首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human lens crystallins were studied by absorption, circular dichroism and fluorescence spectroscopy. The absorption spectra in the near-ultraviolet region show some differences in intensity, but spectral features are similar, except for the alpha-crystallin, which gives a fine structure due to phenylalanine between 250 and 270 nm. Tryptophan fluorescence and near-ultraviolet circular dichroism indicate that tryptophan residues are more exposed in alpha-crystallin than in either beta- or gamma-crystallin, and that the degree of exposure decreases in the order of alpha less than beta 1 greater than beta 2 greater than beta 3 greater than gamma. The far ultraviolet CD suggests that these proteins exist mainly in a beta-sheet conformation and that the amount does not vary much among them. The greater exposure of the tryptophan residues in the high-molecular-weight crystallins may reflect greater unfolding in their protein domains. Spectroscopic measurements are thus useful in predicting protein tertiary structure in the absence of the complete sequence and X-ray data. The fact that the high-molecular-weight proteins exist in a more unfolded state may render them more vulnerable to exogeneous insults, and these effects may be studied by spectroscopic measurements.  相似文献   

2.
High-resolution structure determination of soluble globular proteins relies heavily on x-ray crystallography techniques. Such an approach is often ineffective for investigations into the structure of fibrous proteins as these proteins generally do not crystallize. Thus investigations into fibrous protein structure have relied on less direct methods such as x-ray fiber diffraction and circular dichroism. Ultraviolet linear dichroism has the potential to provide additional information on the structure of such biomolecular systems. However, existing systems are not optimized for the requirements of fibrous proteins. We have designed and built a low-volume (200 μL), low-wavelength (down to 180 nm), low-pathlength (100 μm), high-alignment flow-alignment system (couette) to perform ultraviolet linear dichroism studies on the fibers formed by a range of biomolecules. The apparatus has been tested using a number of proteins for which longer wavelength linear dichroism spectra had already been measured. The new couette cell has also been used to obtain data on two medically important protein fibers, the all-β-sheet amyloid fibers of the Alzheimer's derived protein Aβ and the long-chain assemblies of α1-antitrypsin polymers.  相似文献   

3.
Knowledge of the conformations of a water‐soluble protein bound to a membrane is important for understanding the membrane‐interaction mechanisms and the membrane‐mediated functions of the protein. In this study we applied vacuum‐ultraviolet circular‐dichroism (VUVCD) and linear‐dichroism (LD) spectroscopy to analyze the conformations of α‐lactalbumin (LA), thioredoxin (Trx), and β‐lactoglobulin (LG) bound to phosphatidylglycerol liposomes. The VUVCD analysis coupled with a neural‐network analysis showed that these three proteins have characteristic helix‐rich conformations involving several helical segments, of which two amphiphilic or hydrophobic segments take part in interactions with the liposome. The LD analysis predicted the average orientations of these helix segments on the liposome: two amphiphilic helices parallel to the liposome surface for LA, two hydrophobic helices perpendicular to the liposome surface for Trx, and a hydrophobic helix perpendicular to and an amphiphilic helix parallel to the liposome surface for LG. This sequence‐level information about the secondary structures and orientations was used to formulate interaction models of the three proteins at the membrane surface. This study demonstrates the validity of a combination of VUVCD and LD spectroscopy in conformational analyses of membrane‐binding proteins, which are difficult targets for X‐ray crystallography and nuclear magnetic resonance spectroscopy. Proteins 2016; 84:349–359. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
The structure of the bovine alpha-crystallin aggregate and its reaggregated isolated subunits has been studied by measurement of their absorption and linear dichroism spectra over the range 250-350 nm. Also, changes in structure with respect to time have been monitored in this way. From the absorption spectra it appears that the aromatic residues in subunit aggregates are in the same chemical environment as those in native protein. The light scattering due to the size of the protein molecules increases when the proteins are kept in solution, this effect being much stronger for the subunits. The linear dichroism spectra point to strong structural ordering in alpha-crystallin, the absorption transition dipoles of the aromatic residues being preferentially aligned along the long axis of the molecules. Moreover, a considerable deviation from a spherical or tetrahedrally symmetric structure of alpha-crystallin is inferred. The subunit aggregates show less ordering and might be more spherical. When kept in solution, their structural order seems to be decreased. The linear dichroism spectra show absorption at 325 nm, which is not detectable in the normal absorption spectra.  相似文献   

5.
The physical properties and conformational dynamics of the Salmonella typhimurium ribose and galactose receptors have been examined. Studies involving circular dichroism, fluorescence, absorption spectroscopy, and sedimentation analysis show that the two receptor proteins have different morphologies and exhibit diverse responses to sugar binding. The ribose receptor lacks both tryptophan and disulfide residues, and the galactose receptor lacks disulfides and has only a single tryptophan residue. By virtue of these fortuitous properties, the conformational changes induced in these proteins by sugar binding can be dissected by utilizing a variety of physical probes. A ligand-induced conformational change in the ribose receptor is shown by circular dichroism and fluorescence spectroscopy, which reveal spectral changes assignable to tyrosine, phenylalanine, and methionine residues. A conformational change in the galactose receptor has been demonstrated by fluorescence spectroscopy involving the distant reporter group method, which shows changes assignable to tryptophan and methionine sites and which is corroborated by sedimentation analysis. It is clear that there are extensive conformational changes in the two receptor proteins and that the different physical methods provide complementary information on the nature of these changes.  相似文献   

6.
This paper presents two new experimental results: the protective effect of green light (GL) on ultraviolet (UV) denaturation of proteins, and the effect of GL on protein macromolecular structures. The protective effect of GL was revealed on two serum albumins, bovine (BSA) and human (HSA), and recorded by electrophoresis, absorption, and circular dichroism spectra. The effect of GL irradiation on protein structure was recorded by using fluorescence spectroscopy and electrophoresis. These new effects were modeled by quantum-chemistry computation using Gaussian 03W, leading to good fit between theoretical and experimental absorption and circular dichroism spectra. A mechanism for these phenomena is suggested, based on a double-photon absorption process. This nonlinear effect may lead to generation of long-lived Rydberg macromolecular systems, capable of long-range interactions. These newly suggested systems, with macroscopic quantum coherence behaviors, may block the UV denaturation processes.  相似文献   

7.
Circular dichroism (CD) spectroscopy is a valuable technique for the determination of protein secondary structures. Many linear and nonlinear algorithms have been developed for the empirical analysis of CD data, using reference databases derived from proteins of known structures. To date, the reference databases used by the various algorithms have all been derived from the spectra of soluble proteins. When applied to the analysis of soluble protein spectra, these methods generally produce calculated secondary structures that correspond well with crystallographic structures. In this study, however, it was shown that when applied to membrane protein spectra, the resulting calculations produce considerably poorer results. One source of this discrepancy may be the altered spectral peak positions (wavelength shifts) of membrane proteins due to the different dielectric of the membrane environment relative to that of water. These results have important consequences for studies that seek to use the existing soluble protein reference databases for the analyses of membrane proteins.  相似文献   

8.
Linear dichroism measurements were performed in the wavelength region 250 to 350 nm on complexes between the single-stranded DNA binding protein of bacteriophage T4 (gp32) and single-stranded DNA and a variety of homopolynucleotides in compressed polyacrylamide gels. The complexes appeared to orient well, giving rise to linear dichroism spectra that showed contributions from both the protein aromatic residues and the bases of the polynucleotides. In most cases the protein contribution appeared to be very similar, and the linear dichroism of the bases could be explained by similar orientations of the bases for most of the complexes. Assuming a similar, regular structure for most of the polynucleotides in complex, only a limited set of combinations of tilt and twist angles can explain the linear dichroism spectra. These values of tilt and twist are close to (-40 degrees, 30 degrees), (-40 degrees, 150 degrees), (40 degrees, -30 degrees) or (40 degrees, -150 degrees), with an uncertainty in both angles of about 15 degrees. Although the linear dichroism results do not allow a choice between these possible orientations, the latter two combinations are not in agreement with earlier circular dichroism calculations. For the complexes formed with poly(rC) and poly(rA), the linear dichroism spectra could not be explained by the same base orientations. In these two cases also the protein contribution to the linear dichroism appeared to be different, indicating that for some aromatic residues the orientations are not the same as those in the other complexes. The different structures of these complexes are possibly related to the relatively low binding affinity of gp32 to poly(rC), and to a lesser extent to poly(rA).  相似文献   

9.
《BBA》1987,892(1):99-107
The orientation of the pigments in the Photosystem II core particle isolated from the thermophilic cyanobacterium Synechococcus sp. has been investigated by linear dichroism spectroscopy at 10 K of macroscopically oriented samples. The absorbance (A), linear dichroism (LD) and LD/A spectra are remarkably similar to those previously reported for a core complex isolated from Chlamydomonas reinhardtii (Biochim. Biophys. Acta 850 (1986) 156–161). The spectra of the Synechococcus core particle are compared to the corresponding spectra obtained on its two main constituent chlorophyll-protein complexes CP2-b (photochemically active) and CP2-c (photochemically inactive). The various features seen in the spectra of the core particle appear well segregated into the spectra of one or the other of the two subparticles without significant loss of orientation of the pigments. The orientation of the chlorophyll macrocycles, with the Y and X optical axis preferentially parallel and perpendicular to the plane of largest cross-section of the particle, respectively, is very similar in the two subparticles. CP2-b contains mainly the beta-carotene pool absorbing around 505 and 470 nm, which is oriented close to the membrane plane, while CP2-c contains the beta-carotene pool absorbing around 495 and 465 nm and oriented closer to the normal to the membrane plane. A shoulder at 682 nm in the absorbance and linear dichroism spectra of the core complex is fully segregated in the spectra of CP2-c, thus excluding the possibility that this spectral feature could be assigned to the primary donor of PS II. A negative linear dichroism component peaking around 691 nm (LD 691) in the core particle is mainly segregated in CP2-b together with the photoactive pheophytin acceptor molecule responsible for the 544 nm positive linear dichroism signal (LD 544). While the ratio of the amplitudes LD 691/LD 544 is approximately the same for the core particle and for the CP2-b complex, the amplitude of LD 691 is significantly reduced in CP2-b compared to the core particle.  相似文献   

10.
A technique is described for the preparation of oriented samples from spinach chloroplasts whose linear dichroism is then studied by (flash) absorption spectroscopy. The chloroplasts are suspended in a glycerol-containing medium, oriented in a magnetic field, and slowly cooled in the magnet until the medium is rigid enough to avoid disorientation effects. The absorption spectra in polarized light have been measured at ?50° and ?170°C. They allow the orientation of chlorophyll b to be resolved, and the red transition moment is found to be tilted out of the membrane plane. A study of the flash-induced absorption changes linked to Photosystem-1 activity reveals a progressive evolution of the difference spectra and of the linear dichroism with decreasing temperatures. At ?170°C, the difference spectrum of P700 in the red is well resolved. All transition moments are found to be largely parallel to the membrane plane. The potential use of the technique for other experiments by differential absorption spectroscopy and by EPR techniques is discussed.  相似文献   

11.
The interaction of synthetic azo dye Acid Red 14 with pepsin was studied by fluorescence spectroscopy, UV–vis spectroscopy, circular dichroism and molecular docking. Results from the fluorescence spectroscopy show that Acid Red 14 has a strong capability to quench the intrinsic fluorescence of pepsin with static quenching. Binding constant, number of the binding sites and thermodynamic parameters were measured at different temperatures. The result indicates that Acid Red 14 interact with pepsin spontaneously by hydrogen bonding and van der Waals interactions. Three‐dimensional fluorescence spectra and circular dichroism spectra reveal that Acid Red 14 could slightly change the structure of pepsin. The hydrogen bond is formed between Acid Red 14 and Tyr‐189 and Thr‐218 residues of pepsin. Furthermore, the binding between Acid Red 14 and pepsin inhibits pepsin activity. The study can provide a way to analyze the biological safety of Acid Red 14 on digestive proteases or other proteins.  相似文献   

12.
Vibrational circular dichroism (VCD) studies are reported for two unrelated recombinant growth factor proteins: epidermal growth factor and basic fibroblast growth factor (bFGF). NMR, electronic CD, and bFGF X-ray studies indicate that these two proteins are primarily composed of beta-sheet and loop secondary structure elements with no detectable alpha-helices. Two reports on solution conformation of these proteins using FTIR absorption spectroscopy with subsequent resolution enhancement confirmed the presence of a large fraction of a beta-sheet conformation but in addition indicated the presence of large absorption bands in the 1650-1656 cm-1 region, which are typically assigned to alpha-helices. The VCD spectra of both proteins have band shapes that strongly resemble those of other high beta-sheet fraction proteins, such as the trypsin family of proteins. Quantitative analysis of the VCD spectra also indicates that these proteins are predominantly in beta-sheet and extended ("other") conformations with very little alpha-helix fraction. These results agree with the CD interpretation and affirm that the FTIR peaks in the region 1650-1656 cm-1 can be assigned to loops. This study provides an example of the limitations of using FTIR frequencies alone for examination of protein secondary structure.  相似文献   

13.

Background  

Circular dichroism spectroscopy is a widely used technique to analyze the secondary structure of proteins in solution. Predictive methods use the circular dichroism spectra from proteins of known tertiary structure to assess the secondary structure contents of a protein with unknown structure given its circular dichroism spectrum.  相似文献   

14.
Several authors have reported that many sperm whale apomyoglobin mutants show anomalous circular dichroism spectra. These mutants have a low molar ellipticity compared to the wild-type protein but in several cases have the same stability of unfolding. A model in which native apomyoglobin is not folded in the same manner as that in other proteins and in which mutants show progressive reductions in their degree of folding has been suggested to explain this phenomenon. However, nuclear magnetic resonance of the native apomyoglobin conformation has shown that this state is folded and compact, raising the possibility that the anomalous circular dichroism spectra could have another explanation. We studied several mutants with anomalous circular dichroism spectra and found that these proteins were all contaminated with nucleic acid that contributed to the ultraviolet absorption and caused uncertainty in the determination of protein concentration. The resulting overestimation of the concentration of apomyoglobin explains the phenomenon of anomalous circular dichroism spectra. We describe a procedure to remove the contaminant nucleic acid which yields accurate protein concentration measurements and provides the normal circular dichroism spectra. Our findings support a well-structured native conformation for apomyoglobin and may also be of the interest to scientists working with the purification of recombinant proteins.  相似文献   

15.
A point mutation of a highly conserved arginine residue in alphaA and alphaB crystallins was shown to cause autosomal dominant congenital cataract and desmin-related myopathy, respectively, in humans. To study the structural and functional consequences of this mutation, human alphaA and alphaB crystallin genes were cloned and the conserved arginine residue (Arg-116 in alphaA crystallin and Arg-120 in alphaB crystallin) mutated to Cys and Gly, respectively, by site-directed mutagenesis. The recombinant wild-type and mutant proteins were expressed in Escherichia coli and purified. The mutant and wild-type proteins were characterized by SDS-polyacrylamide gel electrophoresis, Western immunoblotting, gel permeation chromatography, fluorescence, and circular dichroism spectroscopy. Biophysical studies reveal significant differences between the wild-type and mutant proteins. The chaperone-like activity was studied by analyzing the ability of the recombinant proteins to prevent dithiothreitol-induced aggregation of insulin. The mutations R116C in alphaA crystallin and R120G in alphaB crystallin reduce the chaperone-like activity of these proteins significantly. Near UV circular dichroism and intrinsic fluorescence spectra indicate a change in tertiary structure of the mutants. Far UV circular dichroism spectra suggest altered packing of the secondary structural elements. Gel permeation chromatography reveals polydispersity for both of the mutant proteins. An appreciable increase in the molecular mass of the mutant alphaA crystallin is also observed. However, the change in oligomer size of the alphaB mutant is less significant. These results suggest that the conserved arginine of the alpha-crystallin domain of the small heat shock proteins is essential for their structural integrity and subsequent in vivo function.  相似文献   

16.
In photosynthesis research, circular dichroism (CD) spectroscopy is an indispensable tool to probe molecular architecture at virtually all levels of structural complexity. At the molecular level, the chirality of the molecule results in intrinsic CD; pigment–pigment interactions in protein complexes and small aggregates can give rise to excitonic CD bands, while “psi-type” CD signals originate from large, densely packed chiral aggregates. It has been well established that anisotropic CD (ACD), measured on samples with defined non-random orientation relative to the propagation of the measuring beam, carries specific information on the architecture of molecules or molecular macroassemblies. However, ACD is usually combined with linear dichroism and can be distorted by instrumental imperfections, which given the strong anisotropic nature of photosynthetic membranes and complexes, might be the reason why ACD is rarely studied in photosynthesis research. In this study, we present ACD spectra, corrected for linear dichroism, of isolated intact thylakoid membranes of granal chloroplasts, washed unstacked thylakoid membranes, photosystem II (PSII) membranes (BBY particles), grana patches, and tightly stacked lamellar macroaggregates of the main light-harvesting complex of PSII (LHCII). We show that the ACD spectra of face- and edge-aligned stacked thylakoid membranes and LHCII lamellae exhibit profound differences in their psi-type CD bands. Marked differences are also seen in the excitonic CD of BBY and washed thylakoid membranes. Magnetic CD (MCD) spectra on random and aligned samples, and the largely invariable nature of the MCD spectra, despite dramatic variations in the measured isotropic and anisotropic CD, testify that ACD can be measured without substantial distortions and thus employed to extract detailed information on the (supra)molecular organization of photosynthetic complexes. An example is provided showing the ability of CD data to indicate such an organization, leading to the discovery of a novel crystalline structure in macroaggregates of LHCII.  相似文献   

17.
We report the use of molecular combing as an alignment method to obtain macroscopically oriented amyloid fibrils on planar surfaces. The aligned fibrils are studied by polarized infrared spectroscopy. This gives structural information that cannot be definitively obtained from standard infrared experiments on isotropic samples, for example, confirmation of the characteristic cross-β amyloid core structure, the side-chain orientation from specific amino acids, and the arrangement of the strands within the fibrils, as we demonstrate here. We employed amyloid fibrils from hen egg white lysozyme (HEWL) and from a model octapeptide. Our results demonstrate molecular combing as a straightforward method to align amyloid fibrils, producing highly anisotropic infrared linear dichroism (IRLD) spectra.  相似文献   

18.
Aggregates and solubilized trimers of LHCII were characterized by circular dichroism (CD), linear dichroism and time-resolved fluorescence spectroscopy and compared with thylakoid membranes in order to evaluate the native state of LHCII in vivo. It was found that the CD spectra of lamellar aggregates closely resemble those of unstacked thylakoid membranes whereas the spectra of trimers solubilized in n-dodecyl-beta,D-maltoside, n-octyl-beta,D-glucopyranoside, or Triton X-100 were drastically different in the Soret region. Thylakoid membranes or LHCII aggregates solubilized with detergent exhibited CD spectra similar to the isolated trimers. Solubilization of LHCII was accompanied by profound changes in the linear dichroism and increase in fluorescence lifetime. These data support the notion that lamellar aggregates of LHCII retain the native organization of LHCII in the thylakoid membranes. The results indicate that the supramolecular organization of LHCII, most likely due to specific trimer-trimer contacts, has significant impact on the pigment interactions in the complexes.  相似文献   

19.
We have studied complexes between the gene 5 protein (gp5) of bacteriophage M13 and various polynucleotides, including single-stranded DNA, using ultraviolet absorption and linear dichroism. Upon complex formation the absorption spectra of both the protein and the polynucleotides change. The protein absorption changes indicate that for at least two of the five tyrosine residues per protein monomer the environment becomes less polar upon binding to the polynucleotides but also to the oligonucleotide p(dT)8. All gp5-polynucleotide complexes give rise to intense linear dichroism spectra. These spectra are dominated by negative contributions from the bases, but also a small positive dichroism of the protein can be discerned. The spectra can be explained by polynucleotide structures, which are the same in all complexes. The base orientations are characterized by a substantial inclination and propellor twist. The number of possible combinations of inclination and propeller twist values, which are in agreement with the linear dichroism results, is rather limited. The base orientations with respect to the complex axis are essentially different from those in the complex with the single-stranded DNA-binding protein gp32 of bacteriophage T4.  相似文献   

20.
The secondary structures of two recombinant human growth factors, platelet-derived growth factor and the basic fibroblast growth factor, have been quantitatively examined by using Fourier transform infrared spectroscopy. These studies, carried out in D2O, focus on the conformation-sensitive amide I region. Resolution enhancement techniques, including Fourier self-deconvolution and derivative spectroscopy, were combined with band fitting techniques to quantitate the spectral information from the broad, overlapped amide I band. The results presented here indicate that both proteins are rich in beta-structures. The remainder of the platelet-derived growth factor exists largely as irregular or disordered conformations with a moderate amount of alpha-helix and a small portion of reverse turns. By contrast, the basic fibroblast growth factor is much richer in reverse turn structures and contains a lesser portion of irregularly folded or disordered structures. Based on circular dichroism studies which indicate no alpha-helix in bFGF, components near 1655 cm-1 in the bFGF spectra are tentatively assigned to loops. The results of this study emphasize the need for using a combination of circular dichroism and infrared studies for spectroscopic characterization of protein secondary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号