首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A yeast two-hybrid screen was employed to identify ligands for the cytoplasmic domain of the NG2 chondroitin sulfate proteoglycan. Two overlapping cDNA clones selected in the screen are identical in sequence to a DNA segment coding for the most amino-terminal of the 13 PDZ domains found in the multi-PDZ-protein MUPP1. Antibodies made against recombinant polypeptides representing these two clones (NIP-2 and NIP-7) are reactive with the same 250-kDa molecule recognized by anti-MUPP1 antibodies, confirming the presence of the NIP-2 and NIP-7 sequences in the MUPP1 protein. NIP-2 and NIP-7 GST fusion proteins effectively recognize NG2 in pull-down assays, demonstrating the ability of these polypeptide segments to interact with the intact proteoglycan. The fusion proteins fail to bind NG2 missing the C-terminal half of the cytoplasmic domain, emphasizing the role of the NG2 C-terminus in the interaction with MUPP1. The existence of an NG2/MUPP1 interaction in situ is demonstrated by the ability of NG2 antibodies to co-immunoprecipitate both NG2 and MUPP1 from detergent extracts of cells expressing the two molecules. MUPP1 may serve as a multivalent scaffold that provides a means of linking NG2 with key structural and/or signaling components in the cytoplasm.  相似文献   

2.
The NG2 chondroitin sulfate proteoglycan is a valuable marker for several types of incompletely-differentiated precursor cells, including oligodendrocyte progenitors in the central nervous system, developing mesenchymal cells in cartilage, muscle, and bone, and pericytes/smooth muscle cells in developing vasculature. In addition to extending our knowledge about the developmental roles of these cell types, current studies on NG2 are also providing information about the molecular mechanisms through which the proteoglycan itself influences progenitor development. This research suggests that interaction of NG2 with extracellular and intracellular ligands regulates signaling events that are important for both cell proliferation and cell migration.  相似文献   

3.
The expression of NG2 proteoglycan in the developing rat limb   总被引:3,自引:0,他引:3  
NG2 is a chondroitin sulfate proteoglycan previously found to be expressed by glial progenitor cells of the O2A lineage. We have examined the expression of NG2 in the developing rat limb by immunohistochemistry and northern blot analysis. Staining of embryonic day 14 (E14) rat limb bud sections with polyclonal and monoclonal anti-NG2 antibodies reveals reactivity in the precartilaginous mesenchymal condensation. The staining intensity increases with the differentiation of chondrocytes until E16. NG2 staining is not detected in the mature hypertrophic chondrocytes of E17 and postnatal day 3 (P3) limbs even after treatment of the sections with hyaluronidase or collagenase. Immuno-precipitations with anti-NG2 antibody using 125I-labeled limb cells in culture showed a 400 to 800 x 10(3) Mr proteoglycan species with a core protein size of 300 x 10(3) Mr, comparable to NG2 from O2A cells and neural cell lines. Northern blot analysis reveals the expression of an 8.9 kb mRNA in E16 limbs and at a lower level in P1 cartilage. The northern blot analyses also show that NG2 is distinct from the large aggregating proteoglycan of the cartilage. Our results indicate that in the developing limb cartilage, as in the differentiating oligodendrocytes, NG2 is present on immature cells in the process of differentiating, but its expression is downregulated as terminal differentiation of chondrocytes takes place.  相似文献   

4.
The NG2 chondroitin sulfate proteoglycan is a membrane-spanning molecule expressed by immature precursor cells in a variety of developing tissues. In tightly adherent cell lines with a flattened morphology, NG2 is organized on the cell surface in linear arrays that are highly co-localized with actin and myosin-containing stress fibers in the cytoskeleton. In contrast, microtubules and intermediate filaments in the cytoskeleton exhibit completely different patterns of organization, suggesting that NG2 may use microfilamentous stress fibers as a means of cytoskeletal anchorage. Consistent with this is the observation that cytochalasin D disrupts the organization of both stress fibers in the cytoskeleton and NG2 on the cell surface. Very similar linear cell surface arrays are also seen with three other cell surface molecules thought to interact with the actin cytoskeleton: the α5β1 integrin, the CD44 proteoglycan, and the L1 neuronal cell adhesion molecule. Since the cytoplasmic domains of these four molecules are dissimilar, it seems possible that cytoskeletal anchorage in each case may occur via different mechanisms. One indication of such differences can be seen in colchicine-treated cells which have lost their flattened morphology but still retain long actin-positive tendrils as remnants of the actin cytoskeleton. NG2 and α5β1 are associated with these tendrils while CD44 and L1 are not, suggesting that at least two subclasses of cell surface molecules exist which can interact with different subdomains of the actin cytoskeleton. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Many human gliomas carry markers characteristic of oligodendrocyte progenitor cells (such as Olig-2, PDGF alpha receptor, and NG2 proteoglycan), suggesting these progenitors as the cells of origin for glioma initiation. This review considers the potential roles of the NG2 proteoglycan in glioma progression. NG2 is expressed not only by glioma cells and by oligodendrocyte progenitors, but also by pericytes associated with the tumor microvasculature. The proteoglycan may therefore promote tumor vascularization and recruitment of normal progenitors to the tumor mass, in addition to mediating expansion of the transformed cell population. Along with potentiating growth factor signaling and serving as a cell surface receptor for extracellular matrix components, NG2 also has the ability to mediate activation of beta-1 integrins. These molecular interactions allow the proteoglycan to contribute to critical processes such as cell proliferation, cell motility, and cell survival.  相似文献   

6.
Many human gliomas carry markers characteristic of oligodendrocyte progenitor cells (such as Olig-2, PDGF alpha receptor and NG2 proteoglycan), suggesting these progenitors as the cells of origin for glioma initiation. This review considers the potential roles of the NG2 proteoglycan in glioma progression. NG2 is expressed not only by glioma cells and by oligodendrocyte progenitors, but also by pericytes associated with the tumor microvasculature. The proteoglycan may therefore promote tumor vascularization and recruitment of normal progenitors to the tumor mass, in addition to mediating expansion of the transformed cell population. Along with potentiating growth factor signaling and serving as a cell surface receptor for extracellular matrix components, NG2 also has the ability to mediate activation of β-1 integrins. These molecular interactions allow the proteoglycan to contribute to critical processes such as cell proliferation, cell motility and cell survival.Key words: NG2 proteoglycan, glioma progression, cell motility, cell proliferation, cell survival, tumor vascularization  相似文献   

7.
Previous work has demonstrated the ability of the NG2 proteoglycan, a component of microvascular pericytes, to stimulate endothelial cell motility and morphogenesis. This function of NG2 depends on formation of a complex with galectin-3 and alpha3beta1 integrin to stimulate integrin-mediated transmembrane signaling. In addition, the co-expression of galectin-3 and NG2 in A375 melanoma cells suggests that the malignant properties of these cells may be affected by interaction between the two molecules. Here, we extend the theme of co-expression and interaction of NG2 and galectin-3 to human glioma cells. We also establish a molecular basis for the NG2/galectin-3 interaction. The C-terminal carbohydrate recognition domain of galectin-3 is responsible for binding to the NG2 core protein. Within the NG2 extracellular domain, the membrane-proximal D3 segment of the proteoglycan contains the primary binding site for interaction with galectin-3. The interaction between galectin-3 and NG2 is a carbohydrate-dependent one mediated by N-linked rather than O-linked oligosaccharides within the D3 domain of the NG2 core protein. These studies establish a foundation for attempts to reduce the aggressive properties of tumor cells by disrupting the NG2/galectin-3 interaction.  相似文献   

8.
We have performed a molecular dynamics simulation of a 46-residue segment of glycophorin which includes the hydrophobic membrane-spanning region of this protein. The presence of a membrane and of water is taken into account in a continuum approximation which makes use of phenomenological hydrophobic energies. The initial -helical conformation and the membrane incorporation of the hydrophobic segment remain stable for the length of the simulation which is 100 ps. Moreover, when the hydrophobic segment is partially shifted out of the membrane, it moves back into the membrane. Superimposed on these deterministic effects one also observes thermal fluctuations in the form of bending and tilting of the membrane-spanning helix.  相似文献   

9.
As a membrane-spanning protein, NG2 chondroitin sulfate proteoglycan interacts with molecules on both sides of plasma membrane. The present study explored the role of NG2 in the pathogenesis of diabetic nephropathy. In the normal kidneys, NG2 was observed predominantly in glomerular mesangium, Bowman's capsule and interstitial vessels. Both mRNA and protein expression in kidneys was significantly higher in strepozotocin-induced diabetic rats than that in normal rats. In the cultured rat mesangial cell line HBZY-1, overexpression of NG2 promoted mesangial cell proliferation and extracellular matrix (ECM) production, such as type VI collagen and laminin. Furthermore, target knockdown of NG2 resulted in decreased cell proliferation and ECM formation. The observations suggest that NG2 is up-regulated in diabetic nephropathy. It actively participates in the development and progression of glomerulosclerosis by stimulating proliferation of mesangial cells and deposition of ECM.  相似文献   

10.
Cartilage proteoglycan monomers associate with hyaluronic acid to form proteoglycan aggregates. Link protein, a glycoprotein interacting with both hyaluronic acid and proteoglycan, serves to stabilize the aggregate structure. The primary structure of the link protein has been determined with a view to defining its interaction with both hyaluronic acid and proteoglycan. Thus, the link protein has been digested with staphylococcal V8 protease, trypsin, and chymotrypsin and the resulting peptides characterized by amino acid composition and sequence. We have determined that the link protein is a single peptide with 339 amino acid residues. The protein core has a molecular weight of 38,564. There is one N-linked oligosaccharide at residue 41 with a molecular weight of approximately 2,500. There are five disulfide bonds which define three loops within the amino acid sequence. The loop nearest to the NH2-terminal contains 78 amino acids and is followed by a section of 42 amino acids between it and the second loop. The second and third loops display considerable homology with each other; they consist of 71 and 70 amino acids, respectively, each contain two disulfide bonds, and both loops possess, approximately centrally, an epitope for the species nonspecific anti-link protein monoclonal antibody, 8A4. These loops are separated by a short section of 27 amino acids. We speculate that these loops are functionally important in the interaction of link protein with hyaluronic acid, as they appear to be the most conserved regions of link protein between species.  相似文献   

11.
In early postnatal mouse skin, the NG2 proteoglycan is expressed in the subcutis, the dermis, the outer root sheath of hair follicles, and the basal keratinocyte layer of the epidermis. With further development, NG2 is most prominently expressed by stem cells in the hair follicle bulge region, as also observed in adult human skin. During telogen and anagen phases of the adult hair cycle, NG2 is also found in stem cell populations that reside in dermal papillae and the outer root sheaths of hair follicles. Ablation of NG2 produces alterations in both the epidermis and subcutis layers of neonatal skin. Compared with wild type, the NG2 null epidermis does not achieve its full thickness due to reduced proliferation of basal keratinocytes that serve as the stem cell population in this layer. Thickening of the subcutis is also delayed in NG2 null skin due to deficiencies in the adipocyte population.  相似文献   

12.
《The Journal of cell biology》1990,111(6):3177-3188
The NG2 chondroitin sulfate proteoglycan is a membrane-associated molecule of approximately 500 kD with a core glycoprotein of 300 kD. Both the complete proteoglycan and a smaller quantity of the 300-kD core are immunoprecipitable with polyclonal and monoclonal antibodies against purified NG2. From some cell lines, the antibodies coprecipitate NG2 and type VI collagen, the latter appearing on SDS- PAGE as components of 140 and 250 kD under reducing conditions. The immunoprecipitation of type VI collagen does not seem to be due to recognition of the collagen by the antibodies, but rather to binding of the collagen to NG2. Studies on the NG2-type VI collagen complex suggest that binding between the two molecules is mediated by protein- protein interactions rather than by ionic interactions involving the glycosaminoglycans. Immunofluorescence double labeling in frozen sections of embryonic rat shows that NG2 and type VI collagen are colocalized in structures such as the intervertebral discs and arteries of the spinal column. In vitro the two molecules are highly colocalized on the surface of several cell lines. Treatment of these cells resulting in a change in the distribution of NG2 on the cell surface also causes a parallel change in type VI collagen distribution. Our results suggest that cell surface NG2 may mediate cellular interactions with the extracellular matrix by binding to type VI collagen.  相似文献   

13.
Syndecan-4 (SDC4) functions as a major endogenous membrane-associated receptor and widely regulates cytoskeleton, cell adhesion, and cell migration in human tumorigenesis and development, which represents a charming anti-cancer therapeutic target. Here, SDC4 was identified as a direct cellular target of small-molecule bufalin with anti-hepatocellular carcinoma (HCC) activity. Mechanism studies revealed that bufalin directly bond to SDC4 and selectively increased SDC4 interaction with substrate protein DEAD-box helicase 23 (DDX23) to induce HCC genomic instability. Meanwhile, pharmacological promotion of SDC4/DDX23 complex formation also inactivated matrix metalloproteinases (MMPs) and augmented p38/JNK MAPKs phosphorylation, which are highly associated with HCC proliferation and migration. Notably, specific knockdown of SDC4 or DDX23 markedly abolished bufalin-dependent inhibition of HCC proliferation and migration, indicating SDC4/DDX23 signaling axis is highly involved in the HCC process. Our results indicate that membrane-spanning proteoglycan SDC4 is a promising druggable target for HCC, and pharmacological regulation of SDC4/DDX23 signaling axis with small-molecule holds great potential to benefit HCC patients.Subject terms: Pharmacodynamics, Receptor pharmacology  相似文献   

14.
15.
16.
Chondroitin sulfate proteoglycans (CSPGs) are major components of the extracellular matrix (ECM) in the brain. In the adult cerebral cortex, there are special CSPG-containing structures known as perineuronal nets (PNNs), which are highly condensed ECM structures. Here, we report a novel CSPG-containing structure distinct from PNNs in the adult mouse cerebral cortex. An anti-chondroitin sulfate antibody CS56 delineated a structure with a unique morphology like a dandelion clock. Accordingly, we named it DAndelion Clock-like Structure (DACS). Immunohistochemical evidence showed that DACSs surrounded a group of NeuN-positive/GABA-negative neurons. At ultrastructural level, CS56-immunoreactivities were localized in the cytoplasm and on the membrane of astrocytes. As the postnatal cerebral cortex matured, DACSs became visible around the end of the critical period. This is the first report demonstrating the presence of an ECM structure DACS composed of CSPGs around a group of cortical neurons in the adult cerebral cortex.  相似文献   

17.
NG2 is a chondroitin sulfate proteoglycan that is expressed on dividing progenitor cells of several lineages including glia, muscle, and cartilage. It is an integral membrane proteoglycan with a core glycoprotein of 300 kDa. In the present study we have characterized three molecular forms of the NG2 core protein expressed by different cell lines. Many cell lines that express the full length 300-kDa NG2 core protein also release a 290-kDa form into the medium. This species lacks the cytoplasmic domain but contains almost the entire ectodomain. Two core protein species, the intact 300-kDa form and a truncated 275-kDa form, are expressed at the surface of an NG2-transfected cell line U251NG52. The 275-kDa species lacks the cytoplasmic domain and at least 64 amino acids of the ectodomain. Mild trypsinization of B49 cells also generates the 275-kDa species, suggesting that this component is produced by proteolysis of the 300-kDa form. Conversion of the 300-kDa species to the 275-kDa form in U251NG52 cells is stimulated by reagents such as phorbol esters, which activate protein kinase C. Phorbol esters are also known to induce expression of metalloproteinases such as collagenase and stromelysin, which could be responsible for cleavage of the 300-kDa core protein. Although B49 cells do not spontaneously produce the truncated 275-kDa species, use of monoclonal antibodies against NG2 to block the interaction between NG2 and type VI collagen results in the appearance of the 275-kDa component in these cells. Thus the interaction between NG2 and type VI collagen, which contains a Kunitz-type proteinase inhibitor sequence in the alpha 3 chain, may protect the proteoglycan against proteolysis. This is consistent with the observed deficiency of U251NG52 cells in anchoring type VI collagen at the surface.  相似文献   

18.
Migration of oligodendrocyte precursors along axons is a necessary prerequisite for myelination, but little is known about underlying mechanisms. NG2 is a large membrane proteoglycan implicated in oligodendrocyte migration. Here we show that a PDZ domain protein termed syntenin-1 interacts with NG2 and that syntenin-1 is necessary for normal rates of migration. The association of syntenin-1 with NG2, identified in a yeast two-hybrid screen, was confirmed by colocalization of both proteins within processes of oligodendroglial precursor cells and by coimmunoprecipitation from cell extracts. Syntenin-1 also colocalizes with NG2 in "co-capping" assays, demonstrating a lateral association of both proteins in live oligodendrocytes. RNA interference-mediated down-regulation of syntenin-1 in glial cells results in a significant reduction of migration in vitro, as does the presence of polyclonal antibody against NG2. Thus syntenin plays a role in the migration of oligodendroglial precursors, and we suggest that NG2-syntenin-1 interactions contribute to this.  相似文献   

19.
Glioma invasion into the CNS involves the interaction of tumor cells with the host’s cells and extracellular matrix (ECM) molecules. In this study, the expression of ECM-associated and cell-associated proteins such as the transmembrane CD44 adhesion molecule and neuro-glial proteoglycan 2 (NG2), a member of the chondroitin sulfate proteoglycan family, were evaluated during glioma progression, in vitro and in vivo, using a model of a highly invasive and aggressive intracerebral mouse G-26 glioma. We found a marked increase in CD44 and NG2 expression in brain tissue containing glioma. The glioma levels of these proteins gradually increased over time to reach 3–15 times the levels in the contralateral control. NG2 and CD44 expression paralleled progression of the glioma, being higher on days 14 and 21 than on day 2 post-glioma implant. In addition, when invading glioma crossed the midline in the advanced tumor stage, levels of each of these proteins in the contralateral tissue were elevated, but were still significantly lower than in the ipsilateral, tumor-bearing hemisphere. Immunohistochemistry of advanced stage G-26 glioma (day 21) showed CD44 expression to be most prominent at the front of the glioma invasion line, sharply separated from normal brain parenchyma which expressed glial fibrillary acidic protein (GFAP). However, single CD44 positive cells that escaped the tumor mass penetrated between the astrocytes that encased the tumor at its periphery. In contrast, NG2 was expressed on nearly all glioma cells within the tumor mass but less so at the leading edge of the tumor. The NG2 positive cells were clearly demarcated and morphologically distinguishable from GFAP positive cells and only sporadic, small groups of NG2 positive cells were seen in the GFAP positive zone of the neuropil. Taken together, these data show that during glioma progression in the brain, the level and pattern of glioma-associated molecules such as CD44 and NG2 may aid in tracing and targeting the invading glioma cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号