首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinase mediated cassette exchange (RMCE) is a process in which site-specific recombinases exchange one gene cassette flanked by a pair of incompatible target sites for another cassette flanked by an identical pair of sites. Typically one cassette is present in the host genome, whereas the other gene cassette is introduced into the host cell by chemical or biological means. We show here that the frequency of cassette exchange is dependent on the relative and absolute quantities of the transgene cassette and the recombinase. We were able to successfully modify genomic targets not only by electroporation or chemically mediated gene transfer but also by using an adenovirus vector carrying both the transgene cassette to be inserted and the recombinase coding region. RMCE proceeds efficiently in cells in which the adenovirus vector is able to replicate. In contrast, insufficient quantities of the transgene cassette are produced in cells in which the virus cannot replicate. Additional transfection of the transgene cassette significantly enhances the RMCE frequency. This demonstrates that an RMCE system in the context of a viral vector allows the site directed insertion of a transgene into a defined genomic site.  相似文献   

2.
Transfection of transgenes into Drosophila cultured cells is a standard approach for studying gene function. However, the number of transgenes present in the cell following transient transfection or stable random integration varies, and the resulting differences in expression level affect interpretation. Here we developed a system for Drosophila cell lines that allows selection of cells with a single-copy transgene inserted at a specific genomic site using recombination-mediated cassette exchange (RMCE). We used the φC31 integrase and its target sites attP and attB for RMCE. Cell lines with an attP-flanked genomic cassette were transfected with donor plasmids containing a transgene of interest (UAS-x), a dihydrofolate reductase (UAS-DHFR) gene flanked by attB sequences, and a thymidine kinase (UAS-TK) gene in the plasmid backbone outside the attB sequences. In cells undergoing RMCE, UAS-x and UAS-DHFR were exchanged for the attP-flanked genomic cassette, and UAS-TK was excluded. These cells were selected using methotrexate, which requires DHFR expression, and ganciclovir, which causes death in cells expressing TK. Pure populations of cells with one copy of a stably integrated transgene were efficiently selected by cloning or mass culture in ∼6 weeks. Our results show that RMCE avoids the problems associated with current methods, where transgene number is not controlled, and facilitates the rapid generation of Drosophila cell lines in which expression from a single transgene can be studied.  相似文献   

3.
《Fly》2013,7(4):274-277
The application of phiC31 phage integrase in Drosophila for unidirectional and site-specific DNA integration was pioneered by Groth et al. in 2004 1 and quickly triggered a wave of innovative tools taking advantage of these unique properties of phiC31. Three recent papers have further developed novel approaches that combine the phiC31-mediated DNA integration with the homologous recombination (HR)-based gene targeting 2 3 for the purpose of efficient and targeted modifications of Drosophila genomic loci. Despite significant differences, the general strategies are similar in principle in the SIRT (site-specific integrase mediated repeated targeting) approach by Gao et al. 4, the IMAGO (integrase-mediated approach for gene knock-out) approach by Choi et al. 5 and the genomic engineering approach developed by our group 6. All three use HR-based gene targeting to first implant a single or a pair of phiC31-attP recombination sites into the target locus. Flies carrying such targeted insertions of attP sites can then be used as "founder lines", in which modified DNA sequences ("knock-in DNA") can be repeatedly and efficiently inserted back into the target locus via phiC31-mediated integration. Thus, by carrying out the targeting experiments only once, one can then directedly and efficiently modify the target locus into virtually any desired knock-in allele. Here we give a brief overview of the SIRT, IMAGO, and genomic engineering approaches and propose a revised genomic engineering scheme in which a single ends-out targeting event will generate founder lines suitable for both recombinase-mediated cassette exchange (RMCE) and single-site based integration of knock-in DNA.  相似文献   

4.
We previously reported an accumulative site-specific gene integration system using Cre recombinase and mutated loxP sites, where a recombinase-mediated cassette exchange (RMCE) reaction is repeatable. This gene integration system was applied for antibody production using recombinant Chinese hamster ovary (CHO) cells. We introduced an exchange cassette flanked by wild-type and mutated loxP sites into the chromosome of CHO cells for the establishment of recipient founder cells. Then, the donor plasmids including an expression cassette for an antibody gene flanked by a compatible pair of loxP sites were prepared. The donor plasmid and a Cre expression vector were co-transfected into the founder CHO cells to give rise to RMCE in the CHO genome, resulting in site-specific integration of the antibody gene. The RMCE procedure was repeated to increase the copy numbers of the integrated gene. Southern blot and genomic PCR analyses for the established cells revealed that the transgenes were integrated into the target site. Antibody production determined by ELISA and western blotting was increased corresponding to the number of transgenes. These results indicate that the accumulative site-specific gene integration system could provide a useful tool for increasing the productivity of recombinant proteins.  相似文献   

5.
We demonstrate the versatility of a collection of insertions of the transposon Minos-mediated integration cassette (MiMIC), in Drosophila melanogaster. MiMIC contains a gene-trap cassette and the yellow+ marker flanked by two inverted bacteriophage ΦC31 integrase attP sites. MiMIC integrates almost at random in the genome to create sites for DNAmanipulation. The attP sites allow the replacement of the intervening sequence of the transposon with any other sequence through recombinase-mediated cassette exchange (RMCE). We can revert insertions that function as gene traps and cause mutant phenotypes to revert to wild type by RMCE and modify insertions to control GAL4 or QF overexpression systems or perform lineage analysis using the Flp recombinase system. Insertions in coding introns can be exchanged with protein-tag cassettes to create fusion proteins to follow protein expression and perform biochemical experiments. The applications of MiMIC vastly extend the D. melanogaster toolkit.  相似文献   

6.
We describe the site-directed integration (SDI) system for Agrobacterium-mediated transformation to precisely integrate a single copy of a desired gene into a predefined target locus by recombinase-mediated cassette exchange (RMCE). The system requires the selection of a transformed line with an integrated copy of a target cassette, and subsequent introduction of an exchange vector. The target cassette contains the npt and cod genes between oppositely orientated recognition sites (RS). The exchange vector T-DNA possesses an exchange cassette containing the gene of interest and a selectable marker gene, such as hpt, between oppositely orientated (inner) RS. Adjacent to the exchange cassette are ipt and recombinase (R) genes and an additional (outer) RS. The recombinase catalyses double-crossover between target RS and exchange inner RS to replace the integrated target cassette with the introduced exchange cassette. Transgenic plants that contain randomly integrated copies of the exchange vector T-DNA show an abnormal phenotype as a result of the overproduction of cytokinin from ipt gene expression. The recombinase can also act on the directly orientated outer RS to remove such randomly integrated copies. The system resulted in single-copy exchange into the target site only in regenerated tobacco at a frequency of 1%-3% per treated explant, or 4%-9% per regenerated line of normal phenotype. Thus, transgenic plants with only an exchanged copy can be efficiently accumulated and selected. Here, we show that the SDI system can efficiently replace the target cassettes with the exchange cassettes in a heterozygous or homozygous condition. The SDI system may be useful for precise comparisons of different gene constructs, the characterization of different chromosomal regions and the cost-effective screening of reliable transgenic plants.  相似文献   

7.
The availability of site-specific recombinases has revolutionized the rational construction of cell lines with predictable properties. Early efforts were directed to providing pre-characterized genomic loci with a single recombinase target site that served as an address for the integration of vectors carrying a compatible tag. Efficient procedures of this type had to await recombinases like ΦC31, which recombine attP and attB target sites in a one-way reaction – at least in the cellular environment of the higher eukaryotic cell. Still these procedures lead to the co-introduction of prokaryotic vector sequences that are known to cause epigenetic silencing. This review illuminates the actual status of the more advanced recombinase-mediated cassette exchange (RMCE) techniques that have been developed for the major members of site-specific recombinases (SR), Flp, Cre and ΦC31. In RMCE the genomic address consists of a set of heterospecific recombinase target (RT-) sites permitting the exchange of the intervening sequence for the gene of interest (GOI), as part of a similar cassette. This process locks the GOI in place and it is ‘clean’ in the sense that it does not co-introduce prokaryotic vector parts nor does it leave behind a selection marker.  相似文献   

8.
Comparative analysis of mutants using transfection is complicated by clones exhibiting variable levels of gene expression due to copy number differences and genomic position effects. Recombinase-mediated cassette exchange (RMCE) can overcome these problems by introducing the target gene into pre-determined chromosomal loci, but recombination between the available recombinase targeting sites can reduce the efficiency of targeted integration. We developed a new LoxP site (designated L3), which when used with the original LoxP site (designated L2), allows highly efficient and directional replacement of chromosomal DNA with incoming DNA. A total of six independent LoxP integration sites introduced either by homologous recombination or retroviral delivery were analyzed; 70–80% of the clones analyzed in hamster and human cells were correct recombinants. We combined the RMCE strategy with a new, tightly regulated tetracycline induction system to produce a robust, highly reliable system for inducible transgene expression. We observed stable inducible expression for over 1 month, with uniform expression in the cell population and between clones derived from the same integration site. This system described should find significant applications for studies requiring high level and regulated transgene expression and for determining the effects of various stresses or oncogenic conditions in vivo and in vitro.  相似文献   

9.
Sathiya N. Manivannan 《Fly》2016,10(3):134-141
A long-standing problem with analyzing transgene expression in tissue-culture cells is the variation caused by random integration of different copy numbers of transfected transgenes. In mammalian cells, single transgenes can be inserted by homologous recombination but this process is inefficient in Drosophila cells. To tackle this problem, our group, and the Cherbas group, used recombination-mediated cassette exchange (RMCE) to introduce single-copy transgenes into specific locations in the Drosophila genome. In both cases, ?C31 was used to catalyze recombination between its target sequences attP in the genome, and attB flanking the donor sequence. We generated cell lines de novo with a single attP-flanked cassette for recombination, whereas, Cherbas et al. introduced a single attP-flanked cassette into existing cell lines. In both approaches, a 2-drug selection scheme was used to select for cells with a single copy of the donor sequence inserted by RMCE and against cells with random integration of multiple copies. Here we describe the general advantages of using RMCE to introduce genes into fly cells, the different attributes of the 2 methods, and how future work could make use of other recombinases and CRISPR/Cas9 genome editing to further enable genetic manipulation of Drosophila cells in vitro.  相似文献   

10.
Traditional DNA transduction routes used for the modification of cellular genomes are subject to unpredictable alterations, as the cell-intrinsic repair machinery may affect both the integrity of the transgene and the recipient locus. These problems are overcome by recombinase-mediated cassette exchange (RMCE) approaches enabling predictable expression patterns by the nondisruptive insertion of a gene cassette at a pre-characterized genomic locus. The destination is marked by a “tag” consisting of two heterospecific recombination target sites (RTs) at the flanks of a selection marker. Provided on a circular donor vector, an analogous cassette encoding the gene of interest can cleanly replace the resident cassette under the influence of a site-specific recombinase. RMCE was first based on the yeast integrase Flp but had to give way to the originally more active phage-derived Cre enzyme. To be effective, both Tyr-recombinases have to be applied at a considerable concentration, which, in the case of Cre, triggers endonucleolytic activities and therefore cellular toxicity. This review addresses the particularities of both recombination routes depending on the structure of the synaptic complex and on improved integrase and RT variants. While the performance of Flp-RMCE can now firmly rely on optimized Flp variants and multiple sets of functional target sites (FRTs), the Cre system suffers from the promiscuity of its RT mutants, which is explained in molecular terms. At present, RMCE enters applications in the stem cell field. Remarkable efforts are noted in the framework of various mouse mutagenesis programs, which, in their first phase, have targeted virtually all genes and now start to shift their emphasis from gene trapping to gene modification.  相似文献   

11.
12.
13.
We developed a site-directed integration (SDI) system for Agrobacterium-mediated transformation to precisely integrate a single copy of a desired gene into a predefined target locus by recombinase-mediated cassette exchange (RMCE). We produced site-specific transgenic tobacco plants from four target lines and examined expression of the transgene in T1 site-specific transgenic tobacco plants, which were obtained by backcrossing. We found that site-specific transgenic plants from the same target lines showed approximately the same level of expression of the transgene. Moreover, we demonstrated that site-specific transgenic plants showed much less variability of transgene expression than random-integration transgenic plants. Interestingly, transgenes in the same direction at the same target locus showed the same level of activity, but transgenes in different directions showed different levels of activity. The expression levels of transgene did not correlate with those of the target gene. Our results showed that the SDI system could benefit the precise comparisons between different gene constructs, the characterization of different chromosomal regions and the cost-effective screening of reliable transgenic plants.  相似文献   

14.
Site-specific integration is an attractive method for the improvement of current transformation technologies aimed at the production of stable transgenic plants. Here, we present a Cre-based targeting strategy in Arabidopsis (Arabidopsis thaliana) using recombinase-mediated cassette exchange (RMCE) of transferred DNA (T-DNA) delivered by Agrobacterium tumefaciens. The rationale for effective RMCE is the precise exchange of a genomic and a replacement cassette both flanked by two heterospecific lox sites that are incompatible with each other to prevent unwanted cassette deletion. We designed a strategy in which the coding region of a loxP/lox5171-flanked bialaphos resistance (bar) gene is exchanged for a loxP/lox5171-flanked T-DNA replacement cassette containing the neomycin phosphotransferase (nptII) coding region via loxP/loxP and lox5171/lox5171 directed recombination. The bar gene is driven by the strong 35S promoter, which is located outside the target cassette. This placement ensures preferential selection of RMCE events and not random integration events by expression of nptII from this same promoter. Using root transformation, during which Cre was provided on a cotransformed T-DNA, 50 kanamycin-resistant calli were selected. Forty-four percent contained a correctly exchanged cassette based on PCR analysis, indicating the stringency of the selection system. This was confirmed for the offspring of five analyzed events by Southern-blot analysis. In four of the five analyzed RMCE events, there were no additional T-DNA insertions or they easily segregated, resulting in high-efficiency single-copy RMCE events. Our approach enables simple and efficient selection of targeting events using the advantages of Agrobacterium-mediated transformation.  相似文献   

15.
16.
Current techniques for genetic engineering of the silkworm Bombyx mori genome utilize transposable elements, which result in positional effects and insertional mutagenesis through random insertion of exogenous DNA. New methods for introducing transgenes at specific positions are therefore needed to overcome the limitations of transposon-based strategies. Although site-specific recombination systems have proven powerful tools for genome manipulation in many organisms, their use has not yet been well established for the integration of transgenes in the silkworm. We describe a method for integrating target genes at pre-defined chromosomal sites in the silkworm via phiC31/att site-specific recombination system-mediated cassette exchange. Successful recombinase-mediated cassette exchange (RMCE) was observed in the two transgenic target strains with an estimated transformation efficiency of 3.84–7.01%. Our results suggest that RMCE events between chromosomal attP/attP target sites and incoming attB/attB sites were more frequent than those in the reciprocal direction. This is the first report of in vivo RMCE via phiC31 integrase in the silkworm, and thus represents a key step toward establishing genome manipulation technologies in silkworms and other lepidopteran species.  相似文献   

17.
Starting in 1991, the advance of Tyr-recombinases Flp and Cre enabled superior strategies for the predictable insertion of transgenes into compatible target sites of mammalian cells. Early approaches suffered from the reversibility of integration routes and the fact that co-introduction of prokaryotic vector parts triggered uncontrolled heterochromatization. Shortcomings of this kind were overcome when Flp-Recombinase Mediated Cassette Exchange entered the field in 1994. RMCE enables enhanced tag-and-exchange strategies by precisely replacing a genomic target cassette by a compatible donor construct. After “gene swapping” the donor cassette is safely locked in, but can nevertheless be re-mobilized in case other compatible donor cassettes are provided (“serial RMCE”). These features considerably expand the options for systematic, stepwise genome modifications. The first decade was dominated by the systematic generation of cell lines for biotechnological purposes. Based on the reproducible expression capacity of the resulting strains, a comprehensive toolbox emerged to serve a multitude of purposes, which constitute the first part of this review. The concept per se did not, however, provide access to high-producer strains able to outcompete industrial multiple-copy cell lines. This fact gave rise to systematic improvements, among these certain accumulative site-specific integration pathways. The exceptional value of RMCE emerged after its entry into the stem cell field, where it started to contribute to the generation of induced pluripotent stem (iPS-) cells and their subsequent differentiation yielding a variety of cell types for diagnostic and therapeutic purposes. This topic firmly relies on the strategies developed in the first decade and can be seen as the major ambition of the present article. In this context an unanticipated, potent property of serial Flp-RMCE setups concerns the potential to re-open loci that have served to establish the iPS status before the site underwent the obligatory silencing process. Other relevant options relate to the introduction of composite Flp-recognition target sites (“heterospecific FRT-doublets”), into the LTRs of lentiviral vectors. These “twin sites” enhance the safety of iPS re-programming and -differentiation as they enable the subsequent quantitative excision of a transgene, leaving behind a single “FRT-twin”. Such a strategy combines the established expression potential of the common retro- and lentiviral systems with options to terminate the process at will. The remaining genomic tag serves to identify and characterize the insertion site with the goal to identify genomic “safe harbors” (GOIs) for re-use. This is enabled by the capacity of “FRT-twins” to accommodate any incoming RMCE-donor cassette with a compatible design.  相似文献   

18.
A targeting method to insert genes at a previously characterized genetic locus to make plant transformation and transgene expression predictable is highly desirable for plant biotechnology. We report the successful targeting of transgenes to predefined soybean (Glycine max) genome sites using the yeast FLP-FRT recombination system. First, a target DNA containing a pair of incompatible FRT sites flanking a selection gene was introduced in soybean by standard biolistic transformation. Transgenic events containing a single copy of the target were retransformed with a donor DNA, which contained the same pair of FRT sites flanking a different selection gene, and a FLP expression DNA. Precise DNA cassette exchange was achieved between the target and donor DNA via recombinase-mediated cassette exchange, so that the donor DNA was introduced at the locus previously occupied by the target DNA. The introduced donor genes expressed normally and segregated according to Mendelian laws.Plant transformation has challenges such as random integration, multiple transgene copies, and unpredictable expression. Homologous recombination (Iida and Terada, 2005; Wright et al., 2005) and DNA recombinase-mediated site-specific integration (SSI) are promising technologies to address the challenges for placing a single copy of transgenes into a precharacterized site in a plant genome.Several site-specific DNA recombination systems, such as the bacteriophage Cre-lox and the yeast FLP-FRT and R-RS, have been used in SSI studies (Ow, 2002; Groth and Calos, 2003). A common feature of these systems is that each system consists of a recombinase Cre, FLP, or R and two identical or similar palindromic recognition sites, lox, FRT, or RS. Each recognition site contains a short asymmetric spacer sequence where DNA strand exchange takes place, flanked by inverted repeat sequences where the corresponding recombinase specifically binds. If two recognition sites are located in cis on a DNA molecule, the DNA segment can be excised if flanked by two directionally oriented sites or inverted if flanked by two oppositely oriented sites. If two recognition sites are located in trans on two different DNA molecules, a reciprocal translocation can happen between the two DNA molecules or the two molecules can integrate if at least one of them is a circular DNA (Ow, 2002; Groth and Calos, 2003).Single-site SSI can integrate a circular donor DNA containing one recognition site into a similar site previously placed in a plant genome. The integrated transgene now flanked by two recognition sites is vulnerable to excision. Transient Cre expression and the use of mutant lox sites to create two less compatible sites after integration helped reduce the subsequent excision in tobacco (Nicotiana tabacum; Albert et al., 1995; Day et al., 2000). A similar approach was used to produce SSI events in rice (Oryza sativa), and the transgene was proven stably expressed over generations (Srivastava and Ow, 2001; Srivastava et al., 2004; Chawla et al., 2006). Using a promoter trap to displace a cre gene in the genome with a selection gene from the donor, approximately 2% SSI was achieved in Arabidopsis (Arabidopsis thaliana; Vergunst et al., 1998).When two recognition sites located on a linear DNA molecule are similar enough to be recognized by the same recombinase but different enough to reduce or prevent DNA recombination from happening between them, the DNA segment between the two sites may not be easily excised or inverted. When a circular DNA molecule carrying the same two incompatible sites is introduced, the circular DNA can integrate by the corresponding recombinase at either site on the linear DNA to create a collinear DNA with four recognition sites, two from the original linear DNA and two from the circular DNA. DNA excision can subsequently occur between any pair of compatible sites to restore the two original DNA molecules or to exchange the intervening DNA segments between the two DNA molecules. This process, termed recombinase-mediated cassette exchange (RMCE), can be employed to integrate transgenes directionally into predefined genome sites (Trinh and Morrison, 2000; Baer and Bode, 2001).RMCE using two oppositely oriented identical RS sites, a donor containing the R recombinase gene and a third RS site to limit random integration, resulted in cassette exchange between the donor and a previously placed target in tobacco (Nanto et al., 2005). RMCE using both the Cre-lox and FLP-FRT systems improved RMCE frequency in animal cell cultures (Lauth et al., 2002). RMCE using two directly oriented incompatible FRT sites and transiently expressed FLP recombinase achieved cassette exchange between a target previously placed in the Drosophila genome and a donor introduced as a circular DNA (Horn and Handler, 2005). A gene conversion approach involving Cre-lox- and FLP-FRT-mediated SSI, RMCE, and homologous recombination was explored in maize (Zea mays; Djukanovic et al., 2006). RMCE using two oppositely oriented incompatible lox sites and transiently expressed Cre recombinase produced single-copy RMCE plants in Arabidopsis (Louwerse et al., 2007).To develop FLP-FRT-mediated RMCE in soybean (Glycine max), we created transgenic target lines containing a hygromycin resistance gene flanked by two directly oriented incompatible FRT sites via biolistic transformation. Single-copy target lines were selected and retransformed with a donor DNA containing a chlorsulfuron resistance gene flanked by the same pair of FRT sites. An FLP expression DNA was cobombarded to transiently provide FLP recombinase. RMCE events were obtained from multiple target lines and confirmed by extensive molecular characterization.  相似文献   

19.
Transgenic mice are an effective model to study gene function in vivo; however, position effects can complicate tissue-specific transgene analysis. To facilitate precise targeting of a transgenic construct into the mouse genome, we combined the Cre/lox and Flp/FRT recombination systems to allow for rapid transgene replacement and conditional transgene expression from the endogenous beta-actin locus. Flp/FRT recombination was used to rapidly exchange FRT-flanked transgene cassettes by recombinase-mediated cassette exchange in embryonic stem cells, while transgene expression can be activated in mice after Cre-mediated excision of a floxed STOP cassette. To validate our system, we analyzed the expression profile of an EGFP reporter gene after integration into the beta-actin locus and Cre-mediated excision of the floxed STOP cassette. Breeding of EGFP reporter mice with various Cre mouse lines resulted in the expected expression profiles, demonstrating the feasibility of the model to facilitate predictable and strong transgene expression in a spatially and temporally controlled manner.  相似文献   

20.
Turan S  Bode J 《FASEB journal》2011,25(12):4088-4107
Site-specific recombinases (SSRs) enable novel tag-and-target as well as tag-and-exchange strategies for tailoring mammalian genomes. If used in combination with homologous recombination, which per se is inefficient but can serve to introduce SSR sites, the tagged locus lends itself to repeated modification at largely increased efficiency and specificity. The more conventional SSR-based genetic modifications enable straightforward integration of a transgene with efficiencies depending on both the target locus and the vector composition. Only the more recent tag-and-exchange strategies in conjunction with advanced selection principles enable the clean replacement of a genomically anchored cassette by a donor cassette with the related architecture. Meanwhile this recombinase-mediated cassette exchange (RMCE) concept could be verified for two classes of SSRs, belonging to either the Tyr or the Ser family. Certain members of these open different fields of application that will be discussed with reference to the molecular properties of the respective enzymes. A major aim of our review is to characterize the RMCE-relevant components and describe their optimal utilization in the fields of gene therapy and molecular genomics. Early contributions to the field of experimental animal models will be mentioned considering in vivo modifications enabled by microinjection into oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号