共查询到20条相似文献,搜索用时 2 毫秒
1.
M John Albert Vincent O Rotimi Rita Dhar Susan Silpikurian Alexander S Pacsa A Majid Molla Gyorgy Szucs 《BMC microbiology》2009,9(1):1-8
Background
A novel DNA phosphorothioate modification (DNA sulfur modification), in which one of the non-bridging oxygen atoms in the phosphodiester bond linking DNA nucleotides is exchanged by sulphur, was found to be genetically determined by dnd or dnd-counterpart loci in a wide spectrum of bacteria from diverse habitats. A detailed mutational analysis of the individual genes within the dnd locus in Streptomyces lividans responsible for DNA phosphorothioation was performed and is described here. It should be of great help for the mechanistic study of this intriguing system.Results
A 6,665-bp DNA region carrying just five ORFs (dndA-E) was defined as the sole determinant for modification of the DNA backbone in S. lividans to form phosphorothioate. This provides a diagnostically reliable and easily assayable Dnd (DNA degradation) phenotype. While dndA is clearly transcribed independently, dndB-E constitute an operon, as revealed by RT-PCR analysis. An efficient mutation-integration-complementation system was developed to allow for detailed functional analysis of these dnd genes. The Dnd- phenotype caused by specific in-frame deletion of the dndA, C, D, and E genes or the enhanced Dnd phenotype resulting from in-frame deletion of dndB could be restored by expression vectors carrying the corresponding dnd genes. Interestingly, overdosage of DndC or DndD, but not other Dnd proteins, in vivo was found to be detrimental to cell viability.Conclusion
DNA phosphorothioation is a multi-enzymatic and highly coordinated process controlled by five dnd genes. Overexpression of some proteins in vivo prevented growth of host strain, suggesting that expression of the gene cluster is strictly regulated in the native host. 相似文献2.
High-level expression of the hisHAFI genes in Escherichia coli, cloned under the control of an IPTG-inducible promoter, caused filamentation, as previously reported in Salmonella typhimurium. We speculated that this filamentation might be produced by an action of the HisH and HisF enzymes on their product AICAR (amino-imidazole carboxamide riboside 5-phosphate), a histidine by-product and normal purine precursor, possibly by favouring the formation of ZTP, the triphosphate derivative of AICAR. However, filamentation occured even in the absence of carbon flow through the histidine and purine pathways, as observed in a hisG purF strain lacking the first enzyme in each pathway. Filamentation thus does not require either the normal substrate or products of the overproduced histidine enzymes and must reflect another activity. 相似文献
3.
Lars Boe 《Molecular & general genetics : MGG》1992,231(3):469-471
Summary The present work suggests that a significant proportion of spontaneous mutations in Escherichia coli are the result of translational errors. This idea is supported by the following observations: (i) Streptomycin can induce the formation of auxotrophic mutants in streptomycin-sensitive cells, but not in rpsL mutants resistant to streptomycin, and (ii) strains having hyper-accurate ribosomes (rpsL999 and rpsL1204 strains) show reduced mutation rates. The implications of these results are discussed with respect to the dogma of randomness of spontaneous mutations and the directed mutation hypothesis. 相似文献
4.
Graham J. Boulnois 《Molecular & general genetics : MGG》1981,182(3):508-510
Summary A 2.2 kilobase (kb) fragment of ColIdrd-1 cloned in pBR325 causes phage T5 and BF23 infections of Escherichia coli K-12 to abort. This abortive infection is associated with leakage of -galactosidase from the cell. A recombinant plasmid containing a 2.8 kb fragment of ColIdrd-1 encodes colicin Ib but fails to cause abortive infection. Tn5 and Tn10 insertions into ColIdrd-1 that abolish colicin Ib production have no effect on the abortive infection phenotype. These findings are inconsistent with a previously proposed role for colicin Ib in causing phage infections to abort. 相似文献
5.
G. W. Grigg 《Molecular & general genetics : MGG》1968,102(4):316-335
Summary Growth of a culture of E. coli strain B or 15 in medium containing caffeine resulted in the accumulation of inviable cells in the population. A caffeine concentration of 8 mM caused the death of between 30% and 50% of the cells in 12 independent populations grown for 15 generations or more. The thymine dimer excision-defective strains Bs-1, Bs-8 and Bs-12 and the exr
– mutant Bs-2 were resistant to this lethal effect. The reckless, hcr
+ mutant Bs-11 was more sensitive than the parental B strain. Although 100mM caffeine did not impair DNA synthesis in vitro, concentrations of the drug 8 mM caused a significant decline in DNA synthesis in vivo in E. coli B cells. From the fit of an experimental growth curve to an algebraic model of growth in which a proportion of cells are inactivated at each replication it is suggested that caffeine does not affect the replication rate of the viable cells. The observed impairment of DNA synthesis in vivo is equated with this cell death (caffeine-death). For E. coli 15 or B, 8 mM caffeine induced caffeine-death at a rate of 18% per cell generation. Caffeine-resistant mutants of E. coli B and E. coli 15 were isolated. Of those studied in detail a substantial proportion proved to be U.V. and X-ray sensitive and excision-defective. Others were more U.V. and X-ray resistant than strain B. Yet another class proved highly unstable. A chromosome breakage model of caffeine-death implicating enzymes of the excision-repair process is discussed. 相似文献
6.
Thepar region of pSC101, required incis to promote its stable inheritance, was joined, in combination with thetetr determinant of pBR325, to large and small minichromosomes. These hybrid minichromosomes were examined for stability and found to be no more stable than their parent minichromosomes. Indeed, one recombinant plasmid, pEH21, showed reduced stability, which was not attributable to a reduced copy number. Neither pEH21 nor pEH22, a plasmid composed of the same DNA arranged differently, was stabilized by the presence of a Par+ pSC101 derived replicon in the same cell. We conclude that thepar region of pSC101 does not stabilize minichromosomes. 相似文献
7.
Morphogenesis of the rod-shaped Escherichia coli is determined by controlled growth of an exoskeleton made of murein (peptidoglycan). Recent insights in the growth strategy of the stress-bearing murein sacculus has contributed to our understanding of how the required concerted action of murein polymerizing and hydrolyzing enzymes is achieved. The proteins involved are coordinated by the formation of multienzyme complexes. In this review, we summarize the recent results on murein structure and metabolism. On the basis of these findings, we present a model that explains maintenance of the specific rod shape of E. coli. 相似文献
8.
A number of observations in the Escherichia coli and Salmonella typhimurium literature could be explained by the hypothesis that a particular purine ribonucleotide precursor can be converted to the corresponding deoxyribonucleotide triphosphate, thereby becoming a base-analogue mutagen. The metabolite in question, AICAR (5-amino-4-carboxamide imidazole riboside 5-phosphate), is also a by-product of histidine biosynthesis, and its (ribo)triphosphate derivative, ZTP, has been detected in E. coli. We constructed E. coli tester strains that had either a normal AICAR pool (pur
+
his
+ strains cultivated without purines or histidine) or no AICAR pool (purF hisG mutant strains, lacking the first enzyme of each pathway and cultivated in the presence of adenine and histidine). Using a set of lacZ mutations, each of which can revert to Lac+ only by a specific substitution mutation, we found that no base substitution event occurs at a higher frequency in the presence of an AICAR pool. We conclude that the normal AICAR pool in E. coli is not a significant source of spontaneous base substitution mutagenesis. 相似文献
9.
Introduction of a Micrococcus plasmid in Escherichia coli 总被引:1,自引:0,他引:1
A 6-MDa plasmid (pMQV10), carrying cholesterol hydroxylase and streptomycin-resistance genes, from a gram-positive strain of Micrococcus sps., (RJ6) has been successfully transformed in gram-negative Escherichia coli K12 C600. pMQV10 is maintained stably and expresses its drug resistance in the new host. 相似文献
10.
D. C. Fargo M. Zhang N. W. Gillham J. E. Boynton 《Molecular & general genetics : MGG》1998,257(3):271-282
Initiation of translation in Escherichia coli and related eubacteria involves well-defined interactions between a conserved Shine-Dalgarno (SD) sequence immediately upstream
of the initiation codon in the mRNA leader and an equally conserved anti-SD sequence at the 3′ end of the 16S rRNA. SD-like
sequences found in the leaders of many, but not all, mRNAs from cyanobacteria and chloroplasts are hypervariable in location,
size, and base composition compared to those in E. coli, while anti-SD sequences in the respective 16S rRNAs remain highly conserved. We have examined the function of the SD-like
sequences found in the leaders of four chloroplast genes of the green alga Chlamydomonas reinhardtii using replacement mutagenesis to eliminate complementarity with the anti-SD sequences and insertion of canonical SD sequences
(GGAGG) at positions −9 to −5 relative to the initiation codon. Promoter-leader regions of the atpB, atpE, rps4, and rps7 genes representing the diversity of chloroplast SD-like sequences were fused to aadA and uidA reporter genes encoding spectinomycin resistance and GUS activity respectively. Analysis of chloroplast transformants of
C. reinhardtii and transformants of E. coli carrying the wild-type and mutant reporter constructs revealed that mutagenic replacement of the putative SD sequences had
no effect on the expression of either the aadA or uidA reporter genes. Chloroplast transformants with the canonical SD sequence also showed no differences in reporter gene expression,
whereas expression of the reporter genes was increased by 10 to 30% in the E. coli transformants. Collectively our results suggest that even though SD-dependent initiation predominates in E. coli, this bacterium also has the capacity to initiate translation by an SD-independent mechanism. In contrast, plant chloroplasts,
and very probably their cyanobacterial ancestors, appear to have adopted the SD-independent mechanism for translational initiation
of most mRNAs.
Received: 8 July 1997 / Accepted: 9 September 1997 相似文献
11.
O. P. Doubleday B. A. Bridges M. H. L. Green 《Molecular & general genetics : MGG》1975,140(3):221-230
Summary The photoreversibility of UV-induced mutations to Trp+ in strain Escherichia coli WP2 uvrA trp (unable to excise pyrimidine dimers) was lost at different rates during incubation in different media. In Casamino acids medium after a short initial lag, photoreversibility was lost over about one generation time; in minimal medium with tryptophan, photoreversibility persisted for more than two generations; in Casamino acids medium with pantoyl lactone photoreversibility was lost extremely slowly. The rate of loss of photoreversibility was unaffected by UV dose in either Casamino acids medium or in minimal medium. The same eventual number of induced mutants was obtained when cells were incubated for two generations in any of the three media before being transferred to selective plates supplemented with Casamino acids. Thus in each the proportion of cells capable of giving rise to a mutant was the same and only the rate at which these cells did so during post-irradiation growth varied, suggesting that there might be a specific fraction of pyrimidine dimers at a given site capable of initiating a mutagenic repair event, and that the size of this fraction is dose dependent. Segregation experiments have shown that error-prone repair appears to occur once only and is not repeated in subsequent replication cycles, in contrast to (presumed error-free) recombination repair.The results are discussed in the light of current models of UV mutagenesis. 相似文献
12.
13.
Summary A certain proportion of protein S7 exists in an altered form in E. coli rpsD (S4) mutants. Depending on the type of S4 mutation involved, two different forms of the altered S7 can be distinguished. The unusual form is longer than normal S7 by about 500 daltons due to extra material at the carboxyl end of the protein. It is suggested that a mutationally altered S4 might lower the efficiency of termination during translation of the messenger for S7. This results in an increased frequency of translational read-through, which gives the observed longer forms of S7. Data are interpreted to mean that one class of S4 mutants might suppress UGA and UAG whereas another class only suppresses UGA. 相似文献
14.
The Escherichia coli chromosome is a circular DNA molecule that is approximately 1000 times compacted in the living cell, where it occupies approximately 15% of the cellular volume. The genome is organized in a way that facilitates chromosome maintenance and processing. Despite huge efforts, until recently little has been known about how the chromosome is organized within cells, where replication takes place, and how DNA is segregated before cell division. New techniques for labeling genetic loci and molecular machines are allowing the simultaneous tracking of genetic loci and such machines in living cells over time. These studies reveal remarkable organization, yet a highly dynamic flux of genetic loci and macromolecules. It seems likely that the cellular positioning of chromosomal loci is the outcome of the formation of two chromosome arms (replichores) by replication, followed by sequential chromosome segregation, rather than from the presence of cellular positioning markers. 相似文献
15.
B. A. Bridges R. P. Mottershead S. G. Sedgwick 《Molecular & general genetics : MGG》1976,144(1):53-58
Summary
Escherichia coli K12 Hfr H Tsxs Strs and F- Pro- Tsxr His- Arg- Strr bacteria were conjugated in the absence of arginine with or without glucose. The efficiency of conjugation, measured by the frequency of Pro+ and His+ recombinants was not affected. Arginine starvation alone did not affect the tsx
s gene expression which occurred in all the zygotes which had received the gene. In contrast, argine and glucose starvation allows tsx
s expression only in those zygotes in which the donor gene had been integrated in the genome. As the glucose starvation brings on a destabilization of the messenger RNA synthesized by the F- cells in absence of arginine, the results can be interpreted as follows: the transferred tsx
s genes are transitorily expressed in all the zygotes at the unintegrated state. After this transient period, only those genes integrated in the chromosomes of the zygotes continue to be expressed. 相似文献
16.
Summary A mutant of Escherichia coli K12 has been isolated which shows an alteration in the ribosomal protein S18. Genetic analyses have revealed that the mutation causing this alteration maps at 99.3 min of the E. coli genetic map, between dnaC and deo. This indicated that the mutation has occurred in a gene different from the structural gene for this protein which has been located at 94 min. From the N-terminal amino acid sequence analysis it is concluded that the mutation has resulted in loss of the N-terminal acetyl group of this protein. The gene which is affected in this mutant is termed rimI that most likely specifies an enzyme acetylating the N-terminal alanine of protein S18. The mutation does not affect the acetylation of two other ribosomal proteins, S5 and L12, both of which are known to be acetylated in wild-type E. coli K12. 相似文献
17.
Summary Among mutants of E. coli selected for temperaturesensitive growth, four were found to possess alterations in ribosomal proteins L7/L12. Of these, three apparently lack protein L7, the acetylated form of protein L12. Genetic analyses have revealed that the mutation responsible for this alteration maps at a locus around 34 min of the current E. coli genetic map, which is clearly different from the location for the structural gene for protein L7/L12 which is situated at 89 min. Hence, the gene affected in these mutants was termed rimL. Tryptic and thermolysin fingerprints of the protein L12 purified from the rimL mutants showed a profile indistinguishable from that of wild-type protein. It was found that the acetylase activity specific for protein L12 was negligible, when assayed in vitro, in the high-speed supernatant prepared from mutant cells. These results indicated that the three mutants contain mutations in the gene rimL that codes for an acetylating enzyme specific for ribosomal protein L12.Previous paper in this series is Isono and Isono (1980) 相似文献
18.
Mevalonate is biosynthesized from acetyl-CoA and metabolized to isoprenoid compounds in a wide variety of organisms although certain types of prokaryotes employ another route for isoprenoid biosynthesis (the non-mevalonate pathway). To establish a fermentative process for mevalonate production, enzymes for mevalonate synthesis from Enterococcus faecalis were expressed in Escherichia coli, a non-mevalonate pathway bacterium. Mevalonate was accumulated, indicating a redirection of acetate metabolism by the expressed enzyme. The recombinant E. coli produced 47 g mevalonate l–1 in 50 h of fed-batch cultivation in a 2 l jar fermenter; this is the highest titer ever reported demonstrating the superiority of E. coli in its ability of acetyl-CoA supply and its inability is degrade mevalonate. 相似文献
19.
Summary Effect of temperature-sensitive, assembly-defective mutations in Escherichia coli RNA polymerase (rpoB) or subunit gene (rpoC) was investigated on the expression of wild-type rpoB
+C+operon, which was introduced by infection of a lambda transducing phage drif
+ (rpoB
+)-6 after UV-irradiation of the mutant cells. In rpoB2·rpoB7 strain which accumulates assembly-intermediates, free , 2 complex and premature core, the expression of rpoB
+C+operon measured by the rate of subunit synthesis was considerably inhibited whereas that of EF(translation elongation factor)-Tu, ribosomal proteins L1 and L7/L12, and some -coded proteins remained unaffected. On the other hand, the expression was enhanced specifically for only rpoB
+C+operon in either rpoC4 or rpoC1 mutants, which are defective in the association of 2 complex and subunit or the activation of premature core enzyme, respectively. Upon preincubation of the mutant cells at 42° C prior to phage infection, during which assembly intermediates degraded rapidly, the rate of subunit synthesis relative to other phage-corded proteins increased remarkably in rpoB2·rpoB7 mutant as well as in rpoC4 and rpoC1 mutants. These observations strongly suggested the autogenous regulation for at least (rpoB
+C+) operon by some trans-active diffusible protein complexes built of RNA polymerase subunits. Nature of the regulatory molecules is discussed.Paper VI in this series is Saitoh and Ishihama (1977) 相似文献
20.
A secondary structure of Escherichia coli 10Sa RNA (tmRNA) recently proposed on the basis of a variety of chemical and enzymatic probing data combined with phylogenetic analysis (Felden et al, in press), indicates a highly folded structure. Several long-range interactions including pseudoknots are proposed based on comparative analysis of 10 tmRNA genes. Whereas most of the probing data support these predicted secondary structures, several atypical reactivities in specific domains of the molecule suggest structural dynamics, perhaps relating to the complex functions of the molecule as both tRNA and mRNA. The structure of tmRNA has three modular units: a tRNA-like domain, an mRNA-like domain and an intricate connecting unit probably responsible for correct orientation of the two functional parts of the molecule. 相似文献