal synthesis of saluretic PGs, and probably to the interference of the concurrent increase in arterial pressure in the renal treatment of sodium and chloride.  相似文献   

7.
We have observed that in the presence of salt retention (DOCA pretreatment) dopamine (DA) promoted a hydro-natriuretic effect; in contrast in salt depletion (natriuretic pretreatment) the changes in sodium tubular reabsorption and in urinary flow were non significant. The present study was designed to identify the possible mechanisms underlying the hydro-natriuretic effect. DA was infused at a subpressor rate (0,1 microgram/kg . min) during induced hypotonic polyuria. 19 healthy human subjects at different degree of salt retention were studied. The results demonstrate that the tubular inhibitory effects produced by DA on the % sodium reabsorptions (total as % of sodium filtered load, anisosmotic as % of sodium distal load) are the higher the lower are the control values of these reabsorptions. Hence DA appears to act by enhancing the inhibitory tubular response elicited by salt retention. Moreover these inhibitory effects are positively related with the simultaneous DA-induced haemodynamic effects. This suggests that the decrease in sodium reabsorptions during DA infusion is haemodynamically mediated.  相似文献   

8.
Delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) increases locomotor activity in rodent models of aging and Parkinson’s disease in conjunction with increased dopamine (DA) tissue content in substantia nigra (SN). Striatal GDNF infusion also increases expression of GDNF’s cognate receptor, GFRα1, and tyrosine hydroxylase (TH) ser31 phosphorylation in the SN of aged rats long after elevated GDNF is no longer detectable. In aging, expression of soluble GFRα1 in the SN decreases in association with decreased TH expression, TH ser31 phosphorylation, DA tissue content, and locomotor activity. Thus, we hypothesized that, in aged rats, replenishing soluble GFRα1 in SN could reverse these deficits and increase locomotor activity. We determined that the quantity of soluble GFRα1 in young adult rat SN is ~3.6 ng. To replenish age-related loss, which is ~30 %, we infused 1 ng soluble GFRα1 bilaterally into SN of aged male rats and observed increased locomotor activity compared to vehicle-infused rats up to 4 days following infusion, with maximal effects on day 3. Five days after infusion, however, neither locomotor activity nor nigrostriatal neurochemical measures were significantly different between groups. In a separate cohort of male rats, nigral, but not striatal, DA, TH, and TH ser31 phosphorylation were increased 3 days following unilateral infusion of 1 ng soluble GFRα1into SN. Therefore, in aged male rats, the transient increase in locomotor activity induced by replenishing age-related loss of soluble GFRα1is temporally matched with increased nigral dopaminergic function. Thus, expression of soluble GFRα1 in SN may be a key component in locomotor activity regulation through its influence over TH regulation and DA biosynthesis.  相似文献   

9.
The renal function in healthy man with salt and water depletion (natriuretic pretreatment) associated with adrenergic blocking agents administration was explored during steady hypotonic polyuria. Four 15 min clearance (cl.) periods, before, during and after dopamine (DA) infusion in a subpressor dose, were performed. The 9 subjects treated with prazosin showed different renal hemodynamic responses in the early stage of DA infusion i.e. hyperemic (6 subjects, subgroup A) or ischemic (3 subjects, subgroup B). The whole group of 6 subjects treated with propranolol showed an hyperemic response DA infusion. A natriuretic effect and a trend towards tubular sodium reabsorption inhibition, in particular at the diluting segment level, were associated with the DA vasodilatory responses. The ischemic responses to DA occurred in the presence of incomplete alpha-adrenergic receptors blockade; nevertheless in the same circumstances DA failed to increase the diluting segment sodium reabsorption.  相似文献   

10.
In anaesthetized rats kept on normal diet an i.v. infusion of NAD (200 nmole X kg-1 X X min-1) induced a decrease in renal plasma flow (CPAH), glomerular filtration rate (GFR) and electrolyte excretion accompanied by an increase in plasma adenosine concentration. Separate infusions of a small dose of NAD (50 nmole X kg-1 X min-1) or dipyridamole (25 micrograms X kg-1 X min-1) did not affect renal function or plasma adenosine concentration. However, when the above small doses of both agents were given simultaneously, GFR, CPAH and electrolyte excretion fell significantly, indicating potentiation of NAD action by dipyridamole, associated with increased plasma adenosine level. An i.v. infusion of furosemide failed to abolish the depression of renal function in response to NAD. The data suggest that the causal factor of this depression was adenosine and not NAD itself.  相似文献   

11.
We have evaluated the effects of indomethacin (I) and of a rich in linoleic acid phosphatidylcholine (E) on the renal function during in bolo infusion of lysine-8-vasopressin (LVP). 5 normal subjects have been studied in the absence of treatment (TA) and after treatment with I, E, E+I respectively. Two clearance (cl.) periods have been performed in the following time intervals: 0-30 min and 30-60 min after in bolo LVP (1.5 m-U.kg-1) infusion. Have been measured: the urinary flow rate, V, the endogenous creatinine cl., Cc, the osmotic clearances, Cosm, CH2O, the sodium and potassium cl., CNa, CK, the urinary prostaglandins (PG) of E series excretion (UPGV) by RIA method and the mean of arterial pressure (PA). 1) In TA condition LVP decreases V, Cosm, Cc, CH2O, CNa, CK and slightly increases the urinary osmolarity; these effects regress during the interval 30-60 min. 2) In I condition LVP produces a significant increment of PA and prolonged and intensified decrement of Cc, CH2O, V; in this condition the increase of urinary osmolarity is greater than in TA condition. 3) The E-treatment alone does not affect the LVP-induced renal effects; however the enhancement of these effects produced by I is attenuated in the presence of E though UPGV does not differ in I and E+I.  相似文献   

12.
We explored possible differences in the peripheral and central pharmacokinetics of L-DOPA as a basis for individual variation in the liability to dyskinesia. Unilaterally, 6-hydroxydopamine (6-OHDA) lesioned rats were treated chronically with L-DOPA for an induction and monitoring of abnormal involuntary movements (AIMs). Comparisons between dyskinetic and non-dyskinetic cases were then carried out with regard to plasma and striatal L-DOPA concentrations, tissue levels of dopamine (DA), DA metabolites, and serotonin. After a single intraperitoneal injection of L-DOPA, plasma L-DOPA concentrations did not differ between dyskinetic and non-dyskinetic animals, whereas peak levels of L-DOPA in the striatal extracellular fluid were about fivefold larger in the former compared with the latter group. Interestingly, the time course of the AIMs paralleled the surge in striatal L-DOPA levels. Intrastriatal infusion of L-DOPA by reverse dialysis concentration dependently induced AIMs in all 6-OHDA lesioned rats, regardless of a previous priming for dyskinesia. Steady-state levels of DA and its metabolites in striatal and cortical tissue did not differ between dyskinetic and non-dyskinetic animals, indicating that the observed difference in motor response to L-DOPA did not depend on the extent of lesion-induced DA depletion. These results show that an elevation of L-DOPA levels in the striatal extracellular fluid is necessary and sufficient for the occurrence of dyskinesia. Individual differences in the central bioavailability of L-DOPA may provide a clue to the varying susceptibility to dyskinesia in Parkinson's disease.  相似文献   

13.
Renal excretory and circulatory responses to nicotine were investigated in anesthetized dogs under three sets of conditions: (a) infusion of nicotine into the left renal artery (ia) at a dose of 0.5 microgram X min-1 X kg body wt-1 X 15 min; (b) ia nicotine after 1.0 mg/kg ia propranolol; and (c) ia nicotine after bilateral adrenalectomy. Measured and calculated left and right renal excretory variables included sodium, potassium, and chloride excretion rates (UNaV, UKV, and UClV, respectively), total solute excretion (UOsV), glomerular filtration rate (GFR), fractional sodium excretion (FENa), and urine flow rate. Systemic arterial pressure and left renal artery blood flow (RBF) were also measured. In seven intact dogs administered nicotine alone, there were significant increases in UNaV, UClV, UOsV, GFR, and urine flow rates from both kidneys. However, nicotine did not significantly affect UKV, FENa, arterial pressure, or RBF. The lack of circulatory effects of nicotine was also observed after either propranolol or adrenalectomy. However, when nicotine was administered after propranolol, the drug evoked significant decreases in UOsV, UNaV, UClV, and GFR, compared with prenicotine values. When nicotine was administered after bilateral adrenalectomy, the drug evoked decreases in the excretory parameters similar to those observed after propranolol. These findings seem to support several inferences: (a) nicotine stimulates renal excretory functions-the alkaloid is saluretic and diuretic; (b) the action of nicotine on the kidney is mediated mainly by the release of catecholamines from the adrenal medulla; (c) catecholamines released by nicotine act mainly on beta-adrenergic receptors; and (d) the saluresis prompted by the release of catecholamines in response to nicotine is due to a subsequent increase in GFR.  相似文献   

14.
Since renal prostaglandins may contribute to natriuresis induced by endogenous atrial natriuretic factor (ANF), acute volume expansion (AVL), a known stimulus of ANF and prostaglandins, was induced in 8 healthy women in order to test whether the consequent sodium and water diuresis is altered by prostaglandin inhibition. AVL (i.v. infusion of a 2 liter 5% glucose solution in 1 h) was infused after placebo and after inhibition of prostaglandins with diclofenac (200 mg/day orally for 4 days), in a double blind randomized cross-over fashion. Urinary eicosanoids (PGE2, PGF2 alpha, 6-ketoPGF1 alpha, TXB2--RIA), plasma ANF (RIA) and urinary electrolytes were determined before, during and after AVL under both placebo and diclofenac regimes. During placebo, AVL induced sustained increases in plasma ANF (174% at peak, p less than 0.001 ANOVA), excretion of the four eicosanoids (149%-1172%, p less than 0.005-0.001), urinary volume (UV, 815%, p less than 0.001), natriuresis (UNa, 98%, p less than 0.005) and in kaliuresis (UK, 90%, p less than 0.001). Cyclooxygenase inhibition resulted in a reduction of over 70% in both baseline values and AVL-induced increase of eicosanoids. It did not alter either baseline levels or AVL-stimulated ANF, UV, UNa and UK in relation to placebo. The present results suggest that the diuretic and natriuretic activity of ANF is not mediated by renal PGs in humans.  相似文献   

15.
To investigate the influence of atrial natriuretic factor (ANF) on renal function during mechanical ventilation (MV), we examined the renal and hormonal responses to synthetic human ANF infusion in eight patients during MV with zero (ZEEP) or 10 cmH2O positive end-expiratory pressure (PEEP). Compared with ZEEP, MV with PEEP was associated with a reduction in diuresis (V) from 208 +/- 51 to 68 +/- 11 ml/h (P less than 0.02), in natriuresis (UNa) from 12.4 +/- 3.3 to 6.2 +/- 2.1 mmol/h (P less than 0.02), and in fractional excretion of sodium (FENa) from 1.07 +/- 0.02), 0.21 to 0.67 +/- 0.17% (P less than 0.02) and with an increase in plasma renin activity (PRA) from 4.83 +/- 1.53 to 7.85 +/- 3.02 ng.ml-1.h-1 (P less than 0.05). Plasma ANF levels markedly decreased during PEEP in four patients but showed only minor changes in the other four patients, and mean plasma ANF levels did not change (163 +/- 33 pg/ml during ZEEP and 126 +/- 30 pg/ml during PEEP). Glomerular filtration rate and renal plasma flow were unchanged. Infusion of ANF (5 ng.kg-1.min-1) during PEEP markedly increased V and UNa by 110 +/- 61 and 107 +/- 26%, respectively, whereas PRA decreased from 7.85 +/- 3.02 to 4.40 +/- 1.5 ng.ml-1.min-1 (P less than 0.05). In response to a 10 ng.kg-1.min-1 ANF infusion, V increased to 338 +/- 79 ml/h during ZEEP but only to 134 +/- 45 ml/h during PEEP (P less than 0.02), whereas UNa increased, respectively, to 23.8 +/- 5.3 and 11.3 +/- 3.3 mmol/h (P less than 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effects of a 60-min intravenous infusion of angiotensin II (A II; 4 or 20 ng A II/min/kg body weight) on renal blood flow (RBF; electromagnetic flow transducer, control value 19-25 ml/min/kg), glomerular filtration rate (GFR; control value 4.2-5.0 ml/min/kg), mean arterial blood pressure, sodium excretion, water excretion, and plasma A II and plasma aldosterone concentrations were examined in 6 chronically instrumented female conscious beagle dogs kept on three different dietary sodium intakes (SI): SI 0.5 or SI 2.5 mmol Na/kg/day or SI 4.5 mmol Na/kg/day plus an oral saline load prior to the experiment SI 4.5(+) dogs. Four nanograms A II decreased RBF and GFR in SI 4.5(+) dogs without changing the filtration fraction (FF%); in SI 0.5 dogs the RBF decreased, and the FF% increased. Twenty nanograms A II decreased RBF and increased FF% in all dietary protocols, less in SI 4.5(+) dogs. The mean arterial blood pressure increased in all dietary protocols by 10-15 mm Hg (4 ng A II) and 32-37 mm Hg (20 ng A II). Sodium and water excretions decreased by 32 and 46%, respectively, in SI 4.5(+) dogs at both doses of A II. The plasma aldosterone concentration increased in all but one protocol: 4 ng A II, SI 4.5(+) dogs. It is concluded that when A II plasma concentrations are most likely borderline to pathophysiological conditions (up to an average of 370 pg/ml), the GFR is less decreased than the RBF. This phenomenon also can be observed at lower plasma A II concentrations (average 200 pg/ml), when the renin-angiotensin system had been previously moderately activated.  相似文献   

17.
Previous studies in Rhesus monkeys have demonstrated that a dopamine (DA) infusion rate of 0.1 microgram/kg X min induces peripheral DA levels similar to those measured in hypophysial stalk blood and normalizes serum prolactin (PRL) levels in stalk-transected animals. We therefore examined the effect of such DA infusion rate on basal and thyrotropin-releasing hormone (TRH)-stimulated PRL secretion in both normal cycling women and women with pathological hyperprolactinemia. 0.1 microgram/kg X min DA infusion fully normalized PRL serum levels in 8 normal cycling women whose endogenous catecholamine synthesis had been inhibited by alpha-methyl-p-tyrosine (AMPT) pretreatment. Furthermore, DA significantly reduced, but did not abolish, the rise in serum PRL concentrations induced by both acute 500 mg AMPT administration and 200 micrograms intravenous TRH injection in normal women. A significant reduction in serum PRL levels in response to 0.1 microgram/kg X min DA, similar to that observed in normal cycling women when expressed as a percentage of baseline PRL, was documented in 13 amenorrheic patients with TRH-unresponsive pathological hyperprolactinemia. However, a marked rise was observed in the serum PRL of the same patients when TRH was administered during the course of a 0.1-microgram/kg X min DA infusion. The PRL response to TRH was significantly higher during DA than in basal conditions in hyperprolactinemic patients, irrespective of whether this was expressed as an absolute increase (delta PRL 94.4 +/- 14.2 vs. 17.8 +/- 14.1 ng/ml, p less than 0.002) or a percent increase (delta% PRL 155.4 +/- 18.9 vs. 17.9 +/- 7.1, p less than 0.0005), and there was a significant linear correlation between the PRL decrements induced by DA and the subsequent PRL responses to TRH. These data would seem to show that the 0.1-microgram/kg X min DA infusion rate reduces basal PRL secretion and blunts, but does not abolish, the PRL response to both TRH and acute AMPT administration. The strong reduction in PRL secretion and the restoration of the PRL response to TRH by 0.1 microgram/kg X min DA infusion in high majority of hyperprolactinemic patients, seem to indicate that both PRL hypersecretion and abnormal PRL response to TRH in women with pathological hyperprolactinemia are due to a relative DA deficiency at the DA receptor site of the pituitary lactotrophs.  相似文献   

18.
The brain microdialysis technique has been used to examine the in vivo effects of potassium and tyramine on dopamine (DA) release and metabolism in the striatum of halothane-anaesthetised rats. Increasing the concentration of potassium perfusing the dialysis probe (30-120 mM) induced a dose-related efflux of DA. A dose-related release of DA was also observed following addition of tyramine (1-100 microM) to the perfusing buffer. High concentrations of potassium were found to reduce the dialysate content of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid and the serotonin metabolite 5-hydroxyindoleacetic acid. No such effect was observed even when using the highest concentration of tyramine tested. Potassium-evoked DA release was facilitated by pretreatment with the DA uptake inhibitor nomifensine, was inhibited by depletion of extracellular calcium, and was not significantly affected by tetrodotoxin (TTX). The effect of tyramine on DA efflux was inhibited by nomifensine and was insensitive to both TTX and calcium depletion. These data suggest that potassium and tyramine induce release of DA via different mechanisms. Potassium-induced DA release involves a carrier-independent process and may utilise an exocytotic release mechanism. On the other hand, tyramine-induced DA release would appear to involve a carrier-dependent process. Depletion of vesicular stores of DA by pretreatment with reserpine did not significantly affect potassium-induced DA release, whereas a marked inhibition of the effects of tyramine was noted. However, in reserpinised animals the potassium-induced release of DA was inhibited by nomifensine, a result suggesting that a carrier-dependent release mechanism operates in the absence of vesicular DA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The extracellular concentration of dopamine (DA) and 3,4-dihydroxyphenylacetic acid in the substantia nigra (SN) and striatum was estimated by microdialysis. The dialysate content of DA from the SN was recorded during infusion of a DA uptake blocker (nomifensine; 5 mumol/L) dissolved in the perfusion fluid. Perfusion of tetrodotoxin (1 mumol/L) produced a virtually complete disappearance of nigral and striatal DA release. Dendritic as well as terminal release of DA was inhibited for several hours when the nerve impulse flow in dopaminergic neurons was blocked by systemic administration of gamma-butyrolactone (750 mg/kg, i.p.). The systemic administration (0.3 mg/kg, i.p.) as well as infusion (1 mumol/L) of the D2 agonist (-)-N-0437 [2-(n-propyl-N-2-thienylethylamino)-5-hydroxytetralin] produced a significant decrease in the release of DA in both the striatum and the SN. DA levels were recorded in the striatum both with and without addition of nomifensine to the perfusion fluid. The decrease in the striatum after (-)-N-0437 was suppressed in the presence of nomifensine. Infusion (1 mumol/L) as well as systemic administration (40 mg/kg) of sulpiride caused a similar increase in the release of striatal DA; this increase was, in both experiments, potentiated by nomifensine coinfusion. Sulpiride administration induced a small increase in the release of nigral DA. Infusion of (-)-N-0437 or (-)-sulpiride into the nigra caused a moderate decrease and increase, respectively, of striatal DA level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Dietary alkali slows GFR decline in humans with a moderately reduced glomerular filtration rate (GFR) despite the absence of metabolic acidosis. Similarly, dietary alkali slows GFR decline in animals with 2/3 nephrectomy (Nx), a chronic kidney disease (CKD) model without metabolic acidosis in which GFR decline is mediated by acid (H(+)) retention through endothelin (ET) and mineralocorticoid receptors. To gain insight as to whether this mechanism might mediate GFR decline in humans, we explored whether macroalbuminuric subjects with moderately reduced (CKD stage 2 = 60-90 ml/min; CKD 2) compared with normal estimated GFR (> 90 ml/min; CKD 1), each without metabolic acidosis, have H(+) retention that increases plasma levels of ET-1 and aldosterone. Baseline plasma ET and aldosterone concentrations were each higher in CKD 2 than CKD 1. Baseline dietary H(+) and urine net acid excretion (NAE) were not different between groups, but an acute oral NaHCO? bolus reduced urine NAE less (i.e., postbolus urine NAE was higher) in CKD 2 than CKD 1, consistent with greater H(+) retention in CKD 2 subjects. Thirty days of oral NaHCO? reduced H(+) retention in CKD 2 but not CKD 1 subjects and reduced plasma ET and aldosterone in both groups but to levels that remained higher in CKD 2 for each. Subjects with CKD stage 2 eGFR and no metabolic acidosis nevertheless have H(+) retention that increases plasma ET and aldosterone levels, factors that might mediate subsequent GFR decline and other untoward vascular effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号