首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S100A4 is a member of the S100 calcium-binding protein family. S100A4 is expressed in several tissues; however, it is secreted by few cell types and its extracellular roles are unknown. In the present study we showed by in situ hybridization that periodontal ligament (PDL) cells express the S100A4 mRNA. Immunolocalization of the S100A4 protein in cryosections of PDL and analyses of PDL cell culture medium revealed that PDL cells secrete the S100A4 protein both in vivo and in vitro. Interestingly, addition of a recombinant mouse S100A4 protein to a bone marrow cell culture inhibited mineralized nodule formation in a concentration-dependent manner. This is the first report of an extracellular role for S100A4 as an inhibitor of mineralization. The PDL space is kept free of mineralization and S100A4 may be one of the factors responsible for such phenomenon.  相似文献   

2.
3.
The heterotopic ossification of muscles, tendons, and ligaments is a common problem faced by orthopaedic surgeons. Runx2/Cbfa1 plays an essential role during the osteoblast differentiation and is considered as a molecular switch in osteoblast biology. RNA interference technology is a powerful tool for silencing endogenous or exogenous genes in mammalian cells. In this study, we investigated the effect of Runx2/Cbfa1-specific siRNA on osteoblast differentiation and mineralization in osteoblastic cells, and then constructed adenovirus containing siRNA against Runx2/Cbfa1 (Ad-Runx2-siRNA) to inhibit the formation of heterotopic ossification induced by BMP4, demineralized bone matrix, and trauma in animal model. Our results showed that the Runx2/Cbfa1-specific siRNA could inhibit the expression of Runx2/Cbfa1 at the level of mRNA and protein. Analysis of the expression of osteoblast maturation genes including type I collagen, osteopontin, bone sialoprotein, and osteocalcin, alkaline phosphatase activity, and matrix mineralization (von kossa) revealed that osteoblast differentiation was inhibited in cultured primary mouse osteoblasts transduced with Ad-Runx2-siRNA. Furthermore, adenovirus-mediated transfer of siRNA against Runx2/Cbfa1 could inhibit the formation of heterotopic ossification induced by BMP4, demineralized bone matrix, and trauma in animal model. It is likely that the inhibition of Runx2/Cbfa1 by RNAi could be developed as a powerful approach to prevent or treat heterotopic ossification.  相似文献   

4.
5.
6.
Liang QH  Jiang Y  Zhu X  Cui RR  Liu GY  Liu Y  Wu SS  Liao XB  Xie H  Zhou HD  Wu XP  Yuan LQ  Liao EY 《PloS one》2012,7(4):e33126
Vascular calcification results from osteoblastic differentiation of vascular smooth muscle cells (VSMCs) and is a major risk factor for cardiovascular events. Ghrelin is a newly discovered bioactive peptide that acts as a natural endogenous ligand of the growth hormone secretagog receptor (GHSR). Several studies have identified the protective effects of ghrelin on the cardiovascular system, however research on the effects and mechanisms of ghrelin on vascular calcification is still quite rare. In this study, we determined the effect of ghrelin on osteoblastic differentiation of VSMCs and investigated the mechanism involved using the two universally accepted calcifying models of calcifying vascular smooth muscle cells (CVSMCs) and beta-glycerophosphate (beta-GP)-induced VSMCs. Our data demonstrated that ghrelin inhibits osteoblastic differentiation and mineralization of VSMCs due to decreased alkaline phosphatase (ALP) activity, Runx2 expression, bone morphogenetic protein-2 (BMP-2) expression and calcium content. Further study demonstrated that ghrelin exerted this suppression effect via an extracellular signal-related kinase (ERK)-dependent pathway and that the suppression effect of ghrelin was time dependent and dose dependent. Furthermore, inhibition of the growth hormone secretagog receptor (GHSR), the ghrelin receptor, by siRNA significantly reversed the activation of ERK by ghrelin. In conclusion, our study suggests that ghrelin may inhibit osteoblastic differentiation of VSMCs through the GHSR/ERK pathway.  相似文献   

7.
Summary Platelet-rich plasma (PRP) has been used to promote periodontal regeneration following the premise that constituent transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor-AB will stimulate cell proliferation at the site of application. In previous studies, we demonstrated that PRP mimics TGF-β1 to modulate proliferation in a cell type-specific manner, that fibrin clot formation by PRP upregulates type I collagen, and that an unidentified factor(s) in PRP increases alkaline phosphatase (ALP) activity in human periodontal ligament (PDL) cell cultures. We have now examined the effects of PRP on in vitro mineralization. Platelet-rich plasma and PDL cells were prepared from human adult volunteers or rats. After 20 d of continuous treatment with PRP in dexamethazone (Dex)-containing osteogenic medium, PRP time dependently promoted mineralization by rat PDL cells but failed to fully induce the osteoblastic phenotype. Furthermore, when human PDL cells were induced to increase ALP activity in osteogenic medium that lacked Dex, a condition that should delay (or suppress) osteoblastic differentiation, transmission electron microscopy revealed that mineralized spicules were initially deposited onto PRP-derived platelet aggregates. Taken together with our previous data, these findings suggest that PRP provides platelet aggregates as nuclei to initiate mineralization while stimulating PDL cell proliferation, differentiation, and collagen production. The combination of these effects may effectively mediate PRP's ability to promote regeneration of periodontal tissue, including skeletal tissue, at the site of injury.  相似文献   

8.
9.
Abstract The periodontal ligament (PDL) that anchors the tooth root to the alveolar bone influences the lifespan of the tooth, and PDL lost through periodontitis is difficult to regenerate. The development of new PDL-regenerative therapies requires the isolation of PDL stem cells. However, their characteristics are unclear due to the absence of somatic PDL stem cell lines and because PDL is composed of heterogeneous cell populations. Recently, we succeeded in immortalizing human PDL fibroblasts that retained the properties of the primary cells. Therefore, we aimed to establish a human PDL-committed stem cell line and investigate the effects of basic fibroblast growth factor (bFGF) on the osteoblastic differentiation of the cells. Here, we report the development of cell line 1–17, a multipotent clonal human PDL cell line that expresses the embryonic stem cell-related pluripotency genes Oct3/4 and Nanog , as well as the PDL-related molecules periostin and scleraxis. Continuous treatment of cell line 1–17 with bFGF in osteoblastic induction medium inhibited its calcification, with down-regulated expression of FGF-Receptor 1 ( FGF-R1 ), whereas later addition of bFGF potentiated its calcification. Furthermore, bFGF induced calcification of cell line 1–17 when it was co-cultured with osteoblastic cells. These results suggest that cell line 1–17 is a PDL-committed stem cell line and that bFGF exerts dualistic (i.e., promoting and inhibitory) effects on the osteoblastic differentiation of cell line 1–17 based on its differentiation stage.  相似文献   

10.
The orphan nuclear receptor estrogen-related receptor-α (ERRα) has been reported to have both a positive and a negative regulatory role in osteoblastic and adipocytic differentiation. We have studied the role of ERRα in osteoblastic and adipogenic differentiation of mesenchymal stem cells. Bone marrow mesenchymal stem cells were isolated from ERRα deficient mice and their differentiation capacities were compared to that of the wild-type cells. ERRα deficient cultures displayed reduced cellular proliferation, osteoblastic differentiation, and mineralization. In the complementary experiment, overexpression of ERRα in MC3T3-E1 cells increased the expression of osteoblastic markers and mineralization. Alterations in the expression of bone sialoprotein (BSP) may at least partially explain the effects on mineralization as BSP expression was reduced in ERRα deficient MSCs and enhanced upon ERRα overexpression in MC3T3-E1 cells. Furthermore, a luciferase reporter construct driven by the BSP promoter was efficiently transactivated by ERRα. Under adipogenic conditions, ERRα deficient cultures displayed reduced adipocytic differentiation. Our data thus propose a positive role for ERRα in osteoblastic and adipocytic differentiation. The variability in the results yielded in the different studies implies that ERRα may play different roles in bone under different physiological conditions.  相似文献   

11.
To investigate the effect of JAKs-STATs signal pathway on expression of S100A4 in pulmonary arterial smooth muscle cells (PASMCs), the action of S100A4 and hypoxia induced factor 1 (HIF-1) on the proliferation of hypoxic PASMCs. The results showed that S100A4 immunostaining was localized in the cytoplasm and nuclei of PASMCs exposure to hypoxia and it was predominantly expressed in rhomboid cells (R-SMCs). The mRNA and protein levels of S100A4 expression increased in PASMCs after hypoxic stimulus for 4, 8, 16 h. The immunofluorescence intensity and protein levels of S100A4 were suppressed, and the number of R-SMCs was reduced, when pretreatment with HIF-1α siRNA, STAT3 siRNA, S100A4 siRNA, and S100A4 inhibitor NSC 95397. Pretreatment with HIF-1α siRNA and anti-IL-6 antibodies, the levels of phospho-JAK2, -STAT3, and S100A4 were decreased, while HIF-1α kept stable in hypoxic cells. Importantly, pretreatment with HIF-1α siRNA, anti-IL-6 antibodies, STAT3 siRNA, and S100A4 siRNA, significantly attenuated the proliferation of PASMCs exposure to hypoxia. These data demonstrate that S100A4 is predominantly expressed in hypoxic R-SMCs, and regulated by the activation of JAK2-STAT3 signal pathway, which is dependent on hypoxia-induced HIF-1α expression. These results suggest that JAK2-STAT3 and HIF-1α could serve as targets for the regulation of phenotype modulation of PASMCs during the process of pulmonary vessel lesions.  相似文献   

12.
In this study, we analyzed the effects of tensile mechanical stress on the gene expression profile of in vitro-maintained human periodontal ligament (PDL) cells. A DNA chip analysis identified 17 up-regulated genes in human PDL cells under the mechanical stress, including HOMER1 (homer homolog 1) and GRIN3A (glutamate receptor ionotropic N-methyl-d-aspartate 3A), which are related to glutamate signaling. RT-PCR and real-time PCR analyses revealed that human PDL cells constitutively expressed glutamate signaling-associated genes and that mechanical stress increased the expression of these mRNAs, leading to release of glutamate from human PDL cells and intracellular glutamate signal transduction. Interestingly, exogenous glutamate increased the mRNAs of cytodifferentiation and mineralization-related genes as well as the ALP (alkaline phosphatase) activities during the cytodifferentiation of the PDL cells. On the other hand, the glutamate signaling inhibitors riluzole and (+)-MK801 maleate suppressed the alkaline phosphatase activities and mineralized nodule formation during the cytodifferentiation and mineralization. Riluzole inhibited the mechanical stress-induced glutamate signaling-associated gene expressions in human PDL cells. Moreover, in situ hybridization analyses showed up-regulation of glutamate signaling-associated gene expressions at tension sites in the PDL under orthodontic tooth movement in a mouse model. The present data demonstrate that the glutamate signaling induced by mechanical stress positively regulates the cytodifferentiation and mineralization of PDL cells.  相似文献   

13.
The osteoporosis that occurs with aging is associated with reduced number and activity of osteoblastic cells. Aging, menopause, and osteoporosis are correlated with increased oxidative stress and reduced antioxidant defense mechanisms. We previously demonstrated that oxidative stress induced by a variety of compounds such as xanthine/xanthine oxidase (XXO) and minimally oxidized LDL (MM-LDL) inhibit the osteogenic differentiation of osteoprogenitor cells. Oxysterols are a family of products derived from cholesterol oxidation that have important biological activities. Recently, we reported that a specific oxysterol combination consisting of 22(S)- or 22(R)-hydroxycholesterol and 20(S)-hydroxycholesterol has potent osteogenic properties in vitro when applied to osteoprogenitor cells including M2-10B4 (M2) marrow stromal cells. We now demonstrate that this osteogenic combination of oxysterols prevents the adverse effects of oxidative stress on differentiation of M2 cells into mature osteoblastic cells. XXO and MM-LDL inhibited the osteogenic differentiation of M2 cells, demonstrated by the inhibition of markers of osteogenic differentiation: alkaline phosphatase activity, osteocalcin expression and mineralization. Treatment of M2 cells with osteogenic oxysterol combination 22(S)- and 20(S)-hydroxycholesterol both blocked and reversed the inhibition of osteogenic differentiation produced by XXO and MM-LDL in these cells. The protective effect of the oxysterols against oxidative stress was dependent on cyclooxygenase 1 and was associated with the osteogenic property of the oxysterols. These findings further demonstrate the ability of the osteogenic oxysterols to positively regulate osteogenic differentiation of cells, and suggests that the use of these compounds may be a novel strategy to prevent the adverse effects of oxidative stress on osteogenesis.  相似文献   

14.
15.
ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase-1) is an established regulator of tissue mineralization. Previous studies demonstrated that ENPP1 is expressed in differentiated osteoblasts and that ENPP1 influences matrix mineralization by increasing extracellular levels of inorganic pyrophosphate. ENPP1 is also expressed in osteoblastic precursor cells when stimulated with FGF2, but the role of ENPP1 in preosteoblastic and other precursor cells is unknown. Here we investigate the function of ENPP1 in preosteoblasts. We find that ENPP1 expression is critical for osteoblastic differentiation and that this effect is not mediated by changes in extracellular concentration levels of phosphate or pyrophosphate or ENPP1 catalytic activity. MC3T3E1(C4) preosteoblastic cells, in which ENPP1 expression was suppressed by ENPP1-specific shRNA, and calvarial cells isolated from Enpp1 knock-out mice show defective osteoblastic differentiation upon stimulation with ascorbate, as indicated by a lack of cellular morphological change, a lack of osteoblast marker gene expression, and an inability to mineralize matrix. Additionally, MC3T3E1(C4) cells, in which wild type or catalytic inactive ENPP1 expression was increased, exhibited an increased tendency to differentiate, as evidenced by increased osteoblast marker gene expression and increased mineralization. Notably, treatment of cells with inorganic phosphate or pyrophosphate inhibited, as opposed to enhanced, expression of multiple genes that are expressed in association with osteoblast differentiation, matrix deposition, and mineralization. Our results indicate that ENPP1 plays multiple and distinct roles in the development of mineralized tissues and that the influence of ENPP1 on osteoblast differentiation and gene expression may include a mechanism that is independent of its catalytic activity.  相似文献   

16.
New perspectives in the differentiation of bone-forming cells.   总被引:3,自引:0,他引:3  
Bone formation comprises a complex but ordered sequence of events which involves the proliferation and differentiation of chondrogenic and osteoblastic precursor cells ultimately leading to the formation of a calcified extracellular matrix. This process can be observed in vivo but under these conditions is difficult to study at the molecular level. A number of in vitro models have been developed which recapitulate discrete elements of this process. Using these models, detailed information has been obtained regarding the differentiation of bone forming cells and the molecular biology of the mineralization process. It has been shown that, in vitro, osteoblastic precursor cells can form a mineralized matrix similar to that seen in vivo. This calcification process was shown to consist of three interdependent phases: proliferation, matrix maturation and mineralization. Each of these phases was characterized by the expression of particular genes. Osteoblast precursors have been cloned and consequently shown to be able to differentiate in vitro into a number of other mesenchymal cells, supporting the theory that osteoblasts are derived from multipotent mesenchymal cells. It is possible that markers derived from these models could be used in the future to extend our knowledge of bone formation in vivo.  相似文献   

17.
18.
19.
We have recently reported that retinoic acid inhibits dexamethasone-induced alkaline phosphatase activity and mineralization in human osteoblastic cell line SV-HFO. In this study, we show that this inhibitory effect on alkaline phosphatase activity depends on the stage of cell differentiation; however, expression of tetranectin, which is a recently reported bone matrix protein, was completely inhibited by treatment with retinoic acid, irrespective of the stage of cell differentiation. Similarly, mineral deposit formation in SV-HFO cells was phase-independently inhibited by retinoic acid. To our knowledge, this is the first report that retinoic acid downregulates the tetranectin expression in human osteoblastic cells independent of the stage of cell differentiation, and is correlated with inhibition of mineralization.  相似文献   

20.
Kim do Y  Jung MS  Park YG  Yuan HD  Quan HY  Chung SH 《BMB reports》2011,44(10):659-664
As part of the search for biologically active anti-osteoporotic agents that enhance differentiation and mineralization of osteoblastic MC3T3-E1 cells, we identified the ginsenoside Rh2(S), which is an active component in ginseng. Rh2(S) stimulates osteoblastic differentiation and mineralization, as manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and Alizarin Red staining, respectively. Rh2(S) activates p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and Rh2(S)-induced differentiation and mineralization of osteoblastic cells were totally inhibited in the presence of the p38 MAPK inhibitor, SB203580. In addition, pretreatment with Go6976, a protein kinase D (PKD) inhibitor, significantly reversed the Rh2(S)-induced p38 MAPK activation, indicating that PKD might be an upstream kinase for p38 MAPK in MC3T3-E1 cells. Taken together, these results suggest that Rh2(S) induces the differentiation and mineralization of MC3T3-E1 cells through activation of PKD/p38 MAPK signaling pathways, and these findings provide a molecular basis for the osteogenic effect of Rh2(S).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号