首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY 1. In Europe, water policy is currently undergoing considerable change as emphasised by the recent European Water Framework Directive (WFD), which requires the restoration and maintenance of 'healthy' aquatic ecosystems by the assessment of their hydromorphological, chemical and biological characteristics. If the requirements of the WFD are to be met, effective biological tools are needed to measure the 'health' of rivers at scales large enough to be useful for management. These tools need to be ecologically based, efficient, rapid and applicable in different ecological regions. Among potential indicators, fish assemblages are of particular interest because of their ability to integrate environmental variability at different spatial scales. To meet the goals of the WFD, the French Water Agencies and the Ministry of the Environment initiated a research programme to develop a fish-based index that would be applicable nationwide.
2. A variety of metrics based on occurrence and abundance data and reflecting different aspects of the fish assemblage structure and function were selected from available literature and for their potential to indicate degradation.
3. Logistic and multiple linear regression procedures were applied, using an initial data set of 650 reference sites fairly evenly distributed across French rivers and defined by some easily measured regional and local characteristics, to elaborate the simplest possible response model that adequately explained the observed patterns of each metric for a given site.
4. Models obtained for each metric were validated using two independent data sets of 88 reference sites and 88 disturbed sites. These procedures allowed us to select the most effective metrics in discriminating between reference and disturbed sites.  相似文献   

2.
Pollution of rivers is an increasing problem that affects biological diversity and structure of natural ecosystem. The present study reported the results of the preliminary analysis of diatom and macroinvertebrate communities of river Picentino (Italy, Campania) in respect of the WFD/60/2000/EC. Because of the sensitive to a variety of environmental factors the two categories of organism are used as excellent indicators of changes taking place in water ecosystems, especially eutrophication. Sampling of benthic diatoms and macroinvertebrates has been carried out in five stations along the river during April–May 2014 in order to apply the ICMi and the STAR_ICMi and assess river quality. The data showed a diversification in diatomic and macroinvertebrate communities in relation to environmental stresses and level of pollution, with the disappearance of species higher sensitive to eutrophication and organic load in the upper course of the river. River water quality was found to deteriorate from the upperstream to the downstream because of the increasing of human impact and the intensive agriculture activity along the river.We conclude that the monitoring of diatomic and macroinvertebrate communities could give detailed information about the ecological status of rivers. However it is necessary to increase the achieved data by monitoring other biological communities in order to define adequated strategies to save and preserve the rivers habitat.  相似文献   

3.
4.
The growing need to analyse the present state of ecosystems and predict their rate of change has triggered a demand to explore species environment relationships for assessing alterations under anthropogenic influence. The Water Framework Directive (WFD) requires the definition of different types of water bodies which are of relevance when assessing their ecological status. The main aim of this study was to define of the types of Portuguese reservoirs located in the North and Centre of Portugal and to assess their ecological status using phytoplankton as water quality indicators. In this study, sampling was carried out in 34 reservoirs during four seasons (spring, summer, autumn and winter), through a period of 8 years (1996–2004).Two groups of reservoirs could be distinguished, from the multivariate statistical analysis based on environmental variables and on phytoplankton assemblages: G1, lowland reservoirs located in the main rivers (Douro and Tagus), with a very low residence time, characterized by higher water mineral content (hardness and conductivity), higher concentrations of nutrients (namely, nitrates), dominated by Bacillariophyta and Chlorophyta and characterized by the presence of tolerant of poor environmental conditions species, mainly associated with meso and eutrophic states of water bodies; G2, deeper high altitude reservoirs, largely located in tributaries, with high residence time, presenting a specific species composition under reference conditions, with higher species richness. The transition from deeper and colder reservoirs (reference sites) to shallow and warmer reservoirs (impaired sites), was evident in G2, contrarily to G1, and was mostly positively correlated to organic pollution and mineral gradients. The results presented here are fundamental for the development of a routine for monitoring ecological status according to the WFD.  相似文献   

5.
Re-establishing and assessing ecological integrity in riverine landscapes   总被引:17,自引:0,他引:17  
1. River–floodplain systems are among the most diverse and complex ecosystems. The lack of detailed information about functional relationships and processes at the landscape and catchment scale currently hampers assessment of their ecological status.
2. Intensive use and alteration of riverine landscapes by humans have led to severe degradation of river–floodplain systems, especially in highly industrialised countries. Recent water-related regulations and legislation focussing on high standards of ecological integrity back efforts to restore or rehabilitate these systems.
3. Most restoration projects in the past have suffered from a range of deficits, which pertain to project design, the planning process, the integration of associated disciplines, scaling issues and monitoring.
4. The so-called `Leitbild' (i.e. a target vision) assumes a key role in river restoration and the assessment of ecological integrity in general. The development of such a Leitbild requires a multistep approach. Including explicitly the first step that defines the natural, type-specific reference condition (i.e. a visionary as opposed to an operational Leitbild), has great practical advantages for restoration efforts, primarily because it provides an objective benchmark, as is required by the European Water Framework Directive and other legal documents.
5. Clearly defined assessment criteria are crucial for evaluating ecological integrity, especially in the pre- and postrestoration monitoring phases. Criteria that reflect processes and functions should play a primary role in future assessments, so as to preserve and restore functional integrity as a fundamental component of ecological integrity.
6. Case studies on the Kissimmee River (U.S.A.), the Rhine River (Netherlands and Germany), and the Drau River (Austria) are used to illustrate the fundamental principles underlying successful restoration projects of river–floodplain systems.  相似文献   

6.
In most cases the negative impacts of climate change to aquatic ecosystems cannot be mitigated by measures in the river basin management. Ignoring climate change by the Water Framework Directive may have strong implications for the typology and quality assessment systems used for water bodies. As a result of climate change, water bodies, especially those located near the type boundaries may change their type. Compared to typology characteristics, water quality parameters are even more labile and may be easily affected by climate change. The paper exemplifies that the anticipated deterioration of water quality within the time frame relevant for WFD implementation may be large enough to endanger the fulfillment of the set water quality objectives. The review of the river basin characterization every six years, as required by the WFD, might also include re-evaluation of reference conditions according to the changes observed at pristine reference sites. As a consequence, the restoration targets (i.e., the good ecological status) would also need to be evaluated periodically.  相似文献   

7.
In 2007, Texas passed Senate Bill (SB) 3 mandating formation of science and stakeholder committees to make recommendations on the environmental flows (e-flows) needed to maintain the ecological integrity of river basins through a collaborative process designed to achieve consensus. The Texas Commission on Environmental Quality (TCEQ), the state agency that issues water rights permits, was to promulgate these recommendations and develop e-flow rules. For the first two basins to complete the SB3 process, the Sabine and Neches Basins and Sabine Lake Bay and the Trinity and San Jacinto Basins and Galveston Bay, final e-flow rules did not mimic a natural flow regime, rather, only subsistence flows, one level of base flows, and low flow pulses at a limited number of sites were adopted. In this article, I describe why the SB3 process was derailed for these basins. Science and stakeholder committees were skewed with more members representing short-term economic than ecological and recreational interests in freshwater. Many individuals on the science and stakeholder committees worked for river authorities, semiautonomous state agencies that receive the majority of their funding from surface water sales, and consulting firms that regularly contract with the river authorities. Water rights holders were from the outset distrustful of the SB3 process. There was a high degree of uncertainty associated with e-flow science, and adaptive management was used as justification for making low e-flow recommendations. In the end, TCEQ set environmental flow rules at levels lower than those recommended for protection of environmental benefits by the science teams.  相似文献   

8.
Diatoms are excellent ecological indicators of water quality because they are broadly distributed, they show high species diversity and they respond rapidly to human pressures. In Europe, the Water Framework Directive (WFD) gives the legal basis for the use of this indicator for water quality assessment and its management. Several quality indices, like the Specific Polluosensitivity Index (SPI), were developed to assess the ecological quality status of rivers based on diatom communities. It is based on morphological identifications and count of diatom species present in natural biofilms using a microscope. This methodology requires high taxonomic skills and several hours of analysis per sample as 400 individuals must be identified to species level. Since several years, a molecular approach based on DNA metabarcoding combined to High-Throughput Sequencing (HTS) is developed to characterize species assemblages in environmental samples which is potentially faster and cheaper. The ability of this approach to provide reliable diatom inventories has been demonstrated and its application to water quality assessment is currently being improved. Despite optimization of the DNA metabarcoding process with diatoms, few studies had yet extended it at the scale of a freshwater monitoring network and evaluated the reliability of its quality assessment compared to the classical morphological approach.In the present study we applied DNA metabarcoding to the river monitoring network of the tropical Island Mayotte. This island is a French département since 2011 and the WFD has to be applied. This offered the opportunity to scale up the comparison of molecular and morphological approaches and their ability to produce comparable community inventories and water quality assessments. Benthic diatoms were sampled following WFD standards in 45 river sites in 2014 and 2015 (80 samples). All samples were submitted in parallel to the molecular and the morphological approaches. DNA metabarcoding was carried out using Genelute DNA extraction method, rbcL DNA barcode and PGM sequencing, while microscopic counts were carried out for the classical methodology. Diatom community structures in terms of molecular (OTUs) and of morphological (species) were significantly correlated. However, only 13% of the species was shared by both approaches, with qualitative and quantitative variation due to i) the incompleteness of the reference library (82% of morphological species are not represented in the database), ii) limits in taxonomic knowledge and iii) biases in the estimation of relative abundances linked to diatom cell biovolume. However, ecological quality status assessed with the molecular and morphological SPI values were congruent, and little affected by sequencing depth. DNA metabarcoding of diatom communities allowed a reliable estimation of the quality status for most of the rivers at the scale of the full biomonitoring network of Mayotte Island.  相似文献   

9.
The European Water Framework Directive (WFD) represents a transformation of the guidelines for water quality assessment and monitoring across all EU Member States. At present, it is widely accepted that the WFD requires holistic and multidisciplinary ecological approaches by integrating multiple lines of evidence. Within the scope of the WFD, the scientific community identified clear opportunities to take advantage of an ecotoxicological line of evidence. In this context, ecotoxicological tools, namely biomarkers and bioassays, were proposed to contribute to the integration of the chemical and biological indicators, and thus to provide an overall insight into the quality of a water body. More than one decade after the publication of the WFD, we reviewed the studies that have attempted to integrate ecotoxicological tools in the assessment of surface water bodies. For this purpose, we reviewed studies providing an ecological water status assessment through more conventional community based approaches, in which biomarkers and/or bioassays were also applied to complement the evaluation. Overall, from our review emerges that studies at community level appear suitable for assessing the ecological quality of water bodies, whereas the bioassays/biomarkers are especially useful as early warning systems and to investigate the causes of ecological impairment, allowing a better understanding of the cause–effect-relationships. In this sense, community level responses and biomarkers/bioassays seem to be clearly complementary, reinforcing the need of combining the approaches of different disciplines to achieve the best evaluation of ecosystem communities’ health.  相似文献   

10.
11.
It is important that legislation on water quality issues of freshwaters is not in conflict with nature conservation purposes. So far, it is however unknown how the assessment of ecological status according to for example the Water Framework Directive (WFD) of the European Community relates to the status of lakes according to the Habitat Directive (HD) or to national environmental objectives including, e.g., the protection of important wetland areas and red-listed species. We used lake macrophyte classification schemes of Norway, Sweden, and Finland and a total of 1,014 lakes to evaluate the possible conflict between these directives and national legislation. The classification schemes represent mainly trophic indices penalizing lakes with elevated phosphorous concentrations. In general, high ecological status according to the WFD did not mean high number of red-listed species or high status according to the HD or other national environmental objectives. In Sweden 78%, in Norway 47%, and in Finland 29% of lakes with red-listed species were classified as lakes of moderate or worse ecological status based on the macrophyte classification scheme. These lakes thus did not fulfill the demands of the WFD. Restoration of surface water toward fulfilling the demands requires in practice a reduction of the trophic status. This might potentially result in for example the loss of red-listed species. To avoid such potential conflicts, we primarily suggest revising the national quality assessment systems toward implicitly incorporating nature conservation aspects, e.g., the number of red-listed species in a multi-metric assessment system.  相似文献   

12.
Implementation of the EU Water Framework Directive (WFD) is a huge environmental management challenge for Europe, demanding an integrated sustainable approach to water management and a common objective of obtaining ‘good status’ for all water bodies before 2015. The main task is the preparation of a river basin management plan for each of the 96 European river basin districts before the end of 2009. In Odense River Basin (island of Fyn, Denmark), one of 14 appointed European Pilot River Basins, the implementation of the WFD has been developed and tested in practice. Reference conditions and ecological status classification for Odense Fjord, based on eelgrass (Zostera marina) depth limit and nutrient concentrations, have been drawn up through a combination of historical data and modelling tools. A subsequent quantitative linking of pressures and impact, in casu between land-based nitrogen (N) loading of the fjord and resulting nutrient concentrations and eelgrass appearance, provided an estimate of the needed nitrogen load reduction of the fjord. This amounted to approx. 1,200 tonnes N per year (an annual load reduction of ca. 11 kg N ha?1 of catchment area or ca. 19.5 g N m?2 of fjord surface)—a load reduction of ca. 60% from the present level—to obtain at least ‘good’ ecological status sensu WFD. It is presently not possible to quantify a target load for phosphorus (P) in relation to marine environmental objectives. An economically feasible programme of measures to obtain ‘good’ status in all surface water and groundwater bodies in Odense River Basin, using an integrated cost-effectiveness analysis, showed that re-establishment of wetlands, catchcrops, and reduced fertilisation norms are the most effective measures if large reductions in N loads to the aquatic environment are to be achieved. The total socio-economic cost of implementing the WFD in the river basin amounts to about 13 million €/year, which will increase the expense for water services by only 0.5–0.6% of the total income and production value in the basin (15,650 million €/year). Investments to obtain the needed nitrogen load reductions from agriculture are thus economically feasible. Further, it is not an impossible task, either economically or technically, to reach the objectives of the WFD while still retaining the possibility of keeping a high agricultural production in the catchment (maintaining livestock production but decreasing crop production in the case of Odense River Basin). The future conditions in Odense Fjord will not only depend on the success in reducing the load from the river basin area, but will also be affected by the trend in the nutrient loss from the whole Baltic catchment area. The high growth rates in the new EU Member States thus pose an important challenge to water managers, and decoupling of economic growth from pressure on water bodies will be necessary. Finally, a number of challenges facing water managers around the Baltic and within the EU, namely preconditions required to successfully implement the WFD, are presented.  相似文献   

13.
14.
15.
Riverine landscapes: taking landscape ecology into the water   总被引:32,自引:1,他引:31  
1. Landscape ecology deals with the influence of spatial pattern on ecological processes. It considers the ecological consequences of where things are located in space, where they are relative to other things, and how these relationships and their consequences are contingent on the characteristics of the surrounding landscape mosaic at multiple scales in time and space. Traditionally, landscape ecologists have focused their attention on terrestrial ecosystems, and rivers and streams have been considered either as elements of landscape mosaics or as units that are linked to the terrestrial landscape by flows across boundaries or ecotones. Less often, the heterogeneity that exists within a river or stream has been viewed as a `riverscape' in its own right.
2. Landscape ecology can be unified about six central themes: (1) patches differ in quality (2) patch boundaries affect flows, (3) patch context matters, (4) connectivity is critical, (5) organisms are important, and (6) the importance of scale. Although riverine systems differ from terrestrial systems by virtue of the strong physical force of hydrology and the inherent connectivity provided by water flow, all of these themes apply equally to aquatic and terrestrial ecosystems, and to the linkages between the two.
3. Landscape ecology therefore has important insights to offer to the study of riverine ecosystems, but these systems may also provide excellent opportunities for developing and testing landscape ecological theory. The principles and approaches of landscape ecology should be extended to include freshwater systems; it is time to take the `land' out of landscape ecology.  相似文献   

16.
Human activities are affecting the environment at continental and global scales. An example of this is the Mississippi basin where there has been a large scale loss of wetlands and water quality deterioration over the past century. Wetland and riparian ecosystems have been isolated from rivers and streams. Wetland loss is due both to drainage and reclamation, mainly for agriculture, and to isolation from the river by levees, as in the Mississippi delta. There has been a decline in water quality due to increasing use of fertilizers, enhanced drainage and the loss of wetlands for cleaning water. Water quality has deteriorated throughout the basin and high nitrogen in the Mississippi river is causing a large area of hypoxia in the Gulf of Mexico adjacent to the Mississippi delta. Since the causes of these problems are distributed over the basin, the solution also needs to be distributed over the basin. Ecotechnology and ecological engineering offer the only ecologically sound and cost-effective method of solving these problems. Wetlands to promote nitrogen removal, mainly through denitrification but also through burial and plant uptake, offer a sound ecotechnological solution. At the level of the Mississippi basin, changes in farming practices and use of wetlands for nitrogen assimilation can reduce nitrogen levels in the River. There are additional benefits of restoration of wetland and riverine ecosystems, flood control, reduction in public health threats, and enhanced wildlife and fisheries. At the local drainage basin level, the use of river diversions in the Mississippi delta can address both problems of coastal land loss and water quality deterioration. Nitrate levels in diverted river water are rapidly reduced as water flows through coastal watersheds. At the local level, wetlands are being used to treat municipal wastewater. This is a cost-effective method, which results in improved water quality, enhanced wetland productivity and increased accretion. The problems in the Mississippi basin serves as an example for other watersheds in the Gulf of Mexico. This is especially important in Mexico, where there is a strong need for economical solutions to ecological problems. The Usumacinta delta-Laguna de Terminos regional ecosystem is an example where ecotechnological approaches offer realistic solutions to environmental problems.  相似文献   

17.
18.
The European Water Framework Directive (WFD) requires that all aquatic ecosystems in their member states should reach ‘good’ ecological quality by 2015. To assess ecological quality, the WFD requires the definition of reference conditions using biological, physical and chemical indicators and the assignment of each water body to one of five quality classes using these indicators. Elaborate assessment schemes using large sets of variables are now being developed. Here we address the question whether all this is really needed and what the simplest assessment approach would be for the case of shallow lakes. We explore the relationships between the quality class assigned to a lake by experts in shallow lake ecology and a rich set of biological, physical, and chemical data. Multinomial logistic regression analyses were carried out based on data from 86 shallow lakes throughout Europe that were sampled in 2000 and/or 2001. Ecological quality of shallow lakes judged by experts was strongly correlated to physical and chemical variables associated with light regime and nutrients and much less to biological variables.Our regression model showed that ecological quality of this set of shallow lakes judged by experts could be predicted quite well from water transparency expressed as Secchi depth and that other variables did not contribute to it significantly. According to the WFD, lakes should at least have a ‘good’ ecological quality. Quality judged by experts and predicted quality were similar for 78% of the lakes with respect to meeting this standard. As a cautionary note we stress that Secchi depth alone will be a less useful indicator if effects of stressors other than eutrophication (e.g. lake acidification and toxic pollution) are to be considered.  相似文献   

19.
The Water Framework Directive (WFD) is a key legislative action developed by the European Union in order to protect aquatic ecosystems. One of the concerning pollutants, listed in this directive as a priority hazardous substance, is tributyltin (TBT), a biocide largely used in antifouling paints and identified as a causative agent of imposex/intersex in gastropods. In order to integrate TBT pollution monitoring within this legislative framework, a practical exercise is here proposed to assess the evolution of surface water ecological status in Ria de Aveiro (NW Portugal). Three bioindicators – the caenogastropods Nucella lapillus, Nassarius reticulatus and Littorina littorea – were used under the general WFD benthic invertebrate quality element, and the vas deferens sequence index (VDSI) and the intersex index (ISI) were selected as biomarkers for the purpose of assessing the condition of this quality element regarding the impact of TBT pollution. Levels of VDSI in N. lapillus and N. reticulatus, and ISI in L. littorea, were surveyed in 2013 and compared with previous data available for the same species and study area in 1998 and 2005, providing a time lapse for a period of 15 years. VDSI and ISI values were converted into Ecological Quality Ratios (EQR) and EQR boundaries were set for each species in order to define the five ecological status classes (High, Good, Moderate, Poor and Bad). We propose N. lapillus as key bioindicator, however the combined use of further species is very useful to cover a wider study area. Based on the proposed method, it is concluded that the ecological status of the surface waters surveyed in Ria de Aveiro, concerning the impact of TBT pollution on the above benthic invertebrate taxa, improved considerably since 1998 and achieved a Good Ecological Status in 2013, thus meeting the WFD environmental objectives for this priority hazardous substance even before 2015.  相似文献   

20.
《Ecological Indicators》2005,5(3):253-266
Benthic macroinvertebrates, macroalgae and phytoplankton constitute the biological quality elements proposed in the Water Framework Directive (WFD, 2000/60/EC) to be used for the classification of the ecological status of a water body. In the context of the preparation for the implementation of WFD, classification schemes for all three elements have been developed and tested for all the European ecoregions. In the present work, the classification schemes, with the corresponding metric tools and the interpretations of the class boundaries according to the normative definitions of WFD, are presented for each biological element in Saronikos Gulf, as case study in the Mediterranean ecoregion. The combination of the three biological elements into an integrated classification for coastal water bodies has been one of the major issues addressed in the context of WFD guidelines. Results are interpreted and validated, through an ecological viewpoint, on the basis of relevant environmental data. Moreover, this work presents a way to combine the EUNIS system to the typology of water bodies in the Mediterranean ecoregion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号