首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bacterial phylogenetic survey of three environmentally distinct Antarctic Dry Valley soil biotopes showed a high proportion of so-called “uncultured” phylotypes, with a relatively low diversity of identifiable phylotypes. Cyanobacterial phylotypic signals were restricted to the high-altitude sample, whereas many of the identifiable phylotypes, such as the members of the Actinobacteria, were found at all sample sites. Although the presence of Cyanobacteria and Actinobacteria is consistent with previous culture-dependent studies of microbial diversity in Antarctic Dry Valley mineral soils, many phylotypes identified by 16S rDNA analysis were of groups that have not hitherto been cultured from Antarctic soils. The general belief that such “extreme” environments harbor a relatively low species diversity was supported by the calculation of diversity indices. The detection of a substantial number of uncultured bacterial phylotypes showing low BLAST identities (<95%) suggests that Antarctic Dry Valley mineral soils harbor a pool of novel psychrotrophic taxa.  相似文献   

2.
Continental Antarctic is perceived as a largely pristine environment, although certain localized regions (e.g., parts of the Ross Dependency Dry Valleys) are relatively heavy impacted by human activities. The procedures imposed on Antarctic field parties for the handling and disposal of both solid and liquid wastes are designed to minimise eutrofication and contamination (particularly by human enteric bacteria). However, little consideration has been given to the significance, if any, of less obvious forms of microbial contamination resulting from periodic human activities in Antarctica. The predominant commensal microorganism on human skin, Staphylococcus epidermidis, could be detected by PCR, in Dry Valley mineral soils collected from heavily impacted areas, but could not be detected in Dry Valley mineral soils collected from low impact and pristine areas. Cell viability of this non-enteric human commensal is rapidly lost in Dry Valley mineral soil. However, S. epidermidis can persist for long periods in Dry Valley mineral soil as non-viable cells and/or naked DNA.  相似文献   

3.
Recent applications of molecular genetics to edaphic microbial communities of the McMurdo Dry Valleys and elsewhere have rejected a long-held belief that Antarctic soils contain extremely limited microbial diversity. The Inter-Valley Soil Comparative Survey aims to elucidate the factors shaping these unique microbial communities and their biogeography by integrating molecular genetic approaches with biogeochemical analyses. Although the microbial communities of Dry Valley soils may be complex, there is little doubt that the ecosystem''s food web is relatively simple, and evidence suggests that physicochemical conditions may have the dominant role in shaping microbial communities. To examine this hypothesis, bacterial communities from representative soil samples collected in four geographically disparate Dry Valleys were analyzed using molecular genetic tools, including pyrosequencing of 16S rRNA gene PCR amplicons. Results show that the four communities are structurally and phylogenetically distinct, and possess significantly different levels of diversity. Strikingly, only 2 of 214 phylotypes were found in all four valleys, challenging a widespread assumption that the microbiota of the Dry Valleys is composed of a few cosmopolitan species. Analysis of soil geochemical properties indicated that salt content, alongside altitude and Cu2+, was significantly correlated with differences in microbial communities. Our results indicate that the microbial ecology of Dry Valley soils is highly localized and that physicochemical factors potentially have major roles in shaping the microbiology of ice-free areas of Antarctica. These findings hint at links between Dry Valley glacial geomorphology and microbial ecology, and raise previously unrecognized issues related to environmental management of this unique ecosystem.  相似文献   

4.
Permafrost in the high elevation McMurdo Dry Valleys of Antarctica ranks among the driest and coldest on Earth. Permafrost soils appear to be largely inhospitable to active microbial life, but sandstone lithic microhabitats contain a trophically simple but functional cryptoendolithic community. We used metagenomic sequencing and activity assays to examine the functional capacity of permafrost soils and cryptoendolithic communities in University Valley, one of the most extreme regions in the Dry Valleys. We found metagenomic evidence that cryptoendolithic microorganisms are adapted to the harsh environment and capable of metabolic activity at in situ temperatures, possessing a suite of stress response and nutrient cycling genes to fix carbon under the fluctuating conditions that the sandstone rock would experience during the summer months. We additionally identified genes involved in microbial competition and cooperation within the cryptoendolithic habitat. In contrast, permafrost soils have a lower richness of stress response genes, and instead the metagenome is enriched in genes involved with dormancy and sporulation. The permafrost soils also have a large presence of phage genes and genes involved in the recycling of cellular material. Our results underlie two different habitability conditions under extreme cold and dryness: the permafrost soil which is enriched in traits which emphasize survival and dormancy, rather than growth and activity; and the cryptoendolithic environment that selects for organisms capable of growth under extremely oligotrophic, arid and cold conditions. This study represents the first metagenomic interrogation of Antarctic permafrost and polar cryptoendolithic microbial communities.  相似文献   

5.
Despite the apparent severity of the environmental conditions in the McMurdo Dry Valleys, Eastern Antarctica, recent phylogenetic studies conducted on mineral soil samples have revealed the presence of a wide diversity of microorganisms, with actinobacteria representing one of the largest phylotypic groups. Previous metagenomic studies have shown that the majority of Antarctic actinobacterial populations are classified as 'uncultured'. In this study, we assessed the diversity of actinobacteria in Antarctic cold desert soils by complementing traditional culture-based techniques with a metagenomic study. Phylogenetic analysis of clones generated with actinobacterium- and streptomycete-specific PCR primers revealed that the majority of the phylotypes were most closely related to uncultured Pseudonocardia and Nocardioides species. Phylotypes most closely related to a number of rarer actinobacteria genera, including Geodermatophilus , Modestobacter and Sporichthya , were also identified. While complementary culture-dependent studies isolated a number of Nocardia and Pseudonocardia species, the majority of the cultured isolates (> 80%) were S treptomyces species – although phylotypes affiliated to the genus Streptomyces were detected at a low frequency in the metagenomic study. This study confirms that Antarctic Dry Valley desert soil harbours highly diverse actinobacterial communities and suggests that many of the phylotypes identified may represent novel, uncultured species.  相似文献   

6.
The Antarctic Dry Valleys are unable to support higher plant and animal life and so microbial communities dominate biotic ecosystem processes. Soil communities are well characterized, but rocky surfaces have also emerged as a significant microbial habitat. Here, we identify extensive colonization of weathered granite on a landscape scale by chasmoendolithic microbial communities. A transect across north-facing and south-facing slopes plus valley floor moraines revealed 30–100 % of available substrate was colonized up to an altitude of 800 m. Communities were assessed at a multidomain level and were clearly distinct from those in surrounding soils and other rock-inhabiting cryptoendolithic and hypolithic communities. All colonized rocks were dominated by the cyanobacterial genus Leptolyngbya (Oscillatoriales), with heterotrophic bacteria, archaea, algae, and fungi also identified. Striking patterns in community distribution were evident with regard to microclimate as determined by aspect. Notably, a shift in cyanobacterial assemblages from Chroococcidiopsis-like phylotypes (Pleurocapsales) on colder–drier slopes, to Synechococcus-like phylotypes (Chroococcales) on warmer–wetter slopes. Greater relative abundance of known desiccation-tolerant bacterial taxa occurred on colder–drier slopes. Archaeal phylotypes indicated halotolerant taxa and also taxa possibly derived from nearby volcanic sources. Among the eukaryotes, the lichen photobiont Trebouxia (Chlorophyta) was ubiquitous, but known lichen-forming fungi were not recovered. Instead, fungal assemblages were dominated by ascomycetous yeasts. We conclude that chasmoendoliths likely constitute a significant geobiological phenomenon at lower elevations in granite-dominated Antarctic Dry Valley systems.  相似文献   

7.
The stability of exogenous ATP in Antarctic Ross desert soils has been assessed using bioluminescence monitoring of ATP-supplemented samples. Under typical east Antarctic dry valley summer conditions (−3 to +15°C), exogenous ATP was degraded with a half-life of between 0.5 and 30 h. The rate of degradation was affected, in order of significance, by soil biomass levels, temperature and water content. Such rapid removal of exogenous ATP strongly suggests that extracellular ATP from lysed cells in cold desiccated soils does not make a significant contribution to the standing ATP titre  相似文献   

8.
Biotic communities and ecosystem dynamics in terrestrial Antarctica are limited by an array of extreme conditions including low temperatures, moisture and organic matter availability, high salinity, and a paucity of biodiversity to facilitate key ecological processes. Recent studies have discovered that the prokaryotic communities in these extreme systems are highly diverse with patchy distributions. Investigating the physical and biological controls over the distribution and activity of microbial biodiversity in Victoria Land is essential to understanding ecological functioning in this region. Currently, little information on the distribution, structure and activity of soil communities anywhere in Victoria Land are available, and their sensitivity to potential climate change remains largely unknown. We investigated soil microbial communities from low- and high-productivity habitats in an isolated Antarctic location to determine how the soil environment impacts microbial community composition and structure. The microbial communities in Luther Vale, Northern Victoria Land were analysed using bacterial 16S rRNA gene clone libraries and were related to soil geochemical parameters and classical morphological analysis of soil metazoan invertebrate communities. A total of 323 16S rRNA gene sequences analysed from four soils spanning a productivity gradient indicated a high diversity (Shannon-Weaver values > 3) of phylotypes within the clone libraries and distinct differences in community structure between the two soil productivity habitats linked to water and nutrient availability. In particular, members of the Deinococcus/Thermus lineage were found exclusively in the drier, low-productivity soils, while Gammaproteobacteria of the genus Xanthomonas were found exclusively in high-productivity soils. However, rarefaction curves indicated that these microbial habitats remain under-sampled. Our results add to the recent literature suggesting that there is a higher biodiversity within Antarctic soils than previously expected.  相似文献   

9.
The McMurdo Dry Valleys of Antarctica present extreme environmental challenges. Life is restricted to patchy occurrence of lichens, mosses and invertebrates, plus soil microbial communities. Fungi have been described in lichen symbioses but relatively little is known about the occurrence of free-living soil fungi in the Dry Valleys. A challenge in estimating fungal species richness has been the extent to which estimates based on either cultivation or environmental DNA reflect the active assemblage in cold-arid soils. Here, we describe analysis for inland Dry Valleys soil of environmental DNA and RNA (cDNA) to infer total and putative metabolically active assemblages, respectively, plus cultivation approaches using a variety of laboratory growth conditions. Environmental sequences indicated a highly restricted assemblage of just seven phylotypes that affiliated phylogenetically within two known genera, Helicodendron and Zalerion, plus previously unidentified fungal phylotypes. None of the commonly encountered molds and mitosporic genera recorded from maritime Antarctic locations were encountered. A striking difference was observed in the frequency of recovery for phylotypes between libraries. This suggests that both species richness and beta diversity estimates based on DNA libraries have the potential to misinform putatively active assemblages. Cultivation yielded a cold-tolerant Zalerion strain that affiliated with DNA and RNA library clones, and a psychrotrophic yeast (Debaryomyces hansenii), which was not detected using either culture-independent approach.  相似文献   

10.
Understanding the cycling of C and N in soils is important for maintaining soil fertility while also decreasing greenhouse gas emissions, but much remains unknown about how organic matter (OM) is stabilized in soils. We used nano‐scale secondary ion mass spectrometry (NanoSIMS) to investigate the changes in C and N in a Vertisol and an Alfisol incubated for 365 days with 13C and 15N pulse labeled lucerne (Medicago sativa L.) to discriminate new inputs of OM from the existing soil OM. We found that almost all OM within the free stable microaggregates of the soil was associated with mineral particles, emphasizing the importance of organo‐mineral interactions for the stabilization of C. Of particular importance, it was also found that 15N‐rich microbial products originating from decomposition often sorbed directly to mineral surfaces not previously associated with OM. Thus, we have shown that N‐rich microbial products preferentially attach to distinct areas of mineral surfaces compared to C‐dominated moieties, demonstrating the ability of soils to store additional OM in newly formed organo‐mineral associations on previously OM‐free mineral surfaces. Furthermore, differences in 15N enrichment were observed between the Vertisol and Alfisol presumably due to differences in mineralogy (smectite‐dominated compared to kaolinite‐dominated), demonstrating the importance of mineralogy in regulating the sorption of microbial products. Overall, our findings have important implications for the fundamental understanding of OM cycling in soils, including the immobilization and storage of N‐rich compounds derived from microbial decomposition and subsequent N mineralization to sustain plant growth.  相似文献   

11.
Extraction of nematodes from Dry Valley Antarctic soils   总被引:9,自引:3,他引:6  
Nematode density and taxonomic composition from Dry Valley soil processed by the sugar centrifugation (SC) method in Antarctica was compared to those extracted from soils shipped frozen to the USA and processed by either the SC or Baermann Funnel (BF) (at 5°C and 10°C) techniques. Soil selected for the extraction comparisons represented a wide range of soil properties found in the Dry Valleys. More nematodes were recovered from freshly collected Antarctic soil and from stored frozen soil using the SC technique than from BF at either temperature (P<0.05). Temperature had no effect on nematode densities extracted by the BF. Scottnema lindsayae was the most abundant species recovered by all extraction methods, but recovery was significantly lower from stored soils. Thus, nematodes can be extracted qualitatively following frozen storage using SC, but quantitative studies of nematode populations should be based on soils extracted following field sampling.  相似文献   

12.
The reliability of three methods (microbial C and mineral-N flush by fumigation-incubation, and ATP) for measuring soil microbial biomass was assessed on two silt-loam soils of different P fertility status under grazed perennial pastures. The mineral-N flush and ATP methods provided a reasonably reliable index of microbial biomass, but the fumigation-incubation procedure for CO2-C flush, using preincubated samples and an unfumigated 0–10 day control, was inappropriate for these soils. The numbers of bacteria (direct microscopy) and the percentage metabolically active were also measured. Generally, in both soils, total microbial biomass and the numbers, mass and metabolic activity of bacteria were influenced more by temporal factors in samples taken monthly than by the fertility status. Temporal fluctuations were greater in the high-fertility (Waikanae) soil, but no consistent seasonal trends in mineral-N flush and ATP values were apparent. In both soils, numbers and biomass of bacteria were at a minimum in spring. Values of two biomass indices (mineral-N flush and ATP contents) were similar in the high- and low-fertility (Pomare) soil, and comprised similar percentages of organic-matter contents. The percentages of metabolically active bacteria, however, tended to be higher in Pomare than in Waikanae soil, and, therefore, did not reflect soil fertility status. Methodological and field aspects of these results are discussed.  相似文献   

13.
Despite an increasing number of Antarctic soil diversity assessments, understanding of the bacterial community composition in the arid soil environments of the maritime/continental Antarctic transitional zone remains lacking. Most documented microbiological studies had focused on either the wetter environments of the Antarctic Peninsula/Scotia arc or the exceptionally arid deserts of the Dry Valleys of continental Antarctica. In this study, soil bacterial diversity from three relatively arid sites on Alexander Island and the physicochemical parameters that might influence it were assessed. In general, the study sites exhibited levels of pH, hydration and metal content different from previous reports of maritime or continental Antarctic soil habitats. Although the soil from Alexander Island exhibited similar phylum-level bacterial taxonomic composition to those of other cold and arid environments, each study site was found to harbour significantly different bacterial assemblages. The latter finding was supported by three complementary molecular methods selected to address different elements of diversity. Our analyses of the measured parameters suggest that the differences in bacterial communities were best explained by soil pH and copper content. Using these data, we suggest that soil pH might play an important role in structuring bacterial assemblage patterns across polar soils.  相似文献   

14.
Aim  Although patterns are emerging for macroorganisms, we have limited understanding of the factors determining soil microbial community composition and productivity at large spatial extents. The overall objective of this study was to discern the drivers of microbial community composition at the extent of biogeographical provinces and regions. We hypothesized that factors associated with land use and climate would drive soil microbial community composition and biomass.
Location  Great Basin Province, Desert Province and California Floristic Province, California, USA.
Methods  Using phospholipid fatty acid analysis, we compared microbial communities across eight land-use types sampled throughout the State of California, USA ( n = 1117).
Results  The main factor driving composition and microbial biomass was land-use type, especially as related to water availability and disturbance. Dry soils were more enriched in Gram-negative bacteria and fungi, and wetter soils were more enriched in Gram-positive, anaerobic and sulphate-reducing bacteria. Microbial biomass was lowest in ecosystems with the wettest and driest soils. Disturbed soils had less fungal and more Gram-positive bacterial biomass than wildland soils. However, some factors known to influence microbial communities, such as soil pH and specific plant taxa, were not important here.
Main conclusions  Distinct microbial communities were associated with land-use types and disturbance at the regional extent. Overall, soil water availability was an important determinant of soil microbial community composition. However, because of the inclusion of managed and irrigated agricultural ecosystems, the effect of precipitation was not significant. Effects of environmental and management factors, such as flooding, tillage and irrigation, suggest that agricultural management can have larger effects on soil microbial communities than elevation and precipitation gradients.  相似文献   

15.
Many microbial turnover processes in acidic sandy subtropical soils are still poorly understood. In a 59-day pot and a 189-day laboratory incubation experiment with two West African continuous cereal soils, the effects of 2 mg g?1 root residues were investigated on growth of sorghum seedlings, soil microbial biomass and activity indices, using cowpea, groundnut, pearl millet, maize and sorghum. The effects of root residues were compared with mineral P or mineral P + N treatments and with a non-fertilized control treatment. On the Alfisol (Fada, Burkina Faso), shoot dry mass was always significantly higher than on the Ultisol (Koukombo, Togo). Highest shoot dry mass was observed after application of mineral P + N on the Alfisol and after mineral P alone on the Ultisol. The application of legume root residues led to small and non-significant increases in dry mass production compared to the non-amended control, whereas the application of cereal root residues led to a decline, regardless of their origin (millet, maize or sorghum). Contents of microbial biomass C, microbial biomass N and ergosterol were 75 to 100% higher in the Alfisol than in the Ultisol, while ATP was only 36% higher. Organic amendments increased ergosterol concentrations by up to 145% compared to the control and mineral P application. Microbial biomass C and microbial biomass N increased by up to 50% after application of root residues, but ATP only up to 20%. After application of legume root residues, cumulative CO2 production was similar in both soils with an average of 370?µg CO2-C g?1 over 189 days. After application of cereal root residues, cumulative CO2 production was higher in the Alfisol (530?µg g?1) than in the Ultisol (445?µg g) over 189 days.  相似文献   

16.
The aims of this study were: (1) to compare different microbial methods of detecting the effects of heavy metals on the functioning of the soil ecosystem; and (2) to evaluate the effect of incubation on microbial biomass and microbial activity in soils that were not pre-incubated after sampling in order to determine their suitability for measuring the effects of heavy metals on the soil microbial ecosystem. The microbial biomass methods (included: biomass C, N and ninhydrin-N by fumigation-extraction (FE); substrate-induced respiration (SIR); soil ATP content and microbial activity as evolved CO2-C and arginine ammonification. All were tested in soils from the Woburn Market Garden Experiment. Due to past sludge application the soils contained, Zn, Cu or Ni at around current European Union upper limits and Cd at up to three times the limit. The amount of microbial biomass in metal-contaminated soils was about half of that found in soils from the experiment that received uncontaminated organic manure or inorganic fertilizer. The amount of biomass measured by FE and soil ATP content in incubated soils showed little change over 20 days incubation. However, SIR measurements were statistically affected over the first few days of incubation. The rates of arginine ammonification were higher in this order: farmyard manure (FYM)>inorganic fertilizer>sewage-sludge throughout the incubation. However, the evolved CO2-C rates were not significantly different among the treatments. Discriminant analysis confirmed smaller amounts of biomass in the metal-contaminated soils than in the other treatments. Linked properties, such as relationships between biomass and soil organic matter, or biomass-specific respiration rates, may provide "internal control" which may help overcome problems of establishing suitable control, or comparative measurements, when moving from experimental to natural environments.  相似文献   

17.
Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen) and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies), Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.  相似文献   

18.
The objective of this study was to examine the presence and diversity of Archaea within mineral and ornithogenic soils from 12 locations across the Ross Sea region. Archaea were not abundant but DNA sufficient for producing 16S rRNA gene clone libraries was extracted from 18 of 51 soil samples, from four locations. A total of 1452 clones were analysed by restriction fragment length polymorphism and assigned to 43 operational taxonomic units from which representatives were sequenced. Archaea were primarily restricted to coastal mineral soils which showed a predominance of Crenarchaeota belonging to group 1.1b (> 99% of clones). These clones were assigned to six clusters (A through F), based on shared identity to sequences in the GenBank database. Ordination indicated that soil chemistry and water content determined archaeal community structure. This is the first comprehensive study of the archaeal community in Antarctic soils and as such provides a reference point for further investigation of microbial function in this environment.  相似文献   

19.
The Antarctic Dry Valleys are regarded as one of the harshest terrestrial habitats on Earth because of the extremely cold and dry conditions. Despite the extreme environment and scarcity of conspicuous primary producers, the soils contain organic carbon and heterotrophic micro-organisms and invertebrates. Potential sources of organic compounds to sustain soil organisms include in situ primary production by micro-organisms and mosses, spatial subsidies from lacustrine and marine-derived detritus, and temporal subsidies ('legacies') from ancient lake deposits. The contributions from these sources at different sites are likely to be influenced by local environmental conditions, especially soil moisture content, position in the landscape in relation to lake level oscillations and legacies from previous geomorphic processes. Here we review the abiotic factors that influence biological activity in Dry Valley soils and present a conceptual model that summarizes mechanisms leading to organic resources therein.  相似文献   

20.
High-elevation periglacial soils are among the most extreme soil systems on Earth and may be good analogs for the polar regions of Mars where oligotrophic mineral soils abut with polar ice caps. Here we report on preliminary studies carried out during an expedition to an area where recent glacial retreat has exposed porous mineral soils to extreme, daily freeze–thaw cycles and high UV fluxes. We used in situ methods to show that inorganic nitrogen (NO3 and NH4 +) was being actively cycled even during a period when diurnal soil temperatures (5 cm depth) ranged from −12 to 27°C and when sub-zero, soil cooling rates reached 1.8°C h−1 (the most rapid soil cooling rates recorded to date). Furthermore, phylogenetic analyses of microbial phylotypes present at our highest sites (5410 m above sea level) showed the presence of nitrifying bacteria of the genus Nitrospira and newly discovered nitrite-oxidizing Betaproteobacteria. These soils were overwhelmingly dominated (>70% of phylotypes) by photosynthetic bacteria that were related to novel cyanobacteria previously found almost exclusively in other plant-free, high-elevation soils. We also demonstrated that soils from our highest sites had higher potential for mineralizing glutamate and higher microbial biomass than lower elevation soils that had been more recently covered by ice. Overall, our findings indicate that a diverse and robustly functioning microbial ecosystem is present in these previously unstudied high-elevation soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号