首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kuiper PJ 《Plant physiology》1969,44(7):968-972
This paper describes experiments on Cl transport into the roots, stem and leaves of bean plants, the roots of which have been exposed to lipids in the root solution. Monoand digalactose diglyceride strongly increased Cl transport into all plant parts, probably by transport of the glycolipids further into the plant. Phosphatidyl choline increased Cl absorption by the roots, but transport into the stem and leaves was not affected. This phospholipid was only absorbed by the root tissue. 32P-glycerophosphoryl choline added to the root solution was readily transported and esterified as phospholipid in all plant parts. This chemical did increase Cl uptake by the roots but Cl accumulation in the leaves was reduced by as much as 40%. Phosphatidyl glycerol, phosphatidyl inositol, and sulfolipid increased Cl transport into roots, stem, and leaves, and a high mobility of 32P-phosphatidyl glycerol was demonstrated. Generally no significant effect of the above lipids on Na transport in beans and cotton was noted except that monogalactose diglyceride did increase Na transport in cotton.  相似文献   

2.
Lipids in grape roots in relation to chloride transport   总被引:7,自引:3,他引:4       下载免费PDF全文
Kuiper PJ 《Plant physiology》1968,43(9):1367-1371
A comparison was made between the lipids of the roots of 5 grape rootstocks which differ markedly in the extent to which they permit chloride accumulation in leaves. Monogalactose diglyceride concentration was directly related to chloride accumulation in the leaves of the 5 rootstocks. Phosphatidylcholine and phosphatidylethanolamine were inversely related to chloride accumulation. The variety with the highest chloride accumulation contained an unusually small amount of sterols. A striking negative correlation between content of lignoceric acid and chloride accumulation was observed. The lignoceric acid concentration ranged from 11.9% in the rootstock with the lowest chloride accumulation to 0.8% in the rootstock with the highest chloride accumulation. This fatty acid was found mainly in the phosphatidylcholine and the phosphatidylethanolamine lipid fractions.  相似文献   

3.
The role of the membrane lipid composition on the transport protein of branched-chain amino acids of the homofermentative lactic acid bacterium Streptococcus cremoris has been investigated. The major membrane lipid species identified in S. cremoris were acidic phospholipids (phosphatidylglycerol and cardiolipin), glycolipids, and glycerophosphoglycolipids. Phosphatidylethanolamine (PE) was completely absent. Protonmotive force-driven and counterflow transport of leucine was assayed in fused membranes of S. cremoris membrane vesicles and liposomes composed of different lipids obtained by the freeze/thaw-sonication technique. High transport activities were observed with natural S. cremoris and Escherichia coli lipids, as well as with mixtures of phosphatidylcholine (PC) with PE or phosphatidylserine. High transport activities were also observed with mixtures of PC with monogalactosyl diglyceride, digalactosyl diglyceride, or a neutral glycolipid fraction isolated from S. cremoris. PC or mixtures of PC with phosphatidylglycerol, phosphatidic acid, or cardiolipin showed low activities. In mixtures of PC and methylated derivatives of PE, both counterflow and protonmotive force-driven transport activities decreased with increasing degree of methylation of PE. The decreased transport activity in membranes containing PC could be restored by refusion with PE-containing liposomes. These results demonstrate that both aminophospholipids and glycolipids can be activators of the leucine transport system from S. cremoris. It is proposed that aminophospholipids in Gram-negative bacteria and glycolipids in Gram-positive bacteria have similar functions with respect to solute transport.  相似文献   

4.
The intracellular transport of mucus glycoprotein precursor (apomucin) from endoplasmic reticulum (ER) to Golgi was quantitated by the immunoprecipitation with 3G12 antimucin monoclonal antibody and by estimation of the apomucin glycosylation using UDP-[3H]galactose. The assembly of the entities carrying apomucin to Golgi was assessed by electron microscopy and by quantitation of the incorporation of [14C]choline, [14C]ethanolamine, and [14C]oleic acid into their lipids. The microscopic image of the isolated transport components revealed a population of 80- to 100-nm vesicles with occasional membranes of the ER used for their synthesis. On the average, the vesicles contained 82 ng apomucin/microgram of protein and 80-90% of the total incorporated lipid precursors. From that, 91% of [14C]choline was detected in phosphatidylcholine, and 9% in phosphatidylethanolamine, lysophosphatidylcholine, and sphingomyelin. With [14C]oleate, 54% of the label was incorporated into ceramide, diglyceride, and phosphatidic acid, 35% to phosphatidylcholine, 7% in phosphatidylethanolamine, and 2% in sphingomyelin. After incubation of the vesicles with Golgi, the apomucin was found glycosylated and the lipids of the transport vesicles incorporated into Golgi membranes. The fusion of the vesicular membranes was accompanied by the synthesis of sphingomyelin. In the Golgi, 39-55% of the radiolabeled phosphatidylcholine of transport vesicles was converted to sphingomyelin. The results indicate that the newly synthesized membranes of apomucin transporting vesicles are enriched in phosphoglycerides and ceramides. Upon fusion with the Golgi, the membranes of the vesicles are replenished with sphingomyelin by exchange reaction between phosphatidylcholine and ceramide.  相似文献   

5.
ABC transporters in lipid transport   总被引:9,自引:0,他引:9  
Since it was found that the P-glycoproteins encoded by the MDR3 (MDR2) gene in humans and the Mdr2 gene in mice are primarily phosphatidylcholine translocators, there has been increasing interest in the possibility that other ATP binding cassette (ABC) transporters are involved in lipid transport. The evidence reviewed here shows that the MDR1 P-glycoprotein and the multidrug resistance (-associated) transporter 1 (MRP1) are able to transport lipid analogues, but probably not major natural membrane lipids. Both transporters can transport a wide range of hydrophobic drugs and may see lipid analogues as just another drug. The MDR3 gene probably arose in evolution from a drug-transporting P-glycoprotein gene. Recent work has shown that the phosphatidylcholine translocator has retained significant drug transport activity and that this transport is inhibited by inhibitors of drug-transporting P-glycoproteins. Whether the phosphatidylcholine translocator also functions as a transporter of some drugs in vivo remains to be seen. Three other ABC transporters were recently shown to be involved in lipid transport: ABCR, also called Rim protein, was shown to be defective in Stargardt's macular dystrophy; this protein probably transports a complex of retinaldehyde and phosphatidylethanolamine in the retina of the eye. ABC1 was shown to be essential for the exit of cholesterol from cells and is probably a cholesterol transporter. A third example, the ABC transporter involved in the import of long-chain fatty acids into peroxisomes, is discussed in the chapter by Hettema and Tabak in this volume.  相似文献   

6.
Wang YY  Tsay YF 《The Plant cell》2011,23(5):1945-1957
This study of the Arabidopsis thaliana nitrate transporter NRT1.9 reveals an important function for a NRT1 family member in phloem nitrate transport. Functional analysis in Xenopus laevis oocytes showed that NRT1.9 is a low-affinity nitrate transporter. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.9 is a plasma membrane transporter expressed in the companion cells of root phloem. In nrt1.9 mutants, nitrate content in root phloem exudates was decreased, and downward nitrate transport was reduced, suggesting that NRT1.9 may facilitate loading of nitrate into the root phloem and enhance downward nitrate transport in roots. Under high nitrate conditions, the nrt1.9 mutant showed enhanced root-to-shoot nitrate transport and plant growth. We conclude that phloem nitrate transport is facilitated by expression of NRT1.9 in root companion cells. In addition, enhanced root-to-shoot xylem transport of nitrate in nrt1.9 mutants points to a negative correlation between xylem and phloem nitrate transport.  相似文献   

7.
The effect of bipolar tetraether lipids, extracted from the thermophilic archaebacterium Sulfolobus acidocaldarius, on the branched-chain amino acid transport system of the mesophilic bacterium Lactococcus lactis was investigated. Liposomes were prepared from mixtures of monolayer lipids and the bilayer lipid phosphatidylcholine (PC), analyzed on their miscibility, and fused with membrane vesicles from L. lactis. Freeze-fracture electron microscopy demonstrates that the bipolar lipids in the hybrid membranes adopted a monomolecular organization at high S. acidocaldarius lipid content. Leucine transport activity (i.e., delta mu H(+)-driven and counterflow uptake) increased with the content of S. acidocaldarius lipids and was optimal at a one-to-one (w/w) ratio of PC to S. acidocaldarius lipids. Membrane fluidity decreased with increasing S. acidocaldarius lipid content. These data suggest that transport proteins can be functionally reconstituted into membranes composed of membrane-spanning lipids provided that membrane viscosity is restricted.  相似文献   

8.
Summary The interaction of furosemide with different phospholipids was investigated. Its influence on the lipid structure was inferred from its effect on the phase transition properties of lipids and on the conductance of planar bilayer membranes. The thermotropic properties of dipalmitoyl phosphatidylcholine, phosphatidylethanolamine (natural), dipalmitoyl phosphatidylethanolamine, brain sphingomyelin, brain cerebrosides and phosphatidylserine in the presence and absence of furosemide were investigated by differential scanning calorimetry,. The modifying effect of furosemide seems to be strongest on phosphatidylethanolamine (natural) and sphingomyelin bilayers. The propensity of furosemide to decrease the electrical resistance of planar lipid membranes was also studied and it is shown that the drug facilitates the transport of ions. Partition coefficients of furosemide between lipid bilayers and water were measured.Abbreviations DSC differential scanning calorimetry - PLM planar lipid membranes - DPPC dipalmitoyl phosphatidylcholine - DMPC dimyristoyl phosphatidylcholine - PE phosphatidyl ethanol  相似文献   

9.
Organelle biogenesis and intracellular lipid transport in eukaryotes.   总被引:8,自引:1,他引:7  
The inter- and intramembrane transport of phospholipids, sphingolipids, and sterols involves the most fundamental processes of membrane biogenesis. Identification of the mechanisms involved in these lipid transport reactions has lagged significantly behind that for intermembrane protein traffic until recently. Application of methods that include fluorescently labeled and spin-labeled lipid analogs, new cellular fractionation techniques, topographically specific chemical modification techniques, the identification of organelle-specific metabolism, permeabilized cell methodology, and yeast molecular genetics has contributed to revealing a diverse biochemical array of transport processes for lipids. Compelling evidence now exists for ATP-dependent, ATP-independent, vesicle-dependent, and vesicle-independent transport processes that are lipid and membrane specific. ATP-dependent transport processes include the transbilayer movement of phosphatidylserine and phosphatidylethanolamine at the plasma membrane and the transport of phosphatidylserine from its site of synthesis to the mitochondria. ATP-independent processes include the transbilayer movement of virtually all lipids at the endoplasmic reticulum, the movement of phosphatidylserine between the inner and outer mitochondrial membranes, and the transfer of nascent phosphatidylcholine and phosphatidylethanolamine to the plasma membrane. The ATP-independent movement of lipids between organelles is believed to be due to the action of lipid transfer proteins, but this still remains to be proved. Vesicle-based transport mechanisms (which are also inherently ATP dependent) include the transport of nascent cholesterol, sphingomyelin, and glycosphingolipids from the Golgi apparatus to the plasma membrane and the recycling of sphingolipids and selected pools of phosphatidylcholine from the plasma membrane to the cell interior. The vesicles involved in cholesterol transport to the plasma membrane are different from those involved in bulk protein transport to the cell surface. The vesicles involved in recycling sphingomyelin to and from the cell surface are different from those involved in the assembly of newly synthesized sphingolipids into the plasma membrane. The preliminary characterization of these lipid translocation processes suggests divergent rather than unifying mechanisms for lipid transport in organelle assembly.  相似文献   

10.
Fluorescent phosphatidic acid and phosphatidylcholine were used to characterize lipid-transport pathways into lipid bodies in an oleaginous fungus, Mortierella ramanniana var. angulispora. Several characteristics of the lipid transport such as temperature dependence and ATP dependence were evaluated. The transport depicted by these fluorescent lipids was consistent with metabolism of radiolabelled lipids, indicating that fluorescent lipids are useful to study lipid-body formation in this fungus. The results dissect lipid transport of phosphatidic acid and phosphatidylcholine into lipid bodies and reveal regulatory steps for lipid-body formation in this fungus.  相似文献   

11.
ABC (ATP-binding cassette) proteins actively transport a wide variety of substrates, including peptides, amino acids, sugars, metals, drugs, vitamins and lipids, across extracellular and intracellular membranes. Of the 49 hum an ABC proteins, a significant number are known to mediate the extrusion of lipids from membranes or the flipping of membrane lipids across the bilayer to generate and maintain membrane lipid asymmetry. Typical lipid substrates include phospholipids, sterols, sphingolipids, bile acids and related lipid conjugates. Members of the ABCA subfamily of ABC transporters and other ABC proteins such as ABCB4, ABCG1 and ABCG5/8 implicated in lipid transport play important roles in diverse biological processes such as cell signalling, membrane lipid asymmetry, removal of potentially toxic compounds and metabolites, and apoptosis. The importance of these ABC lipid transporters in cell physiology is evident from the finding that mutations in the genes encoding many of these proteins are responsible for severe inherited diseases. For example, mutations in ABCA1 cause Tangier disease associated with defective efflux of cholesterol and phosphatidylcholine from the plasma membrane to the lipid acceptor protein apoA1 (apolipoprotein AI), mutations in ABCA3 cause neonatal surfactant deficiency associated with a loss in secretion of the lipid pulmonary surfactants from lungs of newborns, mutations in ABCA4 cause Stargardt macular degeneration, a retinal degenerative disease linked to the reduced clearance of retinoid compounds from photoreceptor cells, mutations in ABCA12 cause harlequin and lamellar ichthyosis, skin diseases associated with defective lipid trafficking in keratinocytes, and mutations in ABCB4 and ABCG5/ABCG8 are responsible for progressive intrafamilial hepatic disease and sitosterolaemia associated with defective phospholipid and sterol transport respectively. This chapter highlights the involvement of various mammalian ABC transporters in lipid transport in the context of their role in cell signalling, cellular homoeostasis, apoptosis and inherited disorders.  相似文献   

12.
The subcellular distribution and composition of endogenously synthesized lipid in isolated white adipose cells were studied to determine the nature and extent of lipid compartmentation. After brief incubation of cells with labeled glucose, acetate, or palmitic acid, over 90% of newly synthesized triglyceride was localized in the bulk-lipid phase, indicating rapid intracellular transport and storage. From 13 to 20% of the newly formed lipid was diglyceride, and over 95% of it was localized in the central lipid-storage vacuole rather than in organelle systems concerned with esterification, thus indicating intracellular segregation of newly synthesized partial glycerides. Most of the newly synthesized phosphatides partitioned with membranous organelles. Synthesis of cholesterol or cholesteryl ester was negligible. After brief incubation of cells with labeled glucose, the relative specific activity of organelle triglyceride was mitochondria > microsomes > liposomes > soluble supernatant > bulk lipid. In pulse-chase studies the specific activity of organelle triglyceride decreased and that of the bulk fraction increased reflecting intracellular lipid transport. The data suggest that a significant proportion of newly formed lipid is transferred from mitochondrial membranes into the storage vacuole by direct lipid-lipid interaction. Liposomes, which consist of small enclosed lipid droplets resembling chylomicrons, contained triglycerides of specific activity similar to microsomal triglyceride. While the evidence that liposome triglyceride may be microsomal in origin is indirect, the results do indicate that the liposome fraction represents a phase in the transport and(or) storage of new glyceride. At least two forms of compartmentation of newly synthesized lipids occurred. The first, termed "structural," refers to localization of lipids to organelle fractions. The second type of compartmentation, termed "chemical," concerns the intracellular segregation of a specific lipid class. The accumulation and segregation of newly synthesized diglyceride in the bulk storage pool are examples of the latter form of compartmentation.  相似文献   

13.
The effect of altering cell membrane lipids on ion transport across isolated corneas was studied. Corneas mounted in Ussing-type chambers showed a rapid increase in short-circuit current following treatment with a variety of unsaturated fatty acids of varying chain length and unsaturation. Measurements of membrane fluidity which utilize immunofluorescence labelling of membrane proteins showed corneal epithelial cell membranes to be significantly more fluid following linoleic acid treatment. Uptake studies indicate rapid incorporation of [14C]linoleic acid into corneal cell membranes. Highly unsaturated fatty acids were found to have the greatest ability to stimulate chloride transport. Saturated fatty acids were tested and were found to have no effect on chloride transport at any concentration. It is proposed that unsaturated fatty acids activate chloride transport by increasing membrane lipid fluidity. The relationship of these parameters is discussed in terms of a mobile receptor model. We speculate that an increase in membrane lipid fluidity promotes lateral diffusion of membrane receptor proteins and enzymes, increasing protein-protein interactions within the membrane, ultimately resulting in the enhancement of cyclic AMP synthesis.  相似文献   

14.
Mesosomal vesicles and plasma membranes were isolated from Staphylococcus aureus ATCC 6538P by protoplasting and differential centrifugation. The lipids of each of the two membrane fractions were extracted with pyridine-acetic acid-N-butanol, and the nonlipid contaminants were removed by Sephadex treatment. The lipids were then separated by passage through diethylaminoethyl-cellulose columns and characterized by thin-layer chromatographic, chemical, and spectral analyses. The lipids were separated into four discrete diethylaminoethyl fractions: (i) vitamin K2, carotenoids, C55 isoprenoid alcohol, and monoglucosyl diglyceride; (ii) cardiolipin, carotenoids, phosphatidyl glycerol, diglucosyl diglyceride, and an unidentified ninhydrin-positive component; (iii) cardiolipid and phosphatidyl glyderol; (iv) cardiolipin, phosphatidyl glycerol, and phosphatidyl glucose. Qualitatively, no difference in lipid composition between mesosomal vesicles and plasma membranes was found. However, based on equal dry weights of membrane materials, a relative quantitative difference in the amount of specific lipids in mesosomal vesicles and plasma membranes was observed. There are 4 times more monoglucosyl diglyceride, 2.6 times more diglucosyl diglyceride, 3.8 times more phosphatidyl glucose, 2 times more carotenoids, and 2 times more vitamin K2 found in mesosomal vesicles than in plasma membranes. The concentration of cardiolipin and phosphatidyl glycerol is 3.6 and 6 times greater, respectively, in mesosomal vesicles.  相似文献   

15.
Pillai P  John JB 《Plant physiology》1981,68(3):585-587
Chloroplasts were isolated from triazine-sensitive and triazine-resistant biotypes of common groundsel (Senecio vulgaris L.), common lambsquarter (Chenopodium album L.), and redroot pigweed (Amaranthus retroflexus L.). Chloroplast lipids were extracted and analyzed for differences among sensitive and resistant biotypes. The distribution of lipid between major lipid classes differed in chloroplasts from resistant and susceptible biotypes. Chloroplasts from resistant biotypes contained higher proportions of monogalactosyl diglyceride and phosphatidyl ethanolamine and lower proportions of digalactosyl diglyceride and phosphatidyl choline than did chloroplasts from susceptible biotypes. Monogalactosyl diglyceride and phosphatidyl ethanolamine were also quantitatively higher in membranes of resistant versus susceptible biotypes. The major lipid classes of resistant chloroplast membranes contained lipids comparatively richer in unsaturated fatty acids with the exceptions of digalactosyl diglyceride from all three biotypes and phosphatidyl ethanolamine from common groundsel. Results correlated changes in triazine sensitivity with qualitative and quantitative differences in the lipid composition of chloroplast membranes.  相似文献   

16.
Lipid bilayer membranes were made from hopanoid phosphatidylcholine mixtures dissolved in decane. The specific capacity of the mixed membranes was found to increase with increasing hopanoid content. This indicates an interaction between hopanoids and lipids which leads to a reduction of the chemical potential of the solvent in the membranes.The structural properties of mixtures of hopanoids and phosphatidylcholines were investigated using charged probe molecules, the negatively charged lipophilic ions dipicrylamine (DPA) and tetraphenylborate (TØB) and the positively charged potassium complex PV-K+ (PV, cyclo (D-Val-L-Pro-L-Val-D-Pro)3). The transport properties of the lipophilic ions in the mixed membranes indicate that the electrical properties like dipolar potential and surface potentials of phosphatidylcholine membranes are not changed by the insertion of the hopanoids. The translocation rate constant K of the PV-K+ complex is drastically reduced in the hopanoid phosphatidylcholine membranes with increasing hopanoid content. This effect is discussed on the basis of an alteration of the microviscosity in the mixed membranes. There exists a close analogy between the action of cholesterol and hopanoids in bilayer membranes from phosphatidylcholines.A bilayer membrane composed of di-ω-cyclohexyldodecanoyl-phosphatidylcholine (DCPC) was found to possess a higher specific capacity as compared to other phosphatidylcholines. Also a lower translocation rate constant for PV-K+ was observed which may be caused by the relative high microviscosity of this lipid even above the phase transition temperature.  相似文献   

17.
A high affinity fungal nitrate carrier with two transport mechanisms   总被引:8,自引:0,他引:8  
We have expressed the CRNA high affinity nitrate transporter from Emericella (Aspergillus) nidulans in Xenopus oocytes and used electrophysiology to study its properties. This method was used because there are no convenient radiolabeled substrates for the transporter. Oocytes injected with crnA mRNA showed nitrate-, nitrite-, and chlorite-dependent currents. Although the gene was originally identified by chlorate selection there was no evidence for transport of this anion. The gene selection is explained by the high affinity of the transporter for chlorite, and the fact that this ion contaminates solutions of chlorate. The pH-dependence of the anion-elicited currents was consistent with H(+)-coupled mechanism of transport. At any given voltage, currents showed hyperbolic kinetics with respect to extracellular H(+), and these data could be fitted with a Michaelis-Menten relationship. But this equation did not adequately describe transport of the anion substrates. At higher concentrations of the anion substrates and more negative membrane voltages, the currents were decreased, but this effect was independent of changes in external pH. These more complicated kinetics could be fit by an equation containing two Michaelis-Menten terms. The substrate inhibition of the currents could be explained by a transport reaction cycle that included two routes for the transfer of nitrate across the membrane, one on the empty carrier and the other proton coupled. The model predicts that the substrate inhibition of transporter current depends on the cytosolic nitrate concentration. This is the first time a high affinity nitrate transport activity has been characterized in a heterologous system and the measurements show how the properties of the CRNA transporter are modified by changes in the membrane potential, external pH, and nitrate concentration. The physiological significance of these observations is discussed.  相似文献   

18.
Rat brain microsomal membranes were fused to liposomes prepared with several pure lipids, namely, phosphatidylserine, phosphatidylinositol, phosphatidic acid, and mixtures of phosphatidic acid and phosphatidylcholine or phosphatidylethanolamine. The fusion between liposomes and microsomes was measured by the octadecyl rhodamine B chloride method. The extent and other properties of fusion largely depend on the lipid used to prepare liposomes; phosphatidic acid and phosphatidylinositol fuse more extensively than other lipid classes. The activity of serine base exchange is affected by the fusion between rat brain microsomes and lipids. It is strongly inhibited by phosphatidylserine, but it is activated by phosphatidic acid. The inhibition produced by phosphatidylserine on its own synthesis is proposed as a mechanism for controlling the formation of phosphatidylserine in rat brain microsomes.  相似文献   

19.
In membranes of Acholeplasma laidlawii, lipid composition is regulated as a function of several stimuli affecting the volume and length of the hydrocarbon chains and the hydrocarbon-water interfacial area. This regulation is vizualized as changes in the relative amounts of the major polar lipids monoglucosyl diglyceride and diglucosyl diglyceride. These lipids form reversed hexagonal and lamellar phases with water, respectively. However, mixtures of the two lipids, in the molar proportions found in the A. laidlawii membrane, form a lamellar phase. By adjustment of the glycolipid ratio as a response to environmental stimuli, a certain stability of the lamellar membrane is maintained. In growing cells with oleoyl membrane lipids, a transmembrane electrical potential of approximately -50 mV (inside negative), but no transmembrane pH difference, was found. Addition of the K+ ionophore valinomycin caused a rapid and dose-dependent hyperpolarization remaining for at least 7 h. Simultaneously, a rapid and lasting metabolic decrease in the ratio monoglucosyl diglyceride/diglucosyl diglyceride occurred. The increase in potential and the decrease in the lipid ratio were both reversed in a dose-dependent manner by extracellular KCl. Likewise, the lipophilic cation tetraphenylphosphonium caused a dose-dependent decrease in membrane potential and an increase in the monoglucosyl diglyceride/diglucosyl diglyceride ratio, respectively. The ionophores monensin and particularly nigericin had similar but less pronounced effects on the potential and lipid ratios as valinomycin. The uncoupler carbonyl cyanide m-chlorophenylhydrazone had no effect on cell growth, membrane potential, or lipid regulation at 10 microM. These dissimilar structures and the low concentrations used make a direct disturbance of drug molecules on lipid packing in membranes less likely.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
《Biophysical journal》2021,120(17):3718-3731
The collective behavior of lipids with diverse chemical and physical features determines a membrane’s thermodynamic properties. Yet, the influence of lipid physicochemical properties on lipid dynamics, in particular interbilayer transport, remains underexplored. Here, we systematically investigate how the activation free energy of passive lipid transport depends on lipid chemistry and membrane phase. Through all-atom molecular dynamics simulations of 11 chemically distinct glycerophospholipids, we determine how lipid acyl chain length, unsaturation, and headgroup influence the free energy barriers for two elementary steps of lipid transport: lipid desorption, which is rate limiting, and lipid insertion into a membrane. Consistent with previous experimental measurements, we find that lipids with longer, saturated acyl chains have increased activation free energies compared to lipids with shorter, unsaturated chains. Lipids with different headgroups exhibit a range of activation free energies; however, no clear trend based solely on chemical structure can be identified, mirroring difficulties in the interpretation of previous experimental results. Compared to liquid-crystalline phase membranes, gel phase membranes exhibit substantially increased free energy barriers. Overall, we find that the activation free energy depends on a lipid’s local hydrophobic environment in a membrane and that the free energy barrier for lipid insertion depends on a membrane’s interfacial hydrophobicity. Both of these properties can be altered through changes in lipid acyl chain length, lipid headgroup, and membrane phase. Thus, the rate of lipid transport can be tuned through subtle changes in local membrane composition and order, suggesting an unappreciated role for nanoscale membrane domains in regulating cellular lipid dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号