首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A DFT study with QST3 approach method is used to calculate kinetic, thermodynamic, spectral and structural data of tautomers and transition state structures of some N-hydroxy amidines. All tautomers and transition states are optimized at the B3LYP/6-311++g** and B3LYP/aug-cc-pvtz level, with good agreement in energetic result with energies obtained from CBS-QB3, a complete basis set composite energy method. The result shows that the tautomer a (amide oxime) is more stable than the tautomer b (imino hydroxylamine) as is reported in the literature. In addition, our finding shows that, the energy difference between two tautomers is only in about 4–10 kcal/mol but the barrier energy found in traversing each tautomer to another one is in the range of 33–71 kcal/mol. Therefore, it is impossible to convert these two tautomers to each other at room temperature. Additionally, transition state theory is applied to estimate the barrier energy and reaction rate constants of the hydrogen exchange between tautomers in presence of 1–3 molecules of water. The computed activation barrier shows us that the barrier energy of solvent assisted tautomerism is about 9–20 kcal/mol and lower than simple tautomerism and this water-assisted tautomerism is much faster than simple tautomerism, especially with the assisting two molecules of water.  相似文献   

2.
For the first time the mutarotation mechanism of furanose rings has been investigated, with and without solvent. The transformations from open-chain furanose to d-erythrose and d-threose have been studied at B3LYP/6-311++G(d,p) and G3MP2B3 levels, in vacuum and in solution through continuum solvation models. We studied the catalytic influence of one, two or three water molecules, as well as simplified models of carbohydrates, that is, methanol and 1,2-ethanediol. Water molecules significantly reduce the energy barrier of the hemiacetal formation occurring between the open-chain and furanose configurations. The energy barrier is optimally reduced by two water molecules. Methanol yields a smaller transition state barrier than the one obtained with a single water molecule. In contrast, 1,2-ethanediol does not provide a lower transition state compared to the barrier in the presence of two water molecules.  相似文献   

3.
We have analyzed the variation of the reaction force F(ξ) and the reaction force constant κ(ξ) along the intrinsic reaction coordinates ξ of the water-assisted proton transfer reactions of HX-N = Y (X,Y = O,S). The profile of the force constant of the vibration associated with the reactive mode, k ξ (ξ), was also determined. We compare our results to the corresponding intramolecular proton transfers in the absence of a water molecule. The presence of water promotes the proton transfers, decreasing the energy barriers by about 12 – 15 kcal mol-1. This is due in part to much smaller bond angle changes being needed than when water is absent. The κ(ξ) profiles along the intrinsic reaction coordinates for the water-assisted processes show striking and intriguing differences in the transition regions. For the HS-N = S and HO-N = S systems, two κ(ξ) minima are obtained, whereas for HO-N = O only one minimum is found. The k ξ (ξ) show similar behavior in the transition regions. We propose that this fine structure reflects the degree of synchronicity of the two proton migrations in each case.
Figure
Fine Structure in the Transition Region  相似文献   

4.
In this work the mechanism of glucose mutarotation is investigated in aqueous solution considering the most likely pathways proposed from experimental work. Two mechanisms are studied. The first involves an intramolecular proton transfer as proposed by textbooks of organic chemistry, and the second uses one solvent water molecule to assist proton transfer. Both mechanisms are studied in the gas phase and in aqueous solution with the help of a polarizable continuum model, which is adopted to introduce the electrostatic nonspecific influence of bulk solvent. The structures are fully characterized through the calculation of the corresponding vibrational frequencies. The rate coefficients for each mechanism are calculated following transition-state theory in both the gas phase and in aqueous solution. Values computed for the water-assisted pathway in the continuum solvent agree best with the experimental results.  相似文献   

5.
Przybylski JL  Wetmore SD 《Biochemistry》2011,50(19):4218-4227
Human uracil-DNA glycosylase (hUNG2) is a base excision repair enzyme that removes the damaged base uracil from DNA through hydrolytic deglycosylation of the nucleotide. In the present study, the mechanism of hUNG2 is thoroughly investigated using ONIOM(MPWB1K/6-31G(d):PM3) active-site models to generate reaction potential energy surfaces. Active-site models that differ in the hydrogen-bonding arrangement of the nucleophilic water molecule and/or protonation state of His148 are considered. The large barrier calculated using the model with a cationic His148 verifies that this residue is neutral in the early stages of the reaction. The reaction pathways predicted by two models with a neutral His148 are consistent with a wealth of experimental data on the enzyme, including mutational studies, which supports our approach. On the basis of our calculations, we propose a complete mechanism for the chemical step of hUNG2. In the first part of the reaction, His268, Asn204, and a water molecule work together to stabilize the negative charge forming on the uracil moiety. Subsequently, either Asp145 or His148 can act as the general base that activates the water nucleophile depending on the binding orientation of the water molecule in the active site. However, we propose that His148 preferentially acts as the general base. Therefore, in agreement with previous proposals, we assign the primary function of Asp145 to electrostatic stabilization of the positive charge developing on the sugar moiety during the reaction, which is also consistent with a growing theory that the primary function of active-site carboxylate groups present in many glycosylases is transition state stabilization. Most importantly, our work explains, for the first time, the role of His148 in the chemical step and provides additional support for the inclusion of this amino acid in the list of residues (Asp145 and His268) essential to the chemical step of the hUNG2 mechanism.  相似文献   

6.
植物次生代谢物质可影响昆虫信息素的功能,但有关影响机制尚不清楚。本文利用量子化学理论分析了广泛存在于花粉或花蜜中的挥发性丁香油酚和乙酸香茅酯能否与蜜蜂蜂王信息素挥发性成分4-羟基-3-甲氧苯乙醇(HVA)反应。使用Gaussian 09软件来完成几何优化、过渡态搜索、频率分析,并计算了反应能垒和速率常数。结果表明,丁香油酚和HVA分别与OH自由基反应生成有机自由基后,通过自由基-自由基途径发生聚合反应(反应能垒为0.613077 kcal/mol,反应速率常数为9.559953×1011cm3/molecule/s),而不易通过自由基-分子途径发生反应(反应能垒为31.792769 kcal/mol,反应速率常数为4.268854×10-13cm3/molecule/s)。相似地,乙酸香茅酯和HVA分别与OH自由基反应后,也可通过自由基-自由基途径发生反应(反应能垒为2.086469 kcal/mol,反应速率常数为2.328216×1011cm3/molecule/s),但不易通过自由基-分子途径发生反应(反应能垒为25.881002 kcal/mol,反应速率常数为1.513828×10-8cm3/molecule/s)。由于全球环境变化可能导致大气中OH自由基浓度升高,使得花蜜或花粉中挥发性不饱和化合物有可能影响蜂王信息素的功能,从而干扰蜂群的化学通讯。  相似文献   

7.
When reactions take place with one of the reactants tied to protein matrix, movements along the reaction coordinate towards the transition state can become coupled to structural fluctuations of the protein matrix. This investigation aims to test the assumptions underlying the arguments supporting such a coupling. A coupling is allowed only if the activation barrier is high and broad enough as shown to be the case for the proton catalyzed isotope exchange at Trp-63 of lysozyme. In the present investigation the activation barrier for the same reaction has been lowered radically in an effort to show that the coupling, as measured by the dependence of rate on solution viscosity, will diminish and ideally vanish, despite the unchanged effects of cosolvents on the chemical activities of all the reactants. The isotope exchange rate at the indole nitrogen of the single tryptophan residue of human serum albumin was measured with UV. This residue is rigidly held to the protein surface and the solvent access, although restricted, corresponds to a partially exposed residue. As a consequence, the isotope exchange rates and the bimolecular quenching rate of fluorescence by acrylamide, also measured, are high. The experiments were carried out at pH 5.2 where the molecule is in the N-form and the exchange is catalyzed by OH- ions. The activation energy of the hydroxyl catalyzed reaction is 22 kJ lower than for the proton catalyzed process. Under these conditions the exchange rate is viscosity independent both in the case of glycerol and in ethylene glycol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The hydrolysis reaction of guanosine triphosphate (GTP) by p21(ras) (Ras) has been modeled by using the ab initio type quantum mechanical-molecular mechanical simulations. Initial geometry configurations have been prompted by atomic coordinates of the crystal structure (PDBID: 1QRA) corresponding to the prehydrolysis state of Ras in complex with GTP. Multiple searches of minimum energy geometry configurations consistent with the hydrogen bond networks have been performed, resulting in a series of stationary points on the potential energy surface for reaction intermediates and transition states. It is shown that the minimum energy reaction path is consistent with an assumption of a two-step mechanism of GTP hydrolysis. At the first stage, a unified action of the nearest residues of Ras and the nearest water molecules results in a substantial spatial separation of the gamma-phosphate group of GTP from the rest of the molecule (GDP). This phase of hydrolysis process proceeds through the low barrier (16.7 kcal/mol) transition state TS1. At the second stage, the inorganic phosphate is formed in consequence of proton transfers mediated by two water molecules and assisted by the Gln61 residue from Ras. The highest transition state at this segment, TS3, is estimated to have an energy 7.5 kcal/mol above the enzyme-substrate complex. The results of simulations are compared to the previous findings for the GTP hydrolysis in the Ras-GAP (p21(ras)-p120(GAP)) protein complex. Conclusions of the modeling lead to a better understanding of the anticatalytic effect of cancer causing mutation of Gln61 from Ras, which has been debated in recent years.  相似文献   

9.
Mechanistic studies on the hydrolytic dehalogenation catalyzed by haloalkane dehalogenases are of importance for environmental and industrial applications. Here, Car-Parrinello (CP) and ONIOM hybrid quantum-mechanical/molecular mechanics (QM/MM) are used investigate the second reaction step of the catalytic cycle, which comprises a general base-catalyzed hydrolysis of an ester intermediate (EI) to alcohol and free enzyme. We focus on the enzyme LinB from Sphingomonas paucimobilis UT26, for which the X-ray structure at atomic resolution is available. In agreement with previous proposals, our calculations suggest that a histidine residue (His272), polarized by glutamate (Glu132), acts as a base, accepting a proton from the catalytic water molecule and transferring it to an alcoholate ion. The reaction proceeds through a metastable tetrahedral intermediate, which shows an easily reversed reaction to the EI. In the formation of the products, the protonated aspartic acid (Asp108) can easily adopt conformation of the relaxed state found in the free enzyme. The overall free energy barrier of the reaction calculated by potential of the mean force integration using CP-QM/MM calculations is equal to 19.5 +/- 2 kcal . mol(-1). The lowering of the energy barrier of catalyzed reaction with respect to the water reaction is caused by strong stabilization of the reaction intermediate and transition state and their preorganization by electrostatic field of the enzyme.  相似文献   

10.
Continuing our theoretical studies of glucosamine synthase catalysis, we have carried out MNDO and ab initio calculations of the first stage of the reaction, which involves the attack of a cysteine thiol group from the enzyme active site on the side chain carboxyamide group of glutamine, producing ammonia and thioester. The reactants were modelled by methyl mercaptate and acetamide, respectively. For two considered mechanisms of the reaction the energy surfaces were evaluated. Mechanism I, proposed by Chmara et al. (1985) involves the nucleophilic attack of a deprotonated thiol group on the carbonyl carbon atom. Mechanism II, postulated in our previous work (Tempczyk et al. 1989), assumes the concerted binding of the mercaptate sulphur to the carbonyl carbon and the sulfhydryl hydrogen to the amide nitrogen with simultaneous breaking of the S-H bond. The energy surface of mechanism I shows no minimum on the approach of the mercaptide anion towards the carbonyl carbon, which is also consistent with ab initio calculations in a 4-31 G basis set. Therefore, mechanism I seems to be unlikely. The same analysis of mechanism II shows that it leads to the desired products: methyl thioacetate and ammonia. The presence of a sulfhydryl hydrogen causes apparent pyramidicity of the amido nitrogen and lengthening of the C-N bond in the transition state, making conditions for the release of the ammonia molecule. The MNDO calculated energy barrier of the reaction is 50.1 kcal/mol and the approximate 4-31 G ab initio barrier (at the MNDO geometries of the substrate complex and the transition state) is 63 kcal/mol. The biggest energy contribution to the barrier comes from the breaking of the S-H bond, which also causes a large charge separation in the transition state. The latter affect may result in the stabilisation of the transition state in a real enzymatic environment when compared to the gas phase, e.g. by the interaction of the reacting center with a pair of oppositely charged amino acid side chains such as lysinium and glutamate (aspartate), which are present in the enzyme studied. To estimate the magnitude of this effect, molecular mechanics calculations were carried out on the reaction center at the transition state in our proposed model of the enzymatic active site. The site was supplemented by ammonium and acetate ion, which were to mimic the lysinium and glutamate/aspartate side chains. A transition state stabilization energy of 20 kcal/mol was obtained and this lowers the energy barrier to about 30 kcal/mol. This value is within the thermal energy range of an average protein and indicates that our mechanism is a possible route of glucosamine synthase catalysis. Offprint requests to: E. Borowski  相似文献   

11.
Based on available three-dimensional structures of enzyme-inhibitor complexes, the mechanism of the reaction catalysed by HIV protease is studied using molecular dynamics simulations with molecular mechanics and combined quantum-mechanics/molecular-mechanics potential energy functions. The results support the general acid/general base catalysis mechanism, with Asp25′ protonated in the enzyme-substrate complex. In the enzyme-substrate complex, the lytic water molecule binds at a position different from the positions of the hydroxyl groups in various aspartic protease-inhibitor complexes. The carboxyl groups at the active site also adopt a different orientation. However, when the lytic water molecule approaches the scissile peptide, the reaction centre changes gradually to a conformation close to that derived from X-ray diffraction studies of various enzyme-inhibitor complexes. The proton transfer processes can take place only after the lytic water molecule has approached the scissile peptide bond to a certain degree. Qualitatively, the free-energy barrier associated with the nucleophilic attack step, which takes place at physiological pH, is comparable with the acid or base-catalysed reactions of model systems. The structure of the tetrahedral intermediate resulting from the nucleophilic attack step also indicates a straightforward pathway of the next reaction step, i.e. the breaking of the C-N bond.  相似文献   

12.
Generalized microscopic reversibility implies that the apparent rate of any catalytic process in a complex mechanism is paralleled by substrate desorption in such a way that this ratio is held constant within the reaction mechanism [Whitehead (1976) Biochem. J. 159, 449--456]. The physical and evolutionary significances of this concept, for both polymeric and monomeric enzymes, are discussed. For polymeric enzymes, generalized microscopic reversibility of necessity occurs if, within the same reaction sequence, the substrate stabilizes one type of conformation of the active site only. Generalized microscopic reversibility suppresses the kinetic co-operativity of the slow transition model [Ainslie, Shill & Neet (1972) J. Biol. Chem. 247, 7088--7096]. This situation is obtained if the free-energy difference between the corresponding transition states of the two enzyme forms is held constant along the reaction co-ordinate. This situation implies that the 'extra costs' of energy (required to pass each energy barrier) that are not covered by the corresponding binding energies of the transition states vary in a similar way along the two reaction co-ordinates. The regulatory behaviour of monomeric enzymes is discussed in the light of the concept of 'catalytic perfection' proposed by Albery & Knowles [(1976) Biochemistry 15, 5631--5640]. These authors claim that an enzyme will be catalytically 'perfect' when its catalytic efficiency is maximum. If this situation occurs for a monomeric enzyme obeying either the slow transition or the mnemonical model, it can be shown that the kinetic co-operativity disappears. In other words, kinetic co-operativity of a monomeric enzyme is 'paid for' at the expense of catalytic efficiency, and the monomeric enzyme cannot be simultaneously co-operative and catalytically very efficient. This is precisely what has been found experimentally in a number of cases.  相似文献   

13.
Hudáky P  Perczel A 《Proteins》2006,62(3):749-759
A model of the catalytic triad of chymotrypsin is built assuring the arrangement and properties as they are within the complete enzyme. The model contains 18 amino acid residues of chymotrypsin and its substrate. A total of 135 atoms (including 70 heavy atoms) were subjected to full ab initio geometry optimizations through 127 individual steps along the reaction coordinate of the complete catalytic mechanism. It was shown that the described model of the catalytic apparatus forms a self-stabilized molecule ensemble without the rest of the enzyme and substrate. According to the calculations, the formations of the first and second tetrahedral intermediates in the model have 20.3 and 15.7 kcal/mol activation energy barriers, respectively. Removing elements of the catalytic apparatus such as the (1) catalytic aspartate or (2) the anion hole, as well as (3) inserting a water molecule "early" in the catalytic process, or (4) introducing conformational rigidity of the substrate, results in an increase of the above energy barrier of the first catalytic step in the model by 6.4, 13.7, 3.7, and 4.1 kcal/mol, respectively. Based on the calculated process one can conclude that the catalytic reaction in this model is much more similar to the reaction in the enzyme than to the reference reaction. To our knowledge, this is the first model system that mimics the complete catalytic mechanism.  相似文献   

14.
Molecular mechanisms of band 3 inhibitors. 3. Translocation inhibitors   总被引:2,自引:0,他引:2  
J J Falke  S I Chan 《Biochemistry》1986,25(24):7899-7906
During the translocation of the band 3 transport site between the inward- and outward-facing orientations, the Cl- transport site complex passes through a transition state lying on the reaction pathway between the two extreme orientations. Niflumic acid, 2-[(7-nitrobenzofurazan-4-yl)amino]ethanesulfonate, and 2,4,6-trichlorobenzenesulfonate each are translocation blockers that can bind to both the inward- and outward-facing conformations of band 3. The principal mechanism of these inhibitors is a reduction in the translocation rate, since they have essentially no effect on the apparent KD for Cl- binding to the transport site and the migration of Cl- between the transport site and solution. Instead, these inhibitors raise the free energy of formation of the transition state during translocation and thereby can lock the transport site into either the inward- or outward-facing orientation. In contrast, 2,4-dinitrofluorobenzene (DNFB) appears to restrict the accessibility of the transport site to solution Cl-; also, the DNFB reaction rate is increased by Cl-, suggesting that DNFB modification may occur during translocation. Thus DNFB is proposed to trap the Cl--transport site complex site during translocation to yield a conformation intermediate to the inward- and outward-facing orientations. A model is presented for the molecular mechanism of transport across biological membranes. The transport machinery is proposed to contain greater than or equal to 6 transmembrane helices that surround a central channel containing a sliding hydrophobic barrier. The transport site lies between two of the channel-forming helices and remains stationary while the hydrophobic barrier slides from one end of the channel to the other, thereby exposing the transport site to the opposite solution compartment.  相似文献   

15.
The complex N-glycan structures on glycoproteins play important roles in cell adhesion and recognition events in metazoan organisms. A critical step in the biosynthetic pathway leading from high mannose to these complex structures includes the transfer of N-acetylglucosamine (GlcNAc) to a mannose residue by the inverting N-acetylglucosaminyltransferase I (GnT-I). The catalytic mechanism of this enzymatic reaction is explored herein using DFT quantum chemical methods. The computational model used to follow the reaction is based on the X-ray crystallographic structure of GnT-I and contains 127 atoms that represent fragments of residues critical for the substrate binding and catalysis. The mechanism of the catalytic reaction was monitored by means of a 2D potential energy map calculated as a function of predefined reaction coordinates at the B3LYP/6-31G** level. This potential energy surface revealed one transition state associated with a reaction pathway following a concerted mechanism. The reaction barrier was estimated, and the structure of the transition state was characterized at the B3LYP/6-311++G**// B3LYP/6-31G** level.  相似文献   

16.
The role of water molecules in assisting proton transfer (PT) is investigated for the proton-pumping protein ferredoxin I (FdI) from Azotobacter vinelandii. It was shown previously that individual water molecules can stabilize between Asp(15) and the buried [3Fe-4S](0) cluster and thus can potentially act as a proton relay in transferring H(+) from the protein to the μ(2) sulfur atom. Here, we generalize molecular mechanics with proton transfer to studying proton transfer reactions in the condensed phase. Both umbrella sampling simulations and electronic structure calculations suggest that the PT Asp(15)-COOH + H(2)O + [3Fe-4S](0) → Asp(15)-COO(-) + H(2)O + [3Fe-4S](0) H(+) is concerted, and no stable intermediate hydronium ion (H(3)O(+)) is expected. The free energy difference of 11.7 kcal/mol for the forward reaction is in good agreement with the experimental value (13.3 kcal/mol). For the reverse reaction (Asp(15)-COO(-) + H(2)O + [3Fe-4S](0)H(+) → Asp(15)-COOH + H(2)O + [3Fe-4S](0)), a larger barrier than for the forward reaction is correctly predicted, but it is quantitatively overestimated (23.1 kcal/mol from simulations versus 14.1 from experiment). Possible reasons for this discrepancy are discussed. Compared with the water-assisted process (ΔE ≈ 10 kcal/mol), water-unassisted proton transfer yields a considerably higher barrier of ΔE ≈ 35 kcal/mol.  相似文献   

17.
Cluster–rod structure were designed, which are comprised of tetrahedral atoms with a typical torsion angle of ~38° at interatomic bonds. These structures correspond to a muscle tissue and clathrin lattice by their metrics and topology and can be formed by bound water in these systems. It is shown that the considered rod structures, which are fragments of bound water structures, can also be involved in nondissipative energy transmission as elastic energy storing structures. The estimated length of the bound water rod structure required to absorb the energy of decomposition of an ATP molecule into ADP and a phosphate group is comparable with myosin head sizes and its step along an actin filament. A mechanism of cooperative transition of the rod structure to a fragment of the ice Ih structure was demonstrated. This transition is accompanied by nondissipative release of stored energy.  相似文献   

18.
Diazomethyl ketones are one of the most effective irreversible inhibitors of cysteine proteinases and are therefore very important in drug design. In the present study a mechanism of inactivation is proposed based on the results of model MNDO calculations of the possible pathways. It was found that the mercaptide nucleophile, on approaching the carbonyl carbon as in the catalytic reaction path, binds to the inner diazo nitrogen. The intermediate thus formed can rearrange giving a stable product, -thioketone, and molecular nitrogen, with a considerable energy gain. The energy barrier to this process is equal to 36.9 kcal/mol, and corresponds to a pyramidal transition state with the vertex at the methylene carbon and the base formed by the carbonyl, thiol, and diazo groups. The energy barrier can be lowered on deprotonation of the intermediate. Based on the results obtained it was concluded that good irreversible inhibitors of cysteine proteases must fulfil two structural requirements: i) the dimensions and charge distribution must be similar to those of the peptide bond and ii) a second electrophilic center must be present in the neighbourhood of the carbonyl carbon. These are requirements which are satisfied by other strong cysteine proteinase inhibitors: -chloroketones and -ketooxiranes.  相似文献   

19.
The detailed reaction mechanism for the water-assisted hydrolysis of isocyanic acid, HNCO + (n + 1) H2O → CO2 + NH3 + nH2O (n = 0−6), taking place in the gas phase, has been investigated. All structures were optimized and characterized at the MP2/6-31 + G* level of theory, and then re-optimized at MP2/6-311++G**. The seven explicit water molecules participating in the hydrolysis can be divided into two groups, one directly involved in the proton relay, and the other located in the vicinity of the substrate playing the cooperative role by engaging in hydrogen-bonding to HN = C = O. Two possible reaction pathways, the addition of water molecule across the C = N bond or across the C = O bond, are discussed, and the former is proved to be more favorable energetically. Our calculations suggest that, in the most kinetically favorable pathway for the titled hydrolysis, three water molecules are directly participating in the hydrogen transfer via an eight-membered cyclic transition state, while the other four water molecules catalyze the hydrolysis of HN = C = O by forming three eight-membered cooperative loops near the substrate. This strain-free hydrogen-bond network leads to the best estimated rate-determining activation energy of 24.9 kJ mol−1 at 600 K, in excellent agreement with the gas-phase kinetic experimental result, 25.8 kJ mol−1.  相似文献   

20.
Modeling of the catalytic mechanism of penicillin acylase, a member of the N-terminal nucleophile hydrolase superfamily, is for the first time conducted at ab initio quantum chemistry level. The uniqueness of this family of enzymes is that their active site lacks His and Asp (Glu) residues, comprising together with a serine residue the classical catalytic triad. The current investigation confirms that the amino group of the N-terminal serine residue in N-terminal hydrolases is capable of activating its own hydroxyl group. Using the MP2/RHF method with the 6−31+G** basis set, stationary points on the potential energy surface of the considered molecular system were located, corresponding to local minima (complexes of reagents, products, intermediate) and to saddle points (transition states). It turned out that the stage of acyl-serine formation proceeds via two transition states; the first one, which separates reagents from the so-called tetrahedral intermediate, has the highest relative energy (30 kcal/mol). In contrast to recently proposed empiric suggestions, we have found that participation of a bridging water molecule in proton shuttling is not necessary for the catalysis. The quantum chemical calculations showed a crucial role of a specific solvation in decreasing the activation barrier of the reaction by approximately 10 kcal/mol. Published in Russion in Biokhimiya, 2007, Vol. 72, No. 5, pp. 615–621.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号