首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The slow decomposition rate of boreal forest floor bryophytes contributes both to maintaining high soil C reserves as well as affecting conditions for tree growth by maintaining excessively high soil water content, cooling the soil and slowing nutrient cycles. In this study, mass loss of three bryophyte species (Pleurozium schreberi, Sphagnum capillifolium, S. fuscum) was measured in unharvested, partial cut and low-retention cut forest blocks. Mesh decomposition bags containing the three species and wood sticks were placed at two depths in colonies of either P. schreberi or S. capillifolium (environment) in the three harvest treatments and retrieved after two growing seasons. Mass loss was primarily related to substrate type (P. schreberi > S. capillifolium > wood sticks > S. fuscum) and secondarily to depth. Harvest treatment and environment (P. schreberi or S. capillifolium) only weakly affected sphagna mass loss. The weak effect of harvest treatment suggests that conditions created by low retention cuts do not to stimulate decomposition in this system and are not important enough to stimulate carbon loss, or to counteract paludification. On the other hand, the strong effect of bryophyte type indicates that conditions affecting bryophyte colonization and succession are of great importance in driving carbon and nutrient cycles.  相似文献   

2.
3.
A novel landscape classification system was proposed in this study based on landscape ecological theory and the differentiation in climate, topography, soil, vegetation and land use mode. Five basic units (zone, tract, province, region and type) and two assistant units (sub and group) were used in this system. The tropical forest landscape in Hainan Island was regarded as a landscape province, belonging to global tropical forest landscape zone, Asiatic (oriental) tropical forest landscape tract and Chinese tropical forest landscape subtract. Based on the grade system of region, sub-region, type-group and type, this landscape province (Hainan Island) is divided into 6 landscape regions (east moist forest landscape, west semi-arid forest landscape, central-south mountainous forest landscape, tropical evergreen needle-leaved forest landscape, tropical bamboo landscape and tropical plantation landscape), 11 tropical forest landscape sub-regions represented by tropical lowland valley rain forest landscape, 26 tropical forest landscape-type groups represented by tropical lowland valley Dipterocarpaceae forest landscape, and 54 forest landscape types (FLT) represented by lowland valley Vatica mangachapoi forest. Generally, this classification system represents the landscape diversity of the tropical forest in Hainan Island. Further studies are needed to better understand the landscape diversity of Hainan Island.  相似文献   

4.
Wang B S  Peng S L  Guo L  Ye Y H 《农业工程》2007,27(5):1690-1695
A novel landscape classification system was proposed in this study based on landscape ecological theory and the differentiation in climate, topography, soil, vegetation and land use mode. Five basic units (zone, tract, province, region and type) and two assistant units (sub and group) were used in this system. The tropical forest landscape in Hainan Island was regarded as a landscape province, belonging to global tropical forest landscape zone, Asiatic (oriental) tropical forest landscape tract and Chinese tropical forest landscape subtract. Based on the grade system of region, sub-region, type-group and type, this landscape province (Hainan Island) is divided into 6 landscape regions (east moist forest landscape, west semi-arid forest landscape, central-south mountainous forest landscape, tropical evergreen needle-leaved forest landscape, tropical bamboo landscape and tropical plantation landscape), 11 tropical forest landscape sub-regions represented by tropical lowland valley rain forest landscape, 26 tropical forest landscape-type groups represented by tropical lowland valley Dipterocarpaceae forest landscape, and 54 forest landscape types (FLT) represented by lowland valley Vatica mangachapoi forest. Generally, this classification system represents the landscape diversity of the tropical forest in Hainan Island. Further studies are needed to better understand the landscape diversity of Hainan Island.  相似文献   

5.
6.
中国热带森林植被类型研究历史和划分探讨   总被引:1,自引:0,他引:1  
热带森林是我国森林植被的重要组成部分,明确其森林植被类型分类对于生物多样性维持机制研究和保护管理等都具有重要意义。该文以中国热带森林植被分类研究中存在的问题为出发点,通过阐述我国各省区植被类型分类的研究历史,在综合考虑多种生物和非生物影响因素的基础上,提出一个新的热带森林植被类型分类框架以供探讨。结果表明:(1)尽管针对我国热带森林的分布范围和群落特征等都已开展了诸多研究,但对我国热带森林植被类型的划分依据和分类体系仍存在争议。(2)尽管我国的热带森林都处于季风气候区带内,但许多热带地区的森林植被类型并不只是受季风影响,而是气候带、关键气候因子、地形、土壤反馈和物种适应等多种因素共同作用的结果。(3)我国的热带森林植被包括5个植被型,即非典型性热带雨林、热带季雨林、热带山地雨林、热带山顶苔藓矮林(热带云雾林)和热带针叶林,其中热带季雨林植被型包含4种植被亚型[热带落叶季雨林、热带半落叶(半常绿)季雨林、热带常绿季雨林和热带石灰岩(石山)季雨林]。(4)阐明了上述热带森林植被型和植被亚型在我国各省区的分布情况,并提出未来有必要对人工恢复后的热带森林进行评估和植被类型划分。综上所述,该文提出一个新的热带森林植被类型分类框架,以期为今后基于不同地区开展热带森林比较研究提供参考。  相似文献   

7.
Abstract. Using old military and cadastral maps and modern vegetation maps, the changes in land use over the past 230 yr were followed. The following maps were used: the military map from the second half of the 18th century, the cadastral map of the ‘Economic cadastral survey for regulation of land taxes’ from the first half of the 19th century, and a field map made in the 1980s. A vegetation map of the area was made on the basis of satellite images. We used basic classification techniques combined with extensive field inspections and aerial photographs. The output of this procedure was verified in the field. Additionally, a comparison of statistical data about land use categories is presented. It was established that the last remaining areas of inundated riverine forest disappeared 200 yr ago, and since then only minor changes in land use have occurred.  相似文献   

8.
Species diversity of vascular epiphyte plant communities was studied in La Carbonera, a montane rain forest dominated by Podocarpaceae in the Venezuelan Andes. We compared the epiphyte communities of the primary, disturbed, and secondary forest areas of La Carbonera in order to augment the scarce knowledge on the effects of anthropogenic disturbance on these important elements of tropical vegetation. Diversity of vascular epiphytes (191 species in the whole forest area) was low in the disturbed and secondary areas (81 spp.) compared to adjacent primary forest (178 spp.). Four types of disturbed forest and secondary vegetation supported different numbers of epiphyte species, showing a decline with increasing degrees of disturbance (65 spp. along a road transect, 42 spp. on relict trees in disturbed forest, 13 spp. in a tree plantation and 7 spp. in a former clearing, both secondary vegetation units). Epiphytic species composition in primary and disturbed or secondary forest areas differed markedly: disturbed habitats harboured fewer fern and orchid species but more bromeliad species than the primary forest. Probably the families occurring only in primary forest sites of our study may be useful as bioindicators to determine the degree of disturbance in other habitats of mountain rain forests as well. Epiphyte abundance was also lower in disturbed habitats: a remnant emergent tree supported only about half as many epiphyte individuals as a member of the same species of similar size in the primary forest. The decrease in species numbers and abundance as well as the differences in species composition are mainly due to the less diverse phorophyte structure and less differentiated microclimate in the disturbed and secondary vegetation compared to the primary forest.  相似文献   

9.
Tree hollows are among the rarest habitats in today''s Central European managed forests but are considered key structures for high biodiversity in forests. To analyze and compare the effects of tree hollow characteristics and forest structure on diversity of saproxylic beetles in tree hollows in differently structured managed forests, we examined between 41 and 50 tree hollows in beech trees in each of three state forest management districts in Germany. During the two‐year study, we collected 283 saproxylic beetle species (5880 individuals; 22% threatened species), using emergence traps. At small spatial scales, the size of hollow entrance and the number of surrounding microhabitat structures positively influenced beetle diversity, while the stage of wood mould decomposition had a negative influence, across all three forest districts. We utilized forest inventory data to analyze the effects of forest structure in radii of 50–500 m around tree hollows on saproxylic beetle diversity in the hollows. At these larger spatial scales, the three forest management districts differed remarkably regarding the parameters that influenced saproxylic beetle diversity in tree hollows. In Ebrach, characterized by mostly deciduous trees, the amount of dead wood positively influenced beetle diversity. In the mostly coniferous Fichtelberg forest district, with highly isolated tree hollows, in contrast, only the proportion of beech trees around the focal tree hollows showed a positive influence on beetle diversity. In Kelheim, characterized by mixed forest stands, there were no significant relationships between forest structure and beetle diversity in tree hollows. In this study, the same local tree hollow parameters influenced saproxylic beetle diversity in all three study regions, while parameters of forest structure at larger spatial scales differed in their importance, depending on tree‐species composition.  相似文献   

10.
Introduction. Tropical montane forests support a high abundance and diversity of bryophytes and lichens on different substrates. However, quantitative information about how their biomass and water-holding capacity change with elevation is scarce. The current project assessed variation in the biomass and water-holding capacity of bryophytes and lichens on Baru Volcano, Panama.

Methods. On the western slope, the bryophyte and lichen layer was collected from 600?cm2 plots on six substrate types with four replications at eight elevations along a gradient from 1900 to 3300?m a.s.l. We recorded the thickness, water-holding capacity and biomass of all samples, as well as environmental parameters.

Key results. At lower elevations substrates had a similar biomass and water-holding capacity per area, but with increasing elevation terricolous substrates showed the strongest increase (highest values at 3100?m). These patterns are associated with climatic variation along the gradient. At the highest elevations, the forest was of low stature and more light reached the forest floor. Also at these high elevations fog provides a daily wetting of the bryophytes and lichens. At lower elevations the water supply is increasingly in the form of rain, which is less frequent than the fog.

Conclusions. The apparent strong coupling of biomass variations to precipitation regimes implies a high sensitivity of the bryophytes and lichens to climatic warming and changes in the cloud base elevation. Furthermore our data suggest that the importance of bryophytes and lichens for regulating ecosystem water fluxes increases with elevation, which underlines the necessity to conserve intact montane forests.  相似文献   


11.
Forest succession depends strongly on the life history strategies of individual trees. An important strategic element is the ability to survive unfavourable environmental conditions that result in strongly reduced tree growth. In this study, we investigated whether the relationship between growth and mortality differs among tree species and site conditions. We analysed 10 329 trees of nine tree species (Picea abies , Taxus baccata , Fagus sylvatica , Tilia cordata , Carpinus betulus , Fraxinus excelsior , Quercus robur , Betula spp. and Alnus glutinosa ) from unmanaged forests of Europe: the continental Białowieża forest (Poland) and several oceanically influenced Swiss forest reserves. For each species, we calculated a set of flexible logistic regression models with the explanatory variables growth (as measured by relative basal area increment), tree size and site. We selected the species-specific model with the highest goodness-of-fit and calculated its discriminatory power (area under the receiver operating characteristic curve, AUC) and calibration measures. Most models achieved at least a good discriminatory power (AUC>0.7) and the AUC ranged from 0.62 to 0.87; calibration curves did not indicate any overfitting. Almost all growth–mortality relationships differed among species and sites, i.e. there is no universal growth–mortality relationship. Some species such as F. excelsior showed reduced survival probabilities for both unfavourable and very good growth conditions. We conclude that the growth–mortality relationships presented here can contribute to the life-history classification of trees and that they should also help to improve projections of forest succession models.  相似文献   

12.
In this work, we studied the potentials offered by managed boreal forests and forestry to mitigate the climate change using forest‐based materials and energy in substituting fossil‐based materials (concrete and plastic) and energy (coal and oil). For this purpose, we calculated the net climate impacts (radiative forcing) of forest biomass production and utilization in the managed Finnish boreal forests (60°–70°N) over a 90‐year period based on integrated use forest ecosystem model simulations (on carbon sequestration and biomass production of forests) and life‐cycle assessment (LCA) tool. When studying the effects of management on the radiative forcing in a system integrating the carbon sink/sources dynamics in both biosystem and technosystem, the current forest management (baseline management) was used a reference management. Our results showed that the use of forest‐based materials and energy in substituting fossil‐based materials and energy would provide an effective option for mitigating climate change. The negative climate impacts could be further decreased by maintaining forest stocking higher over the rotation compared to the baseline management and by harvesting stumps and coarse roots in addition to logging residues in the final felling. However, the climate impacts varied substantially over time depending on the prevailing forest structure and biomass assortment (timber, energy biomass) used in substitution.  相似文献   

13.
  1. The effects of timber harvest in the moist coniferous forests of western North America are not well documented for ecologically important arthropods such as moths.
  2. We assessed the response of macromoth community structure (abundance, sample size-corrected estimates of species richness and diversity, and overall community composition) to time since deforestation at 20 previously logged sites (1–95 years post-harvest), and compared the macromoth communities at these stands to four old growth stands.
  3. As stand age increased following timber harvest, the number of macromoths captured in ultraviolet light traps increased and the relative abundance of dietary generalists declined, but sample size-corrected estimates of species richness and diversity did not vary. Macromoth community composition of the youngest stands (<10 years post-harvest) differed markedly from each other but converged soon thereafter.
  4. Macromoth communities at old growth sites featured higher capture rates, lower dominance by dietary generalists, and higher sample size-corrected estimates of species richness and diversity than at previously logged sites. Community composition profiles for old growth sites differed from all previously logged sites, but the differences were subtle except in comparison to the youngest logged sites. None of the 188 species we sampled were old growth specialists.
  5. Our results reveal dramatic initial impacts of deforestation on macromoth communities in moist coniferous forests of western North America. Such effects are largely reversed within two decades post-harvest but some effects persist for at least 95-years following logging.
  相似文献   

14.
Background: Most studies on tropical bryophytes deal with epiphytic species. This is the first ecological study of tropical forests that focuses specifically on terrestrial bryophytes.

Aim: To investigate the differences between slope and ridge environments in upper montane forests of southern Ecuador in terms of species diversity (richness, abundance), species composition and life forms of terrestrial bryophytes.

Methods: We used Non-metric Multidimensional Scaling (NMDS) to group bryophyte relevés by study location, habitat type and exposure class. Species indicator values were calculated and compared for different habitats.

Results: In total, 140 species were recorded, the majority being liverworts. NMDS analyses and Mantel correlations clearly separated between slope and ridge relevés, and between sunny and shaded microhabitats on ridges. Bryophyte life forms also showed different distribution patterns in slope and in ridge habitats. Mosses were more prominent in sunny than in shaded microhabitats.

Conclusions: Environmental differentiation between ridges and slopes, and small-scale variation in microclimatic conditions caused by differences in exposure, were stronger predictors of species richness and composition than geographical distance between study sites.  相似文献   

15.
To maintain biodiversity in managed forests we must understand how forestry affects various organisms across a wide range of spatial and temporal scales. We compared landscape structure, forest structure, and species richness and abundance of epiphytic macrolichens in three pairs of natural and managed boreal forest landscapes. Study landscapes (2500 ha) were located within and adjacent to three of the largest forest reserves in Sweden (Reivo, Muddus, Jelka). The structural heterogeneity within landscapes was higher in managed forests whereas within-stand structural heterogeneity was higher in natural landscapes. Species richness of macrolichens at the stand level (sample plot) was 23% higher in natural forests but there was no difference at the landscape level. Most (86%) of the common species were more frequent in natural landscapes. Lichen abundance (estimated by lichen litter) was two times higher in natural than in managed landscapes, 5.6 and 2.7 kg ha-1 forest (pooled data), respectively. Both species richness and abundance were negatively related to cutting level (number and basal area of cut stumps) and positively related to stand variables (stand age, stem density and basal area). Lichen-rich forest stands were more numerous but covered a smaller area and were more isolated in managed landscapes. This may in turn have important consequences for dispersal of lichen propagules to second-growth forests. In conclusion, the results suggest that effects of forestry on epiphyte diversity and abundance are strongly related to the spatial scale (stand or landscape). To enhance biodiversity in managed forests we must increase structural heterogeneity at the whole range of spatial and temporal scales.  相似文献   

16.
Soils and vegetation of a woodland in South Eastern Tanzania were studied in support of a project fostering community participation in the management of a proposed forest reserve. In nine sites within an area of 500 km2, soils were characterized, frequency of occurrence of woody species was assessed and diameter at breast height of timber species recorded. Villagers identified 133 species of which only 56% were scientifically identified. However, as ordination axes derived from the complete data set were highly correlated with those derived from the restricted data set, the latter could be used. On the undulating plains, deep, sandy soils (Hypoluvic Arenosols, Profondic and Arenic Luvisols) occurred low in organic carbon, exchangeable bases and extractable aluminium content. Most common canopy species were Brachystegia spiciformis/B. boehmii and Pterocarpus angolensis. On the dissected plains on shallow, clayey soils (Leptic Cambisols) with higher organic carbon, exchangeable bases and extractable aluminium content, Acacia nigrescens and Markhamia spp. were the most common tree species. On deeper, fertile clayey soils (Profondic Lixisols and Chromic Phaeozems) vegetation consisted of species found in the two vegetation groups. Pterocarpus angolensis and Pericopsis angolensis were the only valuable timber species commonly found, most frequently on the undulating plains. As soils of this area are unfavourable for agriculture, it seems sensible to set this area aside as a forest reserve.  相似文献   

17.
Cowpea (Vigna unguiculata) is a nutritious legume crop for both its grain and leaves and comprises an important component in both human and animal nutrition. In Brazil, the use of mulch, such as coconut fiber, and organic fertilizers to maximize cowpea production offers an alternative to conventional mineral fertilizer strategies. Farming practices affect the diversity and activity of soil microorganisms, including arbuscular mycorrhizal fungi (AMF), important plant growth promoters for legumes. Our objective was to determine the effect of mulching with coconut fiber and manure on AMF diversity in cowpea. Soil samples were collected from an Experimental Station in Petrolina, NE Brazil: one Caatinga (natural dry‐forest vegetation), one fallow, and one experimental site established in the fallow area and cultivated with cowpea receiving cattle manure and four doses (0, 12, 24, 48 t/ha) of coconut fiber. AMF species richness, abundance, and diversity were evaluated. Sixty‐four AMF species were recorded, with predominance of Glomeraceae and Acaulosporaceae. Highest species richness (47) was recovered from the Caatinga but AMF diversity was also high in the cultivated sites, demonstrating the importance of mycotrophic plants, such as cowpea, in crop production systems for the maintenance of AMF species richness. Although several species, such as Claroideoglomus etunicatum, Acaulospora scrobiculata, Glomus trufemii, and Paraglomus pernambucanum, revealed pronounced sporulation patterns, even high doses of coconut fiber did not affect AMF richness and diversity, compared to fallow. Consequently, cultivation of mycotrophic plants and use of organic manures are able to maintain high AMF species richness in tropical agroecosystems.  相似文献   

18.
Multiple discriminant analysis is a useful multivariate technique in vegetation studies that can be employed for several purposes, even if the underlying statistical assumptions are not satisfied. An example of application of this method is discussed: multiple discriminant analysis was successfully used for evaluating the predictivity of forest types defined by numerical classification of vegetation data with respect to soil variables.Species nomenclature follows Pignatti (1982) for vascular plants and Augier (1966) for mosses.The research has been supported by the IDROSER (Bologna, Italy) and by the Italian C. N. R. (Grant no. 83.02548.04, resp. Prof. A. Pirola). We wish to thank Prof. E. Feoli, Prof. E. van der Maarel, Prof. L. Orlóci and Prof. A. Pirola for suggestions. We are also indebted to Dr N. Filippi who analyzed the soil samples.  相似文献   

19.
In temperate regions, slope aspect is one of the most influential drivers of environmental conditions at landscape level. The effect of aspect on vegetation has been well studied, but virtually nothing is known about how fungal communities are shaped by aspect-driven environmental conditions. I carried out DNA metabarcoding of fungi from soil samples taken in a selected study area of Pannonian forests in northern Hungary to compare richness and community composition of taxonomic and functional groups of fungi between slopes of predominantly southerly vs. northerly aspect. The deep sequence data presented here (i.e. 980 766 quality-filtered sequences) indicate that both niche (environmental filtering) and neutral (stochastic) processes shape fungal community composition at landscape level. Fungal community composition correlated strongly with aspect, with many fungi showing preference for either south-facing or north-facing slopes. Several taxonomic and functional groups showed significant differences in richness between north- and south-facing slopes and strong compositional differences were observed in all functional groups. The effect of aspect on fungal communities likely is mediated through contrasting mesoclimatic conditions, that in turn influence edaphic processes as well as vegetation. The compositional differences observed in fungi are largely consistent with the coenologically described forest types, which indicates the usefulness of these habitat types as a framework to better understand environmental differences that influence fungal community composition at landscape level. Finally, the data presented here provide unprecedented insights into the diversity and landscape-level community dynamics of fungi in the Pannonian forests.  相似文献   

20.
《新西兰生态学杂志》2011,29(2):279-290
The Canterbury Plains have lost most of their pre-Polynesian indigenous vegetation, primarily forest and shrubland. One of the few remaining areas is the 2.3 ha Eyrewell Scientific Reserve which consists mostly of low kānuka (Kunzea ericoides) forest and a small area of grassland. We assessed the Reserve vegetation using a combination of plots and transect surveys at different times of the year between 2001–2003. For comparison with the Reserve vegetation we also assessed plots in an adjacent grazed kānuka remnant, adjacent cultivated pasture and Eyrewell Forest, a pine plantation. Our study of the Eyrewell Reserve in 2001–2003 found that since an assessment of the Reserve in 1972, 28 indigenous species were no longer present but 14 indigenous species and 48 adventive species were newly recorded. The dramatic invasion of the Reserve is illustrated by the fact that 60% of the 118 species recorded in 2003 were adventives compared to 34% in 1972. Despite this invasion and the loss of indigenous species, Reserve plots still have more than twice as many species as plots in the adjacent pine plantation. The Reserve also included several species of high conservation value such as the “Chronically Threatened” Leptinella serrulata, and the “At Risk” Aciphylla subflabellata, Coprosma intertexta and Pterostylis tristis. Plots in the Reserve grassland and adjacent pasture had the lowest percentage of indigenous species of all habitat types, with the pasture plots having no indigenous vascular plant species. In contrast the understorey of the old pine stands had the highest percentage of indigenous species of any of the habitats and in places was dominated by kānuka up to 4 m tall, indicating that these plantations also have conservation value. Eyrewell Reserve and the few other remaining kānuka remnants in the Canterbury Plains represent an important pool of indigenous species for conservation. Options for the future management of the Reserve are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号