首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protein sequence database (PFDB) containing about 11,000 entries is available for Macintosh computers. The PFDB can be easily updated by importing sequences from the PIR collection through the internet. The most important feature of the database is its organization in families of closely related sequences, each family being characterized by its average dipeptide composition [Petrilli (1993), Comput. Appl. Biosci. 2, 89–93]. This allows one to perform a rapid and sensitive protein similarity search by comparing the precalculated family dipeptide composition with that of the query sequence by a linear correlation coefficient. An example of an application in which a new protein was classsified by using a sequence of a fragment just 19 residues long is reported.  相似文献   

2.
We have recently described a method based on artificial neural networks to cluster protein sequences into families. The network was trained with Kohonen''s unsupervised learning algorithm using, as inputs, the matrix patterns derived from the dipeptide composition of the proteins. We present here a large-scale application of that method to classify the 1,758 human protein sequences stored in the SwissProt database (release 19.0), whose lengths are greater than 50 amino acids. In the final 2-dimensional topologically ordered map of 15 x 15 neurons, proteins belonging to known families were associated with the same neuron or with neighboring ones. Also, as an attempt to reduce the time-consuming learning procedure, we compared 2 learning protocols: one of 500 epochs (100 SUN CPU-hours [CPU-h]), and another one of 30 epochs (6.7 CPU-h). A further reduction of learning-computing time, by a factor of about 3.3, with similar protein clustering results, was achieved using a matrix of 11 x 11 components to represent the sequences. Although network training is time consuming, the classification of a new protein in the final ordered map is very fast (14.6 CPU-seconds). We also show a comparison between the artificial neural network approach and conventional methods of biosequence analysis.  相似文献   

3.
《Journal of molecular biology》2019,431(13):2442-2448
At present, about half of the protein domain families lack a structural representative. However, in the last decade, predicting contact maps and using these to model the tertiary structure for these protein families have become an alternative approach to gain structural insight. At present, reliable models for several hundreds of protein families have been created using this approach. To increase the use of this approach, we present PconsFam, which is an intuitive and interactive database for predicted contact maps and tertiary structure models of the entire Pfam database. By modeling all possible families, both with and without a representative structure, using the PconsFold2 pipeline, and running quality assessment estimator on the models, we predict an estimation for how confident the contact maps and structures are for each family.  相似文献   

4.
5.
We describe a hidden Markov model, HMMSTR, for general protein sequence based on the I-sites library of sequence-structure motifs. Unlike the linear hidden Markov models used to model individual protein families, HMMSTR has a highly branched topology and captures recurrent local features of protein sequences and structures that transcend protein family boundaries. The model extends the I-sites library by describing the adjacencies of different sequence-structure motifs as observed in the protein database and, by representing overlapping motifs in a much more compact form, achieves a great reduction in parameters. The HMM attributes a considerably higher probability to coding sequence than does an equivalent dipeptide model, predicts secondary structure with an accuracy of 74.3 %, backbone torsion angles better than any previously reported method and the structural context of beta strands and turns with an accuracy that should be useful for tertiary structure prediction.  相似文献   

6.
7.
A genetic algorithm (GA) for feature selection in conjunction with neural network was applied to predict protein structural classes based on single amino acid and all dipeptide composition frequencies. These sequence parameters were encoded as input features for a GA in feature selection procedure and classified with a three-layered neural network to predict protein structural classes. The system was established through optimization of the classification performance of neural network which was used as evaluation function. In this study, self-consistency and jackknife tests on a database containing 498 proteins were used to verify the performance of this hybrid method, and were compared with some of prior works. The adoption of a hybrid model, which encompasses genetic and neural technologies, demonstrated to be a promising approach in the task of protein structural class prediction.  相似文献   

8.
Due to the increasing gap between structure-determined and sequenced proteins, prediction of protein structural classes has been an important problem. It is very important to use efficient sequential parameters for developing class predictors because of the close sequence-structure relationship. The multinomial logistic regression model was used for the first time to evaluate the contribution of sequence parameters in determining the protein structural class. An in-house program generated parameters including single amino acid and all dipeptide composition frequencies. Then, the most effective parameters were selected by a multinomial logistic regression. Selected variables in the multinomial logistic model were Valine among single amino acid composition frequencies and Ala-Gly, Cys-Arg, Asp-Cys, Glu-Tyr, Gly-Glu, His-Tyr, Lys-Lys, Leu-Asp, Leu-Arg, Pro-Cys, Gln-Met, Gln-Thr, Ser-Trp, Val-Asn and Trp-Asn among dipeptide composition frequencies. Also a neural network model was constructed and fed by the parameters selected by multinomial logistic regression to build a hybrid predictor. In this study, self-consistency and jackknife tests on a database constructed by Zhou [1998. An intriguing controversy over protein structural class prediction. J. Protein Chem. 17(8), 729-738] containing 498 proteins are used to verify the performance of this hybrid method, and are compared with some of prior works. The results showed that our two-stage hybrid model approach is very promising and may play a complementary role to the existing powerful approaches.  相似文献   

9.
This report describes the application of a simple computational tool, AAPAIR.TAB, for the systematic analysis of the cysteine-rich EGF, Sushi, and Laminin motif/sequence families at the two-amino acid level. Automated dipeptide frequency/bias analysis detects preferences in the distribution of amino acids in established protein families, by determining which "ordered dipeptides" occur most frequently in comprehensive motif-specific sequence data sets. Graphic display of the dipeptide frequency/bias data revealed family-specific preferences for certain dipeptides, but more importantly detected a shared preference for employment of the ordered dipeptides Gly-Tyr (GY) and Gly-Phe (GF) in all three protein families. The dipeptide Asn-Gly (NG) also exhibited high-frequency and bias in the EGF and Sushi motif families, whereas Asn-Thr (NT) was distinguished in the Laminin family. Evaluation of the distribution of dipeptides identified by frequency/bias analysis subsequently revealed the highly restricted localization of the G(F/Y) and N(G/T) sequence elements at two separate sites of extreme conservation in the consensus sequence of all three sequence families. The similar employment of the high-frequency/bias dipeptides in three distinct protein sequence families was further correlated with the concurrence of these shared molecular determinants at similar positions within the distinctive scaffolds of three structurally divergent, but similarly employed, motif modules.  相似文献   

10.
ProClass is a protein family database that organizes non-redundant sequence entries into families defined collectively by PIR superfamilies and PROSITE patterns. By combining global similarities and functional motifs into a single classification scheme, ProClass helps to reveal domain and family relationships and classify multi-domain proteins. The database currently consists of >155 000 sequence entries retrieved from both PIR-International and SWISS-PROT databases. Approximately 92 000 or 60% of the ProClass entries are classified into approximately 6000 families, including a large number of new members detected by our GeneFIND family identification system. The ProClass motif collection contains approximately 72 000 motif sequences and >1300 multiple alignments for all PROSITE patterns, including >21 000 matches not listed in PROSITE and mostly detected from unique PIR sequences. To maximize family information retrieval, the database provides links to various protein family, domain, alignment and structural class databases. With its high classification rate and comprehensive family relationships, ProClass can be used to support full-scale genomic annotation. The database, now being implemented in an object-relational database management system, is available for online sequence search and record retrieval from our WWW server at http://pir.georgetown.edu/gfserver/proclass.html  相似文献   

11.
黄静 《生物数学学报》2003,18(3):351-356
提出了一种利用神经网络为蛋白质家族建立模型的方法,这一方法的理论出发点是利用神经网络从一组同家族蛋白质序列中识别出共同的特征模式,建好的模型可用于预测蛋白质家族,使用这一方法。所能识别的模式在长度、位点等方面都不受限制。而且建模及预测过程中输入神经网络的蛋白质序列不需要作预对齐。对Pfam蛋白质库中的二十个家族运用此方法,预测的平均正确率达到了95.5%。  相似文献   

12.
The PANTHER database was designed for high-throughput analysis of protein sequences. One of the key features is a simplified ontology of protein function, which allows browsing of the database by biological functions. Biologist curators have associated the ontology terms with groups of protein sequences rather than individual sequences. Statistical models (Hidden Markov Models, or HMMs) are built from each of these groups. The advantage of this approach is that new sequences can be automatically classified as they become available. To ensure accurate functional classification, HMMs are constructed not only for families, but also for functionally distinct subfamilies. Multiple sequence alignments and phylogenetic trees, including curator-assigned information, are available for each family. The current version of the PANTHER database includes training sequences from all organisms in the GenBank non-redundant protein database, and the HMMs have been used to classify gene products across the entire genomes of human, and Drosophila melanogaster. The ontology terms and protein families and subfamilies, as well as Drosophila gene c;assifications, can be browsed and searched for free. Due to outstanding contractual obligations, access to human gene classifications and to protein family trees and multiple sequence alignments will temporarily require a nominal registration fee. PANTHER is publicly available on the web at http://panther.celera.com.  相似文献   

13.
Nucleotide binding and oligomerization domain-containing protein 2 (NOD2/Card15) is an intracellular protein that is involved in the recognition of bacterial cell wall-derived muramyl dipeptide. Mutations in the gene encoding NOD2 are associated with inherited inflammatory disorders, including Crohn disease and Blau syndrome. NOD2 is a member of the nucleotide-binding domain and leucine-rich repeat-containing protein gene (NLR) family. Nucleotide binding is thought to play a critical role in signaling by NLR family members. However, the molecular mechanisms underlying signal transduction by these proteins remain largely unknown. Mutations in the nucleotide-binding domain of NOD2 have been shown to alter its signal transduction properties in response to muramyl dipeptide in cellular assays. Using purified recombinant protein, we now demonstrate that NOD2 binds and hydrolyzes ATP. Additionally, we have found that the purified recombinant protein is able to bind directly to muramyl dipeptide and can associate with known NOD2-interacting proteins in vitro. Binding of NOD2 to muramyl dipeptide and homo-oligomerization of NOD2 are enhanced by ATP binding, suggesting a model of the molecular mechanism for signal transduction that involves binding of nucleotide followed by binding of muramyl dipeptide and oligomerization of NOD2 into a signaling complex. These findings set the stage for further studies into the molecular mechanisms that underlie detection of muramyl dipeptide and assembly of NOD2-containing signaling complexes.  相似文献   

14.
Naveed M  Khan A  Khan AU 《Amino acids》2012,42(5):1809-1823
G protein-coupled receptors (GPCRs) are transmembrane proteins, which transduce signals from extracellular ligands to intracellular G protein. Automatic classification of GPCRs can provide important information for the development of novel drugs in pharmaceutical industry. In this paper, we propose an evolutionary approach, GPCR-MPredictor, which combines individual classifiers for predicting GPCRs. GPCR-MPredictor is a web predictor that can efficiently predict GPCRs at five levels. The first level determines whether a protein sequence is a GPCR or a non-GPCR. If the predicted sequence is a GPCR, then it is further classified into family, subfamily, sub-subfamily, and subtype levels. In this work, our aim is to analyze the discriminative power of different feature extraction and classification strategies in case of GPCRs prediction and then to use an evolutionary ensemble approach for enhanced prediction performance. Features are extracted using amino acid composition, pseudo amino acid composition, and dipeptide composition of protein sequences. Different classification approaches, such as k-nearest neighbor (KNN), support vector machine (SVM), probabilistic neural networks (PNN), J48, Adaboost, and Naives Bayes, have been used to classify GPCRs. The proposed hierarchical GA-based ensemble classifier exploits the prediction results of SVM, KNN, PNN, and J48 at each level. The GA-based ensemble yields an accuracy of 99.75, 92.45, 87.80, 83.57, and 96.17% at the five levels, on the first dataset. We further perform predictions on a dataset consisting of 8,000 GPCRs at the family, subfamily, and sub-subfamily level, and on two other datasets of 365 and 167 GPCRs at the second and fourth levels, respectively. In comparison with the existing methods, the results demonstrate the effectiveness of our proposed GPCR-MPredictor in classifying GPCRs families. It is accessible at .  相似文献   

15.
根据蛋白质的氨基酸组成实现其快速鉴定   总被引:1,自引:0,他引:1  
常规进行蛋白质鉴定的方法是测定其氨基酸顺序,它需要蛋白质顺序分析仪,对蛋白质的纯度要求高,费时和花费大,与之相比,蛋白质的氨基酸组成和分子量是容易实验测定的。本文描述了一个基于蛋白质的组成和分子量进行其快速鉴定的方法。其基本出发点是,通过统计蛋白质序列数据库中每个序列的氨基酸组成和分子量,得到一个含蛋白质长度、组成和分子量的数据库,将靶蛋白质的组成等数据与该数据库进行对比,可以检出组成和分子量与之接近的蛋白质。从而对该蛋白质进行初步鉴定。在有些情况下,甚至能相当准确地确定靶蛋白质与数据库中的某个(些)蛋白质相关。根据这一原理本文设计了根据氨基酸组成检索蛋白质组成数据库的程序,通过对胰岛素原、细胞肿瘤抗原P53和泛肽等多种蛋白质的组成分析,证实根据氨基酸组成能较好地进行蛋白质鉴定。  相似文献   

16.
May AC 《Protein engineering》2001,14(4):209-217
Hierarchical classification is probably the most popular approach to group related proteins. However, there are a number of problems associated with its use for this purpose. One is that the resulting tree showing a nested sequence of groups may not be the most suitable representation of the data. Another is that visual inspection is the most common method to decide the most appropriate number of subsets from a tree. In fact, classification of proteins in general is bedevilled with the need for subjective thresholds to define group membership (e.g., 'significant' sequence identity for homologous families). Such arbitrariness is not only intellectually unsatisfying but also has important practical consequences. For instance, it hinders meaningful identification of protein targets for structural genomics. I describe an alternative approach to cluster related proteins without the need for an a priori threshold: one, through its use of dynamic programming, which is guaranteed to produce globally optimal solutions at all levels of partition granularity. Grouping proteins according to weights assigned to their aligned sequences makes it possible to delineate dynamically a 'core-periphery' structure within families. The 'core' of a protein family comprises the most typical sequences while the 'periphery' consists of the atypical ones. Further, a new sequence weighting scheme that combines the information in all the multiply aligned positions of an alignment in a novel way is put forward. Instead of averaging over all positions, this procedure takes into account directly the distribution of sequence variability along an alignment. The relationships between sequence weights and sequence identity are investigated for 168 families taken from HOMSTRAD, a database of protein structure alignments for homologous families. An exact solution is presented for the problem of how to select the most representative pair of sequences for a protein family. Extension of this approach by a greedy algorithm allows automatic identification of a minimal set of aligned sequences. The results of this analysis are available on the Web at http://mathbio.nimr.mrc.ac.uk/~amay.  相似文献   

17.
The database of Phylogeny and ALIgnment of homologous protein structures (PALI) contains three-dimensional (3-D) structure-dependent sequence alignments as well as structure-based phylogenetic trees of protein domains in various families. The latest updated version (Release 2.1) comprises of 844 families of homologous proteins involving 3863 protein domain structures with each of these families having at least two members. Each member in a family has been structurally aligned with every other member in the same family using two proteins at a time. In addition, an alignment of multiple structures has also been performed using all the members in a family. Every family with at least three members is associated with two dendrograms, one based on a structural dissimilarity metric and the other based on similarity of topologically equivalenced residues for every pairwise alignment. Apart from these multi-member families, there are 817 single member families in the updated version of PALI. A new feature in the current release of PALI is the integration, with 3-D structural families, of sequences of homologues from the sequence databases. Alignments between homologous proteins of known 3-D structure and those without an experimentally derived structure are also provided for every family in the enhanced version of PALI. The database with several web interfaced utilities can be accessed at: http://pauling.mbu.iisc.ernet.in/~pali.  相似文献   

18.

Background

Development of sensitive sequence search procedures for the detection of distant relationships between proteins at superfamily/fold level is still a big challenge. The intermediate sequence search approach is the most frequently employed manner of identifying remote homologues effectively. In this study, examination of serine proteases of prolyl oligopeptidase, rhomboid and subtilisin protein families were carried out using plant serine proteases as queries from two genomes including A. thaliana and O. sativa and 13 other families of unrelated folds to identify the distant homologues which could not be obtained using PSI-BLAST.

Methodology/Principal Findings

We have proposed to start with multiple queries of classical serine protease members to identify remote homologues in families, using a rigorous approach like Cascade PSI-BLAST. We found that classical sequence based approaches, like PSI-BLAST, showed very low sequence coverage in identifying plant serine proteases. The algorithm was applied on enriched sequence database of homologous domains and we obtained overall average coverage of 88% at family, 77% at superfamily or fold level along with specificity of ∼100% and Mathew’s correlation coefficient of 0.91. Similar approach was also implemented on 13 other protein families representing every structural class in SCOP database. Further investigation with statistical tests, like jackknifing, helped us to better understand the influence of neighbouring protein families.

Conclusions/Significance

Our study suggests that employment of multiple queries of a family for the Cascade PSI-BLAST searches is useful for predicting distant relationships effectively even at superfamily level. We have proposed a generalized strategy to cover all the distant members of a particular family using multiple query sequences. Our findings reveal that prior selection of sequences as query and the presence of neighbouring families can be important for covering the search space effectively in minimal computational time. This study also provides an understanding of the ‘bridging’ role of related families.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号