首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of Torulopsis (Candida) utilis 5S ribosomal RNA with kethoxal (beta-ethoxy-alpha-ketobutyraldehyde) was studied in an attempt to identify the exposed guanine residues. At most 7-8 out of 32 guanine residues in T.utilis 5S RNA were kethoxalated after reaction at 37 degrees C for 4 h in the presence of magnesium ions. Localization of the kethoxalated guanine residues in T.utilis 5S RNA was achieved by sequence analyses of RNase T1 digests of the kethoxalated 5S RNA. These analyses showed that residues G37, G57, G91, and some of the three guanine residues G80, G82, and G85, are the most accessible sites. Residues G30, G41, and G49 also reacted with kethoxal though less strongly. These results are for the most part compatible with our secondary structure model for T.utilis 5S 5S RNA (Nishikawa and Takemura (1974) J. Biochem. 76, 935-947). However, partial formation of some hydrogen bonds within the loop region of the model seems to be necessary to explain the inaccessibility of residue G101 to kethoxal. The results are also discussed in comparison with those of similar studies on E.coli 5S RNA.  相似文献   

2.
Base pairing between Escherichia coli RNase P RNA and its substrate.   总被引:14,自引:2,他引:12       下载免费PDF全文
Base pairing between the substrate and the ribozyme has previously been shown to be essential for catalytic activity of most ribozymes, but not for RNase P RNA. By using compensatory mutations we have demonstrated the importance of Watson-Crick complementarity between two well-conserved residues in Escherichia coli RNase P RNA (M1 RNA), G292 and G293, and two residues in the substrate, +74C and +75C (the first and second C residues in CCA). We suggest that these nucleotides base pair (G292/+75C and G293/+74C) in the ribozyme-substrate complex and as a consequence the amino acid acceptor stem of the precursor is partly unfolded. Thus, a function of M1 RNA is to anchor the substrate through this base pairing, thereby exposing the cleavage site such that cleavage is accomplished at the correct position. Our data also suggest possible base pairing between U294 in M1 RNA and the discriminator base at position +73 of the precursor. Our findings are also discussed in terms of evolution.  相似文献   

3.
4.
RNA aptamers specifically interact with the prion protein PrP.   总被引:9,自引:0,他引:9       下载免费PDF全文
We have isolated RNA aptamers which are directed against the recombinant Syrian golden hamster prion protein rPrP23-231 (rPrPc) fused to glutathione S-transferase (GST). The aptamers did not recognize the fusion partner GST or the fusion protein GST::rPrP90-231 (rPrP27-30), which lacks 67 amino acids from the PrP N terminus. The aptamer-interacting region of PrPc was mapped to the N-terminal amino acids 23 to 52. Sequence analyses suggest that the RNA aptamers may fold into G-quartet-containing structural elements. Replacement of the G residues in the G quartet scaffold with uridine residues destroyed binding to PrP completely, strongly suggesting that the G quartet motif is essential for PrP recognition. Individual RNA aptamers interact specifically with prion protein in brain homogenates from wild-type mice (C57BL/6), hamsters (Syrian golden), and cattle as shown by supershifts obtained in the presence of anti-PrP antibodies. No interaction was observed with brain homogenates from PrP knockout mice (prn-p(0/0)). Specificity of the aptamer-PrP interaction was further confirmed by binding assays with antisense aptamer RNA or a mutant aptamer in which the guanosine residues in the G tetrad scaffold were replaced by uridine residues. The aptamers did not recognize PrP27-30 in brain homogenates from scrapie-infected mice. RNA aptamers may provide a first milestone in the development of a diagnostic assay for the detection of transmissible spongiform encephalopathies.  相似文献   

5.
6.
7.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), encoded by nonstructural protein 5B (NS5B), is absolutely essential for the viral replication. Here we describe the development, characterization, and functional properties of the panel of monoclonal antibodies (mAbs) and specifically describe the mechanism of action of two mAbs inhibiting the NS5B RdRp activity. These mAbs recognize and bind to distinct linear epitopes in the fingers subdomain of NS5B. The mAb 8B2 binds the N-terminal epitope of the NS5B and inhibits both primer-dependent and de novo RNA synthesis. mAb 8B2 selectively inhibits elongation of RNA chains and enhances the RNA template binding by NS5B. In contrast, mAb 7G8 binds the epitope that contains motif G conserved in viral RdRps and inhibits only primer-dependent RNA synthesis by specifically targeting the initiation of RNA synthesis, while not interfering with the binding of template RNA by NS5B. To reveal the importance of the residues of mAb 7G8 epitope for the initiation of RNA synthesis, we performed site-directed mutagenesis and extensively characterized the functionality of the HCV RdRp motif G. Comparison of the mutation effects in both in vitro primer-dependent RdRp assay and cellular transient replication assay suggested that mAb 7G8 epitope amino acid residues are involved in the interaction of template-primer or template with HCV RdRp. The data presented here allowed us to describe the functionality of the epitopes of mAbs 8B2 and 7G8 in the HCV RdRp activity and suggest that the epitopes recognized by these mAbs may be useful targets for antiviral drugs.  相似文献   

8.
We identified and mapped RNA-binding sites of yeast Saccharomyces cerevisiae translation initiation factor eIF4G1 and examined their importance for eIF4G1 function in vitro and in vivo. Yeast eIF4G1 binds to single-stranded RNA with three different sites, the regions of amino acids 1-82 (N terminus), 492-539 (middle), and 883-952 (C terminus). The middle and C-terminal RNA-binding sites represent RS (arginine and serine)-rich domains; the N-terminal site is asparagine-, glutamine- and glycine-rich. The three RNA-binding sites have similar affinity for single-stranded RNA, whereas the affinity for single-stranded RNA full-length eIF4G1 is about 100-fold higher (approximate K(d) of 5 x 10(-8) M). Replacement of the arginine residues in the middle RS site by alanine residues abolishes its RNA-binding activity. Deletion of individual RNA-binding sites shows that eIF4G1 molecules lacking one binding site are still active in supporting growth of yeast cells and translation in vitro, whereas eIF4G1 molecules lacking two or all three RNA-binding sites are strongly impaired or inactive. These data suggest that RNA-binding activity is required for eIF4G1 function.  相似文献   

9.
10.
11.
The human cytidine deaminase APOBEC3G (A3G) is a potent inhibitor of retroviruses and transposable elements and is able to deaminate cytidines to uridines in single-stranded DNA replication intermediates. A3G contains two canonical cytidine deaminase domains (CDAs), of which only the C-terminal one is known to mediate cytidine deamination. By exploiting the crystal structure of the related tetrameric APOBEC2 (A2) protein, we identified residues within A3G that have the potential to mediate oligomerization of the protein. Using yeast two-hybrid assays, co-immunoprecipitation, and chemical crosslinking, we show that tyrosine-124 and tryptophan-127 within the enzymatically inactive N-terminal CDA domain mediate A3G oligomerization, and this coincides with packaging into HIV-1 virions. In addition to the importance of specific residues in A3G, oligomerization is also shown to be RNA-dependent. Homology modelling of A3G onto the A2 template structure indicates an accumulation of positive charge in a pocket formed by a putative dimer interface. Substitution of arginine residues at positions 24, 30, and 136 within this pocket resulted in reduced virus inhibition, virion packaging, and oligomerization. Consistent with RNA serving a central role in all these activities, the oligomerization-deficient A3G proteins associated less efficiently with several cellular RNA molecules. Accordingly, we propose that occupation of the positively charged pocket by RNA promotes A3G oligomerization, packaging into virions and antiviral function.  相似文献   

12.
Both cellular and viral proteins can undergo phase separation and form membraneless compartments that concentrate biomolecules. The p26 movement protein from single-stranded, positive-sense Pea enation mosaic virus 2 (PEMV2) separates into a dense phase in nucleoli where p26 and related orthologues must interact with fibrillarin (Fib2) as a pre-requisite for systemic virus movement. Using in vitro assays, viral ribonucleoprotein complexes containing p26, Fib2, and PEMV2 genomic RNAs formed droplets that may provide the basis for self-assembly in planta. Mutating basic p26 residues (R/K-G) blocked droplet formation and partitioning into Fib2 droplets or the nucleolus and prevented systemic movement of a Tobacco mosaic virus (TMV) vector in Nicotiana benthamiana. Mutating acidic residues (D/E-G) reduced droplet formation in vitro, increased nucleolar retention 6.5-fold, and prevented systemic movement of TMV, thus demonstrating that p26 requires electrostatic interactions for droplet formation and charged residues are critical for nucleolar trafficking and virus movement. p26 readily partitioned into stress granules (SGs), which are membraneless compartments that assemble by clustering of the RNA binding protein G3BP following stress. G3BP is upregulated during PEMV2 infection and over-expression of G3BP restricted PEMV2 RNA accumulation >20-fold. Deletion of the NTF2 domain that is required for G3BP condensation restored PEMV2 RNA accumulation >4-fold, demonstrating that phase separation enhances G3BP antiviral activity. These results indicate that p26 partitions into membraneless compartments with either proviral (Fib2) or antiviral (G3BP) factors.  相似文献   

13.
14.
DDX3 is involved in RNA transport, translational control, proliferation of RNA viruses, and cancer progression. From yeast two-hybrid screening using the C-terminal region of DDX3 as a bait, the DEAD-box RNA helicase DDX5 was cloned. In immunofluorescence analysis, DDX3 and DDX5 were mainly co-localized in the cytoplasm. Interestingly, cytoplasmic levels of DDX5 increased in the G(2) /M phase and consequently protein-protein interaction also increased in the cytoplasmic fraction. DDX3 was highly phosphorylated at its serine, threonine, and tyrosine residues in the steady state, but not phosphorylated at the serine residue(s) in the G(2) /M phase. DDX5 was less phosphorylated in the G(1) /S phase; however, it was highly phosphorylated at serine, threonine, and tyrosine residues in the G(2) /M phase. PP2A treatment of the cytoplasmic lysate from G(2) /M phase cells positively affected the interaction between DDX3 and DDX5, whereas, PTP1B treatment did not. In an analysis involving recombinant His-DDX3 and His-DDX5, PP2A pretreatment of His-DDX5 increased the interaction with endogenous DDX3, and vice versa. Furthermore, the results of GST pull-down experiments support the conclusion that dephosphorylation of serine and/or threonine residues in both proteins enhanced protein-protein interactions. UV cross-linking experiments showed that DDX3 and DDX5 are involved in mRNP export. Additionally, DDX3 knockdown blocked the shuttling of DDX5 to the nucleus. These data demonstrate a novel interaction between DDX3 and DDX5 through the phosphorylation of both proteins, especially in the G(2) /M phase, and suggest a novel combined mechanism of action, involving RNP remodeling and splicing, for DEAD-box RNA helicases involved in mRNP export.  相似文献   

15.
Optical thermal denaturation and circular dichroism (CD) experiments were performed with the following non-selfcomplementary duplex DNA, RNA and DNA.RNA hybrids: (I) dGAG3C3G3CTC.dGAGC3G3C3TC, (II) dGAG3m5C3G3m5CTC.dGAGm5C3G3m5C3TC, (III) rGAG3C3G3CUC.rGAGC3G3C3UC, (IV) dGAG3C3G3CTC.rGAGC3G3C3UC, (V) rGAG3C3G3CUC.dGAGC3G3C3TC, (VI) dGAG3m5C3G3m5CTC.rGAGC3G3C3UC, (VII) rGAG3C3G3CUC.dGAGm5C3G3m5C3TC. Duplex stabilities (delta G degrees at 60 degrees C) increase in the order: I less than IV less than II = V = VI less than VII less than III. Large enthalpic stabilization is associated with intrastrand stacking of guanosine (rG) residues. CD spectroscopy indicates B-form conformations for the unmethylated and methylated DNA (I,II), A-form geometry for the RNA (III), and DNA.RNA hybrid (IV - VII) conformations resembling but not identical to A-RNA. C5-methyldeoxycytidine does not significantly influence DNA conformation, DNA.RNA hybrid formation, or the ability of DNA to adopt an A-type conformation in trifluoroethanol solutions.  相似文献   

16.
The X-ray structure of the C-terminal region of human eukaryotic translation initiation factor 4G (eIF4G) has been determined at 2.2 A resolution, revealing two atypical HEAT-repeat domains. eIF4G recruits various translation factors and the 40S ribosomal subunit to the mRNA 5' end. In higher eukaryotes, the C terminus of eIF4G (4G/C) supports translational regulation by recruiting eIF4A, an RNA helicase, and Mnk1, the kinase responsible for phosphorylating eIF4E. Structure-guided surface mutagenesis and protein-protein interaction assays were used to identify binding sites for eIF4A and Mnk1 within the HEAT-repeats of 4G/C. p97/DAP5, a translational modulator homologous to eIF4G, lacks an eIF4A binding site in the corresponding region. The second atypical HEAT domain of the 4G/C binds Mnk1 using two conserved aromatic/acidic-box (AA-box) motifs. Within the first AA-box, the aromatic residues contribute to the hydrophobic core of the domain, while the acidic residues form a negatively charged surface feature suitable for electrostatic interactions with basic residues in Mnk1.  相似文献   

17.
Binding of APOBEC3G to the nucleocapsid (NC) domain of the human immunodeficiency virus (HIV) Gag polyprotein may represent a critical early step in the selective packaging of this antiretroviral factor into HIV virions. Previously, we and others have reported that this interaction is mediated by RNA. Here, we demonstrate that RNA binding by APOBEC3G is key for initiation of APOBEC3G:NC complex formation in vitro. By adding back nucleic acids to purified, RNase-treated APOBEC3G and NC protein preparations in vitro, we demonstrate that complex formation is rescued by short (> or =10 nucleotides) single-stranded RNAs (ssRNAs) containing G residues. In contrast, complex formation is not induced by add-back of short ssRNAs lacking G, by dsRNAs, by ssDNAs, by dsDNAs or by DNA:RNA hybrid molecules. While some highly structured RNA molecules, i.e., tRNAs and rRNAs, failed to rescue APOBEC3G:NC complex formation, other structured RNAs, i.e., human Y RNAs and 7SL RNA, did promote NC binding by APOBEC3G. Together, these results indicate that ternary complex formation requires ssRNA, but suggest this can be presented in the context of an otherwise highly structured RNA molecule. Given previous data arguing that APOBEC3G binds, and edits, ssDNA effectively in vitro, these data may also suggest that APOBEC3G can exist in two different conformational states, with different activities, depending on whether it is bound to ssRNA or ssDNA.  相似文献   

18.
The genome of the human immunodeficiency virus type-1 (HIV-1) contains a stretch of approximately 120 nucleotides known as the psi-site that is essential for RNA packaging during virus assembly. These nucleotides have been proposed to form four stem-loops (SL1-SL4) that have both independent and overlapping functions. Stem-loop SL2 is important for efficient recognition and packaging of the full-length, unspliced viral genome, and also contains the major splice-donor site (SD) for mRNA splicing. We have determined the structure of the 19-residue SL2 oligoribonucleotide by heteronuclear NMR methods. The structure is generally consistent with the most recent of two earlier secondary structure predictions, with residues G1-G2-C3-G4 and C6-U7 forming standard Watson Crick base-pairs with self-complementary residues C16-G17-C18-C19 and A12-G13, respectively. However, residue A15, which is located near the center of the stem, does not form a predicted bulge, and residues A5 and U14 do not form an expected Watson-Crick base-pair. Instead, these residues form a novel A5-U14-A15 base-triple that appears to be stabilized by hydrogen bonds from A15-H61 and -H62 to A5-N1 and U14-O2, respectively; from A5-H61 to U14-O2, and from C16-H42 to U14-O2'. A kink in the backbone allows the aromatic rings of the sequential U14-A15 residues to be approximately co-planar, adopting a stable "platform motif" that is structurally similar to the A-A (adenosine) platforms observed in the P4-P6 ribozyme domain of the Tetrahymena group I intron. Platform motifs generally function in RNA by mediating long-range interactions, and it is therefore possible that the A-U-A base-triple platform mediates long-range interactions that either stabilize the psi-RNA or facilitate splicing and/or packaging. Residue G8 of the G8-G9-U10-G11 tetraloop is stacked above the U7-A12 base-pair, and the remaining tetraloop residues are disordered and available for potential interactions with either other RNA or protein components.  相似文献   

19.
We have tested a putative base-paired interaction between the conserved GT psi C sequence of tRNA and the conserved GAAC47 sequence of 5 S ribosomal RNA by in vitro protein synthesis using ribosomes containing deletions in this region of 5 S rRNA. Ribosomes reconstituted with 5 S rRNA possessing a single break between residues 41 and 42, deletion of residues 42-46, or deletion of residues 42-52 were tested for their ability to translate phage MS2 RNA. Initiator tRNA binding, aminoacyl-tRNA binding, ppGpp synthesis, and miscoding were also tested. All of the measured functions could be carried out by ribosomes carrying the deleted 5 S rRNAs. The sizes and relative amounts of the polypeptides synthesized by MS2 RNA-programmed ribosomes were identical whether or not the 5 S RNA contained deletions. Aminoacyl-tRNA binding and miscoding were essentially unaffected. Significant reduction in ApUpG (but not poly(A,U,G) or MS2 RNA)-directed fMet-tRNA binding and ppGpp synthesis were observed, particularly in the case of the larger (residues 42-52) deletion. We conclude that if tRNA and 5 S rRNA interact in this fashion, it is not an obligatory step in protein synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号