首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

A mathematical model which describes the kinetic behaviour of enzyme-loaded liposomes containing a substrate transporter in the lipid bilayer is presented. The model accounts for the facilitated diffusion across the membrane and the chemical reaction in the aqueous core. Both steady-state and transient kinetics are analysed. The model allows to quantify the influence of transport phenomena on the catalytic properties of the microencapsulated enzyme and provides some directions for the design of an artificial vesicle in which a selective substrate carrier has been included.  相似文献   

2.
Carrier-Mediated Transport of Folate in a Mutant of Pediococcus cerevisiae   总被引:2,自引:0,他引:2  
A mutant strain of Pediococcus cerevisiae (P. cerevisiae/PteGlu) was isolated which grows on low-folate (PteGlu) concentrations (200 pg/ml). The growth response of the parent and mutant strains to folinate (5-CHO-H(4)PteGlu) was the same. The transport of (14)C-PteGlu by P. cerevisiae/PteGlu was temperature-dependent (Q(10) between 27 C and 37 C was about 2), energy-dependent, and pH-dependent and was inhibited by iodoacetate, 2,4-dinitrophenol, potassium fluoride, and sodium azide. The uptake obeyed saturation kinetics with an apparent K(m) of 6.6 x 10(-6) M and V(max) of 4.0 x 10(-10) mol per min per mg (dry weight). At the steady state the intracellular concentration of PteGlu was 120-fold higher from that of the medium. Reduced folates like 5-CHO-H(4)PteGlu and methyl-tetrahydrofolate (5-CH(3)-H(4)PteGlu) as well as 2,4-diaminoanalogues (amethopterin and aminopterin) were shown to compete for the PteGlue-carrier.  相似文献   

3.
Neural cell membranes naturally contain a large amount of polyunsaturated fatty acid, but the functional significance of this is unknown. An increase in membrane polyunsaturation has been shown previously to affect the high-affinity transport systems for choline and glycine in cultured human Y79 retinoblastoma cells. To test the generality of membrane polyunsaturation effects on transport, we investigated the uptake of other putative neurotransmitters and amino acids by these cells. Taurine, glutamate, and leucine were taken up by both high- and low-affinity transport systems, whereas serine, gamma-aminobutyrate, and alpha-aminoisobutyrate were taken up only by low-affinity systems. The high-affinity taurine and glutamate and low-affinity serine uptake systems were Na+ dependent. Arachidonic acid (20:4) supplementation of Y79 cells produced enrichment of all the major microsomal phosphoglycerides with 20:4, while docosahexaenoic acid (22:6) supplementation produced large increases in the 22:6 content of all fractions except the inositol phosphoglycerides. Enrichment with these polyunsaturated fatty acids facilitated taurine uptake by lowering the K'm of its high-affinity transport system. By contrast, enrichment with oleic acid did not affect taurine uptake. Glutamate, leucine, serine, gamma-aminobutyrate, and alpha-aminoisobutyrate uptake were not affected when the cells were enriched with any of these fatty acids. These findings demonstrate that only certain transport systems are sensitive to the polyunsaturated fatty acid content of the retinoblastoma cell membrane. The various transport systems either respond differently to changes in membrane lipid unsaturation, or they are located in lipid domains that are modified to different extents by changes in unsaturation.  相似文献   

4.
Carrier-Mediated Transport of Chloride Across the Blood-Brain Barrier   总被引:2,自引:2,他引:0  
36Cl concentrations in each of eight brain regions and in cisternal cerebrospinal fluid (CSF) were determined 30 min after the intravenous injection of 36Cl in dialyzed-nephrectomized rats with plasma Cl concentrations between 14 and 120 mumol X ml-1. CSF 36Cl exceeded 36Cl concentrations in brain extracellular fluid. The calculated blood-to-brain transfer constants for Cl, kCl, ranged from 1.8 X 10(-5) S-1 at the parietal cortex to 3.8 X 10(-5) S-1 at the thalamus-hypothalamus. kCl fell by 42-62% when mean plasma [Cl] was elevated from 16 to 114 mumol X ml-1. Brain uptake of [14C]mannitol or of 22Na was independent of plasma [Cl], but 22Na influx into CSF fell when plasma [Cl] was reduced. Cl flux into brain and CSF could be represented by Michaelis-Menten saturation kinetics, where, for the parietal cortex, Km = 43 mumol X ml-1 and Vmax = 2.5 X 10(-3) mumol X S-1 X g-1, and for CSF Km = 68 mumol X ml-1. At least 80% of 36Cl influx into the parietal cortex was calculated to occur at the cerebrovascular endothelium, whereas the remainder was derived from tracer that first entered CSF. The CSF contribution was greater at brain regions adjacent to cerebral ventricles. The results show that Cl transport at the cerebrovascular endothelium as well as at the choroid plexus epithelium is a saturable concentration-dependent process, and that the CSF is a significant intermediate pathway for Cl passage from blood to brain.  相似文献   

5.
The impact of bacterial chemotaxis on in situ ground-water bioremediation remains an unanswered question. Although bacteria respond to chemical gradients in aqueous environments and under no-flow conditions, it is unclear whether they can also respond in porous media with advective flow to improve overall contaminant degradation. The effect of chemotaxis is most profound in regions with sharp chemical gradients, most notably around residual nonaqueous phase liquid (NAPL) ganglia and surrounding clay lenses or aquitards with trapped contamination. The purpose of this study is to simulate bacterial transport through a two-dimensional subsurface environment, containing one region of low permeability with trapped contaminant surrounded above and below by two regions of higher permeability. Using mathematical predictions of the effect of pore size on measured bacterial transport parameters, the authors observe a 50% decrease in both motility and chemotaxis in the finer-grained, low-permeability porous medium. The authors simulate how chemotaxis affects bacterial migration to the contaminated region under various flow and initial conditions. Results indicate that bacteria traveling through a high-permeability region with advective flow can successfully migrate toward and accumulate around a contaminant diffusing from a lower permeability region.  相似文献   

6.
The impact of bacterial chemotaxis on in situ ground-water bioremediation remains an unanswered question. Although bacteria respond to chemical gradients in aqueous environments and under no-flow conditions, it is unclear whether they can also respond in porous media with advective flow to improve overall contaminant degradation. The effect of chemotaxis is most profound in regions with sharp chemical gradients, most notably around residual nonaqueous phase liquid (NAPL) ganglia and surrounding clay lenses or aquitards with trapped contamination. The purpose of this study is to simulate bacterial transport through a two-dimensional subsurface environment, containing one region of low permeability with trapped contaminant surrounded above and below by two regions of higher permeability. Using mathematical predictions of the effect of pore size on measured bacterial transport parameters, the authors observe a 50% decrease in both motility and chemotaxis in the finer-grained, low-permeability porous medium. The authors simulate how chemotaxis affects bacterial migration to the contaminated region under various flow and initial conditions. Results indicate that bacteria traveling through a high-permeability region with advective flow can successfully migrate toward and accumulate around a contaminant diffusing from a lower permeability region.  相似文献   

7.
K-Ras functions as a critical node in the mitogen-activated protein kinase (MAPK) pathway that regulates key cellular functions including proliferation, differentiation, and apoptosis. Following growth factor receptor activation K-Ras.GTP forms nanoclusters on the plasma membrane through interaction with the scaffold protein galectin-3. The generation of nanoclusters is essential for high fidelity signal transduction via the MAPK pathway. To explore the mechanisms underlying K-Ras.GTP nanocluster formation, we developed a mathematical model of K-Ras-galectin-3 interactions. We designed a computational method to calculate protein collision rates based on experimentally determined protein diffusion rates and diffusion mechanisms and used a genetic algorithm to search the values of key model parameters. The optimal estimated model parameters were validated using experimental data. The resulting model accurately replicates critical features of K-Ras nanoclustering, including a fixed ratio of clustered K-Ras.GTP to monomeric K-Ras.GTP that is independent of the concentration of K-Ras.GTP. The model reproduces experimental results showing that the cytosolic level of galectin-3 determines the magnitude of the K-Ras.GTP clustered fraction and illustrates that nanoclustering is regulated by key nonequilibrium processes. Our kinetic model identifies a potential biophysical mechanism for K-Ras nanoclustering and suggests general principles that may be relevant for other plasma-membrane-localized proteins.  相似文献   

8.
The transport of neutral amino acids through the brain capillary endothelial wall, which makes up the blood-brain barrier (BBB) in vivo, is an important control point for the overall regulation of cerebral metabolism, including protein synthesis and neurotransmitter production. The Michaelis-Menten kinetics of BBB amino acid transport have been investigated in vivo with the brain uptake index (BUI) technique, and in vitro with the isolated human brain capillary preparation. The only amino acid that is albumin-bound is tryptophan, and the majority of albumin-bound tryptophan in the plasma is available for transport through the BBB via an enhanced dissociation mechanism that operates at the surface of the brain capillary endothelium. The availability in brain of amino acids is predicted from the BBB Km values to be sharply influenced by supra-physiological concentrations of phenyalanine in the 200–500 M range. Moreover, the measurement of cerebral protein synthesis with an internal carotid artery perfusion technique and HPLC-based measurements of aminoacyl-transfer RNA specific activities shows an inverse relationship between cerebral protein synthesis and plasma phenyalanine concentrations in the 200–500 M range. These findings indicate the neurotoxicity of hyperphenylalninemia is not restricted to the phenylketonuria range of approximately 2000 M, but is exerted in the supra-physiological range of 200–500 M.  相似文献   

9.
A model analysis of the process of carrier mediated membrane transport is presented, wherein the carrier is present in two forms of differing affinity for substrate. The two forms of carrier undergo interconversion by asymmetric metabolic reactions on each side of the membrane. From this model system expressions are derived for the steady-state distribution ratio for substrate, for the unidirectional fluxes of substrate and hence for the initial velocity of uptake of substrate, and for the effect of preloading cells upon the initial velocity of uptake of labeled substrate. These expressions are applied to published data for glycine transport in Ehrlich ascites tumor cells to obtain numerical values for the parameters of a concentrative membrane carrier system. Concentrative uptake is shown to be consequent to the differing affinities of the two forms of carrier. When the affinities of the two forms are equal, equilibrative uptake occurs. The model analysis is applied to the phenomena of metabolic and competitive inhibition.  相似文献   

10.
用Aliquat336-Span80-甲苯制成液体表面活性剂的膜体系,对氨基酸的迁移行为进行了研究,确定了苯丙氨酸完全及快速迁移的制乳和适宜条件,2min的迁移率可达90%以上。在苯丙氨酸的最佳迁移条件下,其它氨基酸如天冬氨酸、精氨酸、甘氨酸等都能有较高的迁移率。此法适用于微量氨基酸的提取和分离。  相似文献   

11.
12.
The uptake of 3,3',5-[3'-125I]triiodo-L-thyronine ([125I]L-T3) and of L-[3',5'-125I]thyroxine ([125I]L-T4) by cultured rat glial cells was studied under initial velocity (Vi) conditions. Uptake of both hormones was carrier mediated and obeyed simple Michaelis-Menten kinetics. The following respective values of Km (microM) and Vmax (fmol/min/microgram of DNA) were obtained at 25 degrees C: 0.52 +/- 0.09 and 727 +/- 55 for L-T3 and 1.02 +/- 0.21 and 690 +/- 85 for L-T4. Ki values (microM) for the inhibition of [125I]L-T3 uptake by unlabeled analogues were as follows: L-T4, 0.88; 3,3',5'-triiodo-L-thyronine, 1.4; 3,3'-diiodo-L-thyronine, 2.9; 3,3',5-triiodo-D-thyronine, 4.8; and triiodothyroacetic acid, 5.3. These values indicate that the uptake system is stereospecific. Unlabeled L-T3 was a better competitor than unlabeled L-T4 for the uptake of [125I]L-T4, an observation suggesting that both hormones were taken up by a common carrier system. L-T3, and L-T4 uptake was pH dependent, a finding suggesting that the phenolic unionized form of the hormones was preferentially taken up. L-T3 uptake was studied in the presence of various inhibitors; the results suggest that uptake was independent of the transmembrane Na+ gradient and of the cellular energy. Compounds that inhibited cellular uptake but were without effect on L-T3 binding to isolated nuclei also inhibited L-T3 nuclear binding in intact cells, an observation suggesting that uptake could be rate limiting for the access of L-T3 to nuclear receptors when transport is severely inhibited.  相似文献   

13.
Evidence for carrier-mediated transport of monosaccharides in the Ehrlich ascites tumor cells was provided through kinetic analysis of data obtained by: (a) studying sugar uptake by dilute cell suspensions with an optical densimetric apparatus, (b) studying sugar uptake by thicker cell suspensions by means of direct chemical analytical methods using packed cell plugs, (c) observing the effects of a competitive inhibitor upon sugar uptake with the chemical analytical method, and (d) measurement of tracer uptake of a high affinity sugar in thick cell suspensions in the absence of net movement. Quantitative application of the data obtained with the above experimental procedures to theoretical model systems derived for both carrier-mediated transport and simple passive diffusion indicated that the results were consonant with predictions for the carrier-mediated transport model, but could not be explained on the basis of uncomplicated diffusion.  相似文献   

14.
Li ZC  Bush DR 《Plant physiology》1990,94(1):268-277
Amino acid transport into plasma membrane vesicles isolated from mature sugar beet (Beta vulgaris L. cv Great Western) leaves was investigated. The transport of alanine, leucine, glutamine, glutamate, isoleucine, and arginine was driven by a trans-membrane proton concentration difference. ΔpH-Dependent alanine, leucine, glutamine, and glutamate transport exhibited simple Michaelis-Menten kinetics, and double-reciprocal plots of the data were linear with apparent Km values of 272, 346, 258, and 1981 micromolar, respectively. These results are consistent with carrier mediated transport. ΔpH-Dependent isoleucine and arginine transport exhibited biphasic kinetics, suggesting these amino acids may be transported by at least two transport systems. Symport mediated alanine transport was electrogenic as demonstrated by the effect of membrane potential (ΔΨ) on ΔpH-dependent flux. In the absence of significant charge compensation, a low rate of alanine transport was observed. When ΔΨ was held at 0 millivolt with symmetric potassium concentrations and valinomycin, the rate of flux was stimulated fourfold. In the presence of a negative ΔΨ, alanine transport increased sixfold. These results are consistent with an electrogenic transport process which results in a net flux of positive charge into the vesicles. The effect of changing ΔΨ on the kinetics of alanine transport altered Vmax with no apparent change in Km. Amino acid transport was inhibited by the protein modifier diethyl pyrocarbonate, but was insensitive to N-ethylmaleimide, 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid, p-chloromercuribenzenesulfonic acid, phenylglyoxal, and N,N′-dicyclohexylcarbodiimide. Four amino acid symport systems, two neutral, one acidic, and one basic, were resolved based on inter-amino acid competition experiments. One neutral system appears to be active for all neutral amino acids while the second exhibited a low affinity for isoleucine, threonine, valine, and proline. Although each symport was relatively specific for a given group of amino acids, each system exhibited some crossover specificity for amino acids in other groups.  相似文献   

15.
Transport Parameters in a Porous Cellulose Acetate Membrane   总被引:1,自引:1,他引:0  
The transport parameters of a cellulose acetate membrane prepared from a mixture of cellulose acetate, formamide, and acetone, 25:25:50 by weight, were studied. The membrane consists of a thin, porous layer, the skin, in series with a thick, highly porous layer, the coarse support. In the skin the diffusional permeability coefficient, ω, of a number of small amides and alcohols depends critically upon the partition coefficient, Ks, the size of the molecule, and the apparent hydrogen-bonding ability, Ns, of the solute. These observations are in general agreement with our earlier conclusions on the properties of nonporous membranes. On the other hand, the corrected reflection coefficient, σ', is not a very sensitive function of either Ns or Ks taken separately. The correlation between σ' and molecular diameter is reasonably good; however, it is much improved when both Ns and Ks are taken into consideration. Isotope interaction was also studied in the present preparation and was found to provide only a small (5–8%) contribution to the diffusional permeability coefficient of ethylene glycol. The contribution of solute-water friction was found to be less than 24% of the total solute friction.  相似文献   

16.
To test the hypothesis that the carrier-mediated component of the indoleacetic acid (IAA) influx involves an electrogenic proton/IAA anion symport, the effects on the IAA influx of salts expected to depolarize the membrane potential were examined in suspension-cultured soybean (Glycine max [L.] Merr.) root cells. Although KCl does inhibit carrier-mediated uptake, the effect is specific to the anion at low concentrations and not due to more general processes such as changes in ionic or osmotic strength. Other anions such as bromide, iodide, and fluoride inhibit the carrier more strongly. Because potassium iminodiacetate, which is also expected to depolarize the membrane potential, has no inhibitory effect on the IAA influx, there is no evidence for the involvement of the membrane potential in carrier-mediated uptake. It is therefore most likely that in soybean cells, if carrier-mediated uptake occurs via a proton symport, the H+:IAA— stoichiometry is 1:1. At concentrations greater than 70 millimolar, sorbitol, a nonionic osmoticum, inhibits carrier-mediated IAA uptake. The effects of specific anions and osmotic potential on the uptake carrier necessitates the reevaluation of other auxin transport studies in which KCl was routinely used as an agent with which to depolarize the membrane potential.  相似文献   

17.
Although model protocellular membranes consisting of monoacyl lipids are similar to membranes composed of contemporary diacyl lipids, they differ in at least one important aspect. Model protocellular membranes allow for the passage of polar solutes and thus can potentially support cell-to functions without the aid of transport machinery. The ability to transport polar molecules likely stems from increased lipid dynamics. Selectively permeable vesicle membranes composed of monoacyl lipids allow for many lifelike processes to emerge from a remarkably small set of molecules.Lipid bilayer membranes are an integral component of living cells, providing a permeability barrier that is essential for nutrient transport and energy production. It is reasonable to assume that a similar boundary structure would be required for the origin of cellular life (Szostak et al. 2001). Even though bilayer membranes are a cellular necessity, they also pose a significant obstacle to early cellular functions, the most obvious being that the permeability barrier would inhibit chemical exchange with the environment. Such an exchange is important not only for acquiring nutrient substrates for primitive metabolic processes, but also for the release of inhibitory side-products.Contemporary cells circumvent the permeability problem by incorporating complex transmembrane protein machinery that provides specific transport capabilities. It is unlikely that Earth’s first cells assembled bilayer membranes together with specific membrane protein transporters. Rather, intermediate evolutionary steps must have existed in which simple lipid molecules provided many of the characteristics of contemporary membranes without relying on advanced protein machinery. What seems to have been necessary was the appearance of a simple membrane system capable of retaining and releasing specific molecules. In short, a protocell needed to be selectively permeable.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号