首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The fine structure and monomeric composition of the ester-cutin fraction (susceptible to BF3/CH3OH transesterification) of the adaxial leaf cuticle of Clivia miniata Reg. were studied in relation to leaf and cuticle development. Clivia leaves grow at their base such that cuticle and tissues increase in age from the base to the tip. The zone of maximum growth (cell expansion) was located between 1 and 4 cm from the base. During cell expansion, the projected surface area of the upper epidermal cells increased by a factor of nine. In the growth region the cuticle consists mainly of a polylamellate cuticle proper of 100–250 nm thickness. After cell expansion has ceased both the outer epidermal wall and the cuticle increase in thickness. Thickening of the cuticle is accomplished by interposition of a cuticular layer between the cuticle proper and the cell wall. The cuticular layer exhibits a reticulate fine structure and contributes most of the total mass of the cuticle at positions above 6 cm from the leaf base. The composition of ester cutin changed with the age of cuticles. In depolymerisates from young cuticles, 26 different monomers could be detected whereas in older ones their number decreased to 13. At all developmental stages, 9,16-/10,16-dihydroxyhexadecanoic acid (positional isomers not separated), 18-hydroxy-9-octadecenoic acid, 9,10,18-trihydroxyoctadecanoic acid and 9,10-epoxy-18-hydroxyoctadecanoic acid were most frequent with the epoxy alkanoic acid clearly predominating (47% at 16 cm). The results are discussed as to (i) the age dependence of cutin composition, (ii) the relationship between fine structure and composition, (iii) the composition of the cuticle proper, the cuticular layer and the non-depolymerizable cutin fraction, and (iv) the polymeric structure of cutin.Abbreviations CL cuticular layer - CP cuticle proper - MX cutin polymer matrix  相似文献   

2.
The fine structure of the upper cuticular membrane (CM) of Clivia miniata leaves was investigated using electron microscopy. The CM is made up of a thin (130 nm) lamellated cuticle proper (CP) and a thick (up to 7 m over periclinal walls) cuticular layer (CL) of marbled appearance. Evidence is presented to show that the electron lucent lamellae of the CP do not simply represent layers of soluble cuticular lipids (SCL). Instead, the lamellation is probably due to layers of cutin differing in polarity. It is argued that the SCL in the Cp are the main barrier to water. Thickening of the CM during leaf development takes place by interposition of cutin between the CM and the cellin wall. The cutin of young, expanding leaves has a high affinity for KMnO4 and is therefore relatively polar. As leaves mature, the external CL underneath the CP becomes non-polar, as only little contrast can be obtained with permanganate as the post fixative.Abbreviations CM cuticular membrane - CP cuticle proper - CL cuticular layer - SCL soluble cuticular lipids (cuticular waxes)  相似文献   

3.

Main conclusion

The Arabidopsis cuticle, as observed by electron microscopy, consists primarily of the cutin/cutan matrix. The cuticle possesses a complex substructure, which is correlated with the presence of intracuticular waxes. The plant cuticle is composed of an insoluble polyester, cutin, and organic solvent soluble cuticular waxes, which are embedded within and coat the surface of the cutin matrix. How these components are arranged in the cuticle is not well understood. The Arabidopsis cuticle is commonly understood as ‘amorphous,’ lacking in ultrastructural features, and is often observed as a thin (~80–100 nm) electron-dense layer on the surface of the cell wall. To examine this cuticle in more detail, we examined cuticles from both rapidly elongating and mature sections of the stem and compared the preservation of the cuticles using conventional chemical fixation methods and high-pressure freezing/freeze-substitution (HPF/FS). We found that HPF/FS preparation revealed a complex cuticle substructure, which was more evident in older stems. We also found that the cuticle increases in thickness with development, indicating an accretion of polymeric material, likely in the form of the non-hydrolyzable polymer, cutan. When wax was extracted by chloroform immersion prior to sample preparation, the contribution of waxes to cuticle morphology was revealed. Overall, the electron-dense cuticle layer was still visible but there was loss of the cuticle substructure. Furthermore, the cuticle of cer6, a wax-deficient mutant, also lacked this substructure, suggesting that these fine striations were dependent on the presence of cuticular waxes. Our findings show that HPF/FS preparation can better preserve plant cuticles, but also provide new insights into the fine structure of the Arabidopsis cuticle.
  相似文献   

4.
The cuticular membrane (CM) of Agave americana with the adheringcellin wall was isolated with ammonium oxalate-oxalic acid solution,air-dried and dry-embedded without fixation. After KMnO4 staining,electron translucent lamellae are visible in the cuticle properand cuticular layer. The fine structure of the opaque lamellaein the cuticle proper is more complex than previously observedin situ. It is more clearly observed in CM isolated at 40 °Cthan in those isolated at 100 °C, or in air-dried tissue,subsequently remoistened, fixed and dehydrated in acetone. Although extraction of CM with hot organic solvents removessubstantial quantities of wax (mainly long chain alcohols andfatty acids), not all of the electron-lucent lamellae disappearcompletely. Strong sulphuric acid dissolves the cellin wallsadhering to the CM and strongly diminishes the iodine/potassiumiodide-sulphuric acid-silver proteinate staining reactivityof the CM, probably due to the marked reduction in epoxide contentof the cutin. The acid does not completely remove the carbohydratereticulum included in the cuticular layer. In sodium methoxide solution the CM is decutinized from thecellin wall side where the carbohydrate fibrillae included inthe interior cuticular layer become completely exposed. On theoutside, the lamellate cuticle proper is also lost. Major cutinmonomers solubilized are 9, 10-epoxy-18-hydroxyoctadecanoicand 9, 10, 18-trihy-droxyoctadecanoic acids. Partial decutinizationof the CM with methanolic HC1 produces similar but less drasticeffects than methoxide apparently because the outer surfaceis protected by an artificial layer of lipids originating fromdepolymerized cutin. Agave americana, leaf, cuticular membrane, isolation of cuticular membranes, ultrahistochemistry, cutin, wax, epoxide groups in biopolymers  相似文献   

5.
Klaus J. Lendzian 《Planta》1982,155(4):310-315
Cuticles from the adaxial surface of Citrus aurantium L. leaves and from the pericarp of Lycopersicon esculentum L. and Capsicum annuum L. were isolated enzymatically and their oxygen permeability was determined. Isolated cuticles were mounted between a gaseous and an aqueous compartment with the physiological outer side of the membrane facing the gaseous compartment. Permeability for oxygen was characterized by permeability (P) and diffusion (D) coefficients. P and D were independent of the driving force (gradient of oxygen concentration) across the cuticle, thus, Henry's law was obeyed. P values for the diffusion of oxygen varied between 3·10-7 (Citrus), 1.4·10-6 (Capsicum), and 1.1·10-6 (Lycopersicon) m·s-1. Extraction of soluble lipids from the cuticles increased the permeability. By treating the cutin matrix and the soluble lipids as resistances in series, it could be demonstrated that the soluble lipids were the main resistance for oxygen permeability in Citrus cuticles. However, in Lycopersicon and Capsicum, both the cutin matrix and the soluble lipids determined the total resistance. P values were not affected by either the proton concentration (pH 3–9) or the cations (Na+, Ca2+) present at the morphological inner side of the cuticles. It is concluded that the water content of cuticles does not affect the permeability properties for oxygen. Partition coefficients indicated a high solubility of oxygen in the cuticle of Citrus. The data suggest a solubility process in the cuticle of Citrus with respect to oxygen permeation.Abbreviations CM cuticular membrane - MX cutin polymer matrix - SCL soluble cuticular lipids  相似文献   

6.
The cuticle, a hydrophobic protective layer on the aerial parts of terrestrial plants, functions as a versatile defensive barrier to various biotic and abiotic stresses and also regulates water flow from the external environment.1 A biopolyester (cutin) and long-chain fatty acids (waxes) form the principal structural framework of the cuticle; the functional integrity of the cuticular layer depends on the outer ''epicuticular'' layer as well as the blend consisting of the cutin biopolymer and ''intracuticular'' waxes.2 Herein, we describe a comprehensive protocol to extract waxes exhaustively from commercial tomato (Solanum lycopersicum) fruit cuticles or to remove epicuticular and intracuticular waxes sequentially and selectively from the cuticle composite. The method of Jetter and Schäffer (2001) was adapted for the stepwise extraction of epicuticular and intracuticular waxes from the fruit cuticle.3,4 To monitor the process of sequential wax removal, solid-state cross-polarization magic-angle-spinning (CPMAS) 13C NMR spectroscopy was used in parallel with atomic force microscopy (AFM), providing molecular-level structural profiles of the bulk materials complemented by information on the microscale topography and roughness of the cuticular surfaces. To evaluate the cross-linking capabilities of dewaxed cuticles from cultivated wild-type and single-gene mutant tomato fruits, MAS 13C NMR was used to compare the relative proportions of oxygenated aliphatic (CHO and CH2O) chemical moieties.Exhaustive dewaxing by stepwise Soxhlet extraction with a panel of solvents of varying polarity provides an effective means to isolate wax moieties based on the hydrophobic characteristics of their aliphatic and aromatic constituents, while preserving the chemical structure of the cutin biopolyester. The mechanical extraction of epicuticular waxes and selective removal of intracuticular waxes, when monitored by complementary physical methodologies, provides an unprecedented means to investigate the cuticle assembly: this approach reveals the supramolecular organization and structural integration of various types of waxes, the architecture of the cutin-wax matrix, and the chemical composition of each constituent. In addition, solid-state 13C NMR reveals differences in the relative numbers of CHO and CH2O chemical moieties for wild-type and mutant red ripe tomato fruits. The NMR techniques offer exceptional tools to fingerprint the molecular structure of cuticular materials that are insoluble, amorphous, and chemically heterogeneous. As a noninvasive surface-selective imaging technique, AFM furnishes an effective and direct means to probe the structural organization of the cuticular assembly on the nm-μm length scale.  相似文献   

7.
Staining cuticular membranes ofAgave americana andClivia miniata en bloc with potassium permanganate results in a strong contrast in the interior cuticular layer while the exterior part remains unstained. This is not caused by a selective chemical reaction with the interior part but by the unidirectional penetration of the reagent from the interior side, the outside being protected by the cuticle proper. In transverse cryosections of the cuticular membrane, permanganate penetrates nearly as easily into the exterior cuticular layer as into the interior one giving the same contrast. However, compared with the periclinal penetration into the cuticle proper this penetration is accelerated five-to tenfold by the polysaccharide network within the cuticular layer which serves as a distribution-channel system. Periclinal penetration into the cuticle proper occurs independently in each cutin penetration unit included between two obvious lucent lamellae and further divided into subunits.  相似文献   

8.
Benny Chefetz 《Plant and Soil》2007,298(1-2):21-30
The sorption of organic compounds by plant cuticular matter has been extensively investigated; however, little has been studied regarding the effect of plant cuticle degradation on their role in the sorption of organic compounds in soils. The sorption of phenanthrene was studied in soil samples which had been incubated for up to 9 months with three different types of plant cuticle isolated from tomato fruits, pepper fruits and citrus leaves. The main change in the diffuse reflectance Fourier-transform infrared (DRIFT) spectra during incubation of the cuticles was related to cutin decomposition. The peaks assigned to methyl and ethyl vibration and C=O vibration in ester links decreased with decomposition. In general, with all samples, the phenanthrene sorption coefficients calculated for the whole incubated soils (K d) decreased with incubation time. In contrast, the carbon-normalized K d values (K oc) did not exhibit a similar trend for the different cuticles during incubation. The origin of the cuticle also affected the linearity of the sorption isotherms. With the tomato and citrus cuticle samples, the Freundlich N values were close to unity and were stable throughout incubation. However with the green pepper cuticle, the N values exhibited a significant decrease (from 0.98 to 0.70). This study demonstrates that the structural composition of the plant cuticle affects its biodegradability and therefore its ability to sorb organic compounds in soils. Of the residues originating from plant cuticular matter in soils, the cutan biopolymer and lignin-derived structures appear to play a dominant role in sorption as decomposition progresses. Responsible Editor: Alfonso Escudero.  相似文献   

9.
M. Riederer  J. Schönherr 《Planta》1986,169(1):69-80
The sorption of 4-nitrophenol (4-NP) in enzymatically isolated cuticles ofLycopersicon esculentum fruits andFicus elastica leaves was studied as a function of temperature and solute concentration. Plots of the concentrations of 4-NP sorbed in the cuticle versus the equilibrium concentrations in the aqueous phase gave linear isotherms at low concentrations that tended to approach plateaus at higher sorbate concentrations ( 10 mmol·kg-1). At low concentrations of sorbed 4-NP, cuticles have sorptive properties similar to those of organic solvents which are able to form intermolecular hydrogen bonds, while at higher concentrations their solid nature becomes apparent. During sorption of 4-NP the cutin matrix swells and new sorption sites are successively formed. The partition coefficients of 4-NP in the system cuticle/buffer are functions of temperature and concentration. At high sorbate concentrations (approx. 1 mol·kg-1) they approach a value of 1. Different sorptive properties were observed for the cutin regions normally encrusted with soluble cuticular lipids (SCL) and those without SCL. Increasing temperature augmented the number of sorption sites in the cutin ofLycopersicon while no effect was observed withFicus. The changes of partial molar free energy (G o tr), enthalpy (H o tr), and entropy (S o tr) for the phase transfer of 4-NP also depended on sorbate concentration: H o tr and S o tr were negative and steeply decreased at high sorbate concentrations. This is due to solute-solute interactions replacing solute-cutin interactions at high concentrations resulting in solid precipitates of solute within the cutin matrix. This formation of ordered solid domaines starting from a small number of nonelectrolyte molecules interacting with the cutin is proposed as a model for the intracuticular deposition of SCL.Abbreviations CM cuticular membrane - MX polymer matrix membrane - 4-NP 4-nitrophenol - SCL soluble cuticular lipids  相似文献   

10.
Plant cuticles are broadly composed of two major components: polymeric cutin and a mixture of waxes, which infiltrate the cutin matrix and also accumulate on the surface, forming an epicuticular layer. Although cuticles are thought to play a number of important physiological roles, with the most important being to restrict water loss from aerial plant organs, the relative contributions of cutin and waxes to cuticle function are still not well understood. Tomato ( Solanum lycopersicum ) fruits provide an attractive experimental system to address this question as, unlike other model plants such as Arabidopsis, they have a relatively thick astomatous cuticle, providing a poreless uniform material that is easy to isolate and handle. We identified three tomato mutants, cutin deficient 1 ( cd1 ), cd2 and cd3 , the fruit cuticles of which have a dramatic (95–98%) reduction in cutin content and substantially altered, but distinctly different, architectures. This cutin deficiency resulted in an increase in cuticle surface stiffness, and in the proportions of both hydrophilic and multiply bonded polymeric constituents. Furthermore, our data suggested that there is no correlation between the amount of cutin and the permeability of the cuticle to water, but that cutin plays an important role in protecting tissues from microbial infection. The three cd mutations were mapped to different loci, and the cloning of CD2 revealed it to encode a homeodomain protein, which we propose acts as a key regulator of cutin biosynthesis in tomato fruit.  相似文献   

11.
Tomato GDSL1 Is Required for Cutin Deposition in the Fruit Cuticle   总被引:1,自引:0,他引:1  
The plant cuticle consists of cutin, a polyester of glycerol, hydroxyl, and epoxy fatty acids, covered and filled by waxes. While the biosynthesis of cutin building blocks is well documented, the mechanisms underlining their extracellular deposition remain unknown. Among the proteins extracted from dewaxed tomato (Solanum lycopersicum) peels, we identified GDSL1, a member of the GDSL esterase/acylhydrolase family of plant proteins. GDSL1 is strongly expressed in the epidermis of growing fruit. In GDSL1-silenced tomato lines, we observed a significant reduction in fruit cuticle thickness and a decrease in cutin monomer content proportional to the level of GDSL1 silencing. A significant decrease of wax load was observed only for cuticles of the severely silenced transgenic line. Fourier transform infrared (FTIR) analysis of isolated cutins revealed a reduction in cutin density in silenced lines. Indeed, FTIR-attenuated total reflectance spectroscopy and atomic force microscopy imaging showed that drastic GDSL1 silencing leads to a reduction in ester bond cross-links and to the appearance of nanopores in tomato cutins. Furthermore, immunolabeling experiments attested that GDSL1 is essentially entrapped in the cuticle proper and cuticle layer. These results suggest that GDSL1 is specifically involved in the extracellular deposition of the cutin polyester in the tomato fruit cuticle.  相似文献   

12.
J. Schönherr 《Planta》1976,131(2):159-164
Summary The water permeability of astomatous cuticular membranes isolated from Citrus aurantium L. leaves, pear (Pyrus communis L.) leaves and onion (Allium cepa L.) bulb scales was determined before and after extraction of cuticular waxes with lipid solvents. In pear, the permeability coefficients for diffusion of tritiated water across cuticular membranes (CM) prior to extraction [P d(CM)] decreased by a factor of four during leaf expansion. In all three species investigated P d(CM) values of cuticular membranes from fully expanded leaves varied between 1 to 2×10-7 cm-3 s-1·P d(CM) values were not affected by pH. Extraction of cuticular waxes from the membranes increased their water permeability by a factor of 300 to 500. Permeability coefficients for diffusion of THO across the cutin matrix (MX) after extraction [P d(MX)] increased with increasing pH. P dvalues were not inversely proportional to the thickness of cuticular membranes. By treating the cutin matrix and cuticular waxes as two resistances acting in series it was shown that the water permeability of cuticles is completely determined by the waxes. The lack of the P d(CM) values to respond to pH appeared to be due to structural effects of waxes in the cutin matrix. Cuticular membranes from the submerse leaves of the aquatic plant Potamogeton lucens L. were three orders of magnitude more permeable to water than the cuticular membranes of the terrestrial species investigated.Abbreviations CM cuticular membrane - MX cutin matrix - WAX waxes This study was supported by a grant from the Deutsche Forschungsgemeinschaft.  相似文献   

13.
Schreiber L  Elshatshat S  Koch K  Lin J  Santrucek J 《Planta》2006,223(2):283-290
Counter diffusion of chloride, applied as NaCl at the inner side of isolated cuticles, and silver, applied as AgNO3 at the outer side, lead to the formation of insoluble AgCl precipitates in isolated cuticles. AgCl precipitates could be visualized by light and scanning electron microscopy. The presence of AgCl precipitates in isolated cuticles was verified by energy dispersive X-ray analysis. It is argued that insoluble AgCl precipitates formed in polar pores of cuticles and as a consequence, cuticular transpiration of 13 out of 15 investigated species was significantly reduced up to three-fold. Water as a small and uncharged but polar molecule penetrates cuticles via two parallel paths: a lipophilic path, formed by lipophilic cutin and wax domains, and a aqueous pathe, formed by polar pores. Thus, permeances P (m s−1) of water, which is composed of the two quantities P Lipid and P Pore, decreased, since water transport across polar pores was affected by AgCl precipitates. Cuticles with initially high rates of cuticular transpiration were generally more sensitive towards AgCl precipitates compared to cuticles with initially low rates of transpiration. Results presented here, significantly improves the current model of the structure of the cuticular transpiration barrier, since the pronounced heterogeneity of the cuticular transport barrier, composed of lipophilic as well as polar paths of diffusion, has to be taken into account in future.  相似文献   

14.
The outer wall of Ornithogalum umbellatum ovary and the fruit epidermis are covered with a thick cuticle and contain lipotubuloids incorporating 3H-palmitic acid. This was earlier evidenced by selective autoradiographic labelling of lipotubuloids. After post-incubation in a non-radioactive medium, some marked particles insoluble in organic solvents (similar to cutin matrix) moved to the cuticular layer. Hence, it was hypothesised that lipotubuloids participated in cuticle synthesis. It was previously suggested that cutinsomes, nanoparticles containing polyhydroxy fatty acids, formed the cuticle. Thus, identification of the cutinsomes in O. umbellatum ovary epidermal cells, including lipotubuloids, was undertaken in order to verify the idea of lipotubuloid participation in cuticle synthesis in this species. Electron microscopy and immunogold method with the antibodies recognizing cutinsomes were used to identify these structures. They were mostly found in the outer cell wall, the cuticular layer and the cuticle proper. A lower but still significant degree of labelling was also observed in lipotubuloids, cytoplasm and near plasmalemma of epidermal cells. It seems that cutinsomes are formed in lipotubuloids and then they leave them and move towards the cuticle in epidermal cells of O. umbellatum ovary. Thus, we suggest that (1) cutinsomes could take part in the synthesis of cuticle components also in plant species other than tomato, (2) the lipotubuloids are the cytoplasmic domains connected with cuticle formation and (3) this process proceeds via cutinsomes.  相似文献   

15.
16.
K. Matzke  M. Riederer 《Planta》1990,182(3):461-466
The outer layers (bran) of white wheat (Triticum aestivum L. cv. Jubilar) caryopses contain several layers of lipophilic materials. It was the objective of the present work to establish the nature, composition and amounts of the lipid polymers of wheat bran and to compare it with leaf cutin. Prior to analysis, the bran was isolated and divided into two fractions: (i) the inner bran containing the remnants of the nucellus, the seed coat and the inner layers of the pericarp, and (ii) the outer bran consisting of the peripheral layers of the pericarp. Following depolymerization, a total number of 14 long-chain monobasic, dibasic, ω-hydroxymonobasic, α-hydroxymonobasic, dihydroxymonobasic, trihydroxymonobasic and epoxyhydroxymonobasic alkanoic acids have been identified as constituents of bran lipid polymeres. The most abundant single constituent was 9,10-epoxy-18-hydroxyoctadecanoic acid. The qualitative and quantitative compositions of depolymerisates from the inner and outer bran fractions were similar except for the absence of 9,10,18-trihydroxyoctadecanoic acid and of long-chain (C22−C26 ω-hydroxyalkanoic acids in the outer bran. The composition of bran depolymerisates closely resembled the constitution of the BF3/CH3OH susceptible fraction of wheat leaf cutin. Only less than 2% of the total amount of monomers released from inner bran were indicative for the presence of suberin. The total cutin content of wheat bran amounted to 4.2 g per kg of dry caryopses. Most of it (96.6%) was contributed by the cuticles of the seed coat and the nucellus while the cuticle of the pericarp made up only 3.4%.  相似文献   

17.
A developmental study of the cuticle has shown that it consists of a homogeneous cuticle proper apposed on the wall and a heterogeneous cuticular layer generated by intussusception of cutin into the wall. At an early stage, the adcrusted cuticle proper is underlain by a ruthenium red-positive layer in which the cuticular layer originates. The origin of the anticlinal flange is referable to an electron-dense, ruthenium red-positive ridge which arises above the anticlinal wall and which also becomes cutinized. At leaf maturity, the inner surface of the cuticular layer, including that of the flange, forms interdigitating protuberances with the cell wall.
Development of the cuticle coincides with deposition of crystals of calcium oxalate in the epidermal cell wall. Initiation of large, early-formed crystals is associated with electron-opaque membranous structures formed close and parallel to the plasmalemma in the young cell wall. Crystals undergo periclinal and anticlinal growth and subsequently become engulfed within the cuticle by development of the cuticular layer. Cutin/polysaccharide interaction during development and the significance of crystal deposition are discussed.  相似文献   

18.
MILLER  R. H. 《Annals of botany》1983,51(6):697-709
Dewaxed thin-sectioned and dewaxed isolated mature fruit cuticlesrevealed the unequivocal presence in situ of visibly discrete,ubiquitous, cuticular pores or orifices concomitant with anticlinally-orientedtranscuticular canals in 51 varieties of fruit among 20 plantfamilies. More than 66 per cent of the fruit cuticles have poresand/or canals. No correlation exists between either fruit sizeor pore size and cuticle thickness. Dewaxed cuticles rangedfrom 1.25–22.5 µm in thickness. Canal lengths aredirectly related to cuticle thickness. Cuticular occlusionsof the epidermal cells were found in 76 per cent of the fruitsexamined. Evidence is provided by light microscopy photomicrographs. Fruit cuticles, cuticle morphology, cuticular pores, transcuticular canals  相似文献   

19.
Arabidopsis eceriferum (cer) mutants with unique alterations in their rosette leaf cuticular wax accumulation and composition established by gas chromatography have been investigated using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy in combination with univariate and multivariate analysis. Objectives of this study were to evaluate the utility of ATR-FTIR for detection of chemical diversity in leaf cuticles, obtain spectral profiles of cer mutants in comparison with the wild type, and identify changes in leaf cuticles caused by drought stress. FTIR spectra revealed both genotype- and treatment-dependent differences in the chemical make-up of Arabidopsis leaf cuticles. Drought stress caused specific changes in the integrated area of the CH3 peak, asymmetrical and symmetrical CH2 peaks, ester carbonyl peak and the peak area ratio of ester CO to CH2 asymmetrical vibration. CH3 peak positively correlated with the total wax accumulation. Thus, ATR-FTIR spectroscopy is a valuable tool that can advance our understanding of the role of cuticle chemistry in plant response to drought and allow selection of superior drought-tolerant varieties from large genetic resources.  相似文献   

20.
Plant cuticles form the interface between epidermal plant cells and the atmosphere. The cuticle creates an effective barrier against water loss, bacterial and fungal infection and also protects plant tissue from UV radiation. It is composed of the cutin matrix and embedded soluble lipids also called waxes. Chemical composition of cuticular waxes and physiological properties of cuticles are affected by internal regulatory mechanisms and environmental conditions (e.g. drought, light, and humidity). Here, we tested the effect of drought stress simulation by the exogenous application of abscisic acid (ABA) on cuticular wax amount and composition. ABA-treated plants and control plants differed in total aboveground biomass, leaf area, stomatal density and aperture, and carbon isotope composition. They did not differ in total wax amount per area but there were peculiar differences in the abundance of particular components. ABA-treated plants contained significantly higher proportions of aliphatic components characterized by chain length larger than C26, compared to control plants. This trend was consistent both between and within different functional groups of wax components. This can lead to a higher hydrophobicity of the cuticular transpiration barrier and thus decrease cuticular water loss in ABA-treated plants. At both ABA-treated and control plants alcohols with chain length C24 and C26 were predominant. Such a shift towards wax compounds having a higher average chain length under drought conditions can be interpreted as an adaptive response of plants towards drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号