首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of our investigation was to analyse the breathing patterns of professional cyclists during incremental exercise from submaximal to maximal intensities. A group of 11 elite amateur male road cyclists [E, mean age 23 (SD 2) years, peak oxygen uptake (VO2peak) 73.8 (SD 5.0) ml kg(-1) min(-1)] and 14 professional male road cyclists [P, mean age 26 (SD 2) years, (VO2peak) 73.2 (SD 6.6) ml kg(-1) min(-1)] participated in this study. Each of the subjects performed an exercise test on a cycle ergometer following a ramp protocol (exercise intensity increases of 25 W x min(-1)) until the subject was exhausted. For each subject, the following parameters were recorded during the tests: oxygen consumption (VO2), carbon dioxide output (VCO2), pulmonary ventilation (VE), tidal volume (VT), breathing frequency (fb), ventilatory equivalents for oxygen (VE x VO2(-1)) and carbon dioxide (VE x VCO2(-1)), end-tidal partial pressure of oxygen and partial pressure of carbon dioxide, inspiratory (tI) and expiratory (tE) times, inspiratory duty cycle (tI/tTOT, where tTOT is the time for one respiratory cycle), and mean inspiratory flow rate (VT/tI). Mean values of VE were significantly higher in E at 300, 350 and 400 W (P < 0.05, P < 0.05 and P < 0.01, respectively); fb was also higher in E in most moderate-to-maximal intensities. On the other hand, VT showed a different pattern in both groups at near-to maximal intensities, since no plateau was observed in P. The response of tI and tE was also different. Finally, VT/tI and tI/tTOT showed a similar response in both P and E. It was concluded that the breathing pattern of the two groups differed mainly in two aspects: in the professional cyclists, VE increased at any exercise intensity as a result of increases in both VT and fb, with no evidence of tachypnoeic shift, and tE was prolonged in this group at high exercise intensities. In contrast, neither the central drive nor the timing component of respiration seem to have been significantly altered by the training demands of professional cycling.  相似文献   

2.
The purpose of this study was to determine oxygen uptake (VO2) at various water flow rates and maximal oxygen uptake (VO2max) during swimming in a hypobaric hypoxic environment. Seven trained swimmers swam in normal [N; 751 mmHg (100.1 kPa)] and hypobaric hypoxic [H; 601 mmHg (80.27 kPa)] environments in a chamber where atmospheric pressure could be regulated. Water flow rate started at 0.80 m.s-1 and was increased by 0.05 m.s-1 every 2 min up to 1.00 m.s-1 and then by 0.05 m.s-1 every minute until exhaustion. At submaximal water flow rates, carbon dioxide production (VCO2), pulmonary ventilation (VE) and tidal volume (VT) were significantly greater in H than in N. There were no significant differences in the response of submaximal VO2, heart rate (fc) or respiratory frequency (fR) between N and H. Maximal VE, fR, VT, fc, blood lactate concentration and water flow rate were not significantly different between N and H. However, VO2max under H [3.65 (SD 0.11) l.min-1] was significantly lower by 12.0% (SD 3.4)% than that in N [4.15 (SD 0.18) l.min-1]. This decrease agrees well with previous investigations that have studied centrally limited exercise, such as running and cycling, under similar levels of hypoxia.  相似文献   

3.
The time-course of heart rate, blood lactate, and ventilatory gas exchange was studied during an incremental exercise test on cycloergometer in order to ascertain whether heart rate deflection occurred at the same load as the second lactate S[La]2) and ventilatory (SV2) thresholds. Twelve moderately trained subjects, 22 to 30 years old, participated in the study. The initial power setting was 30 W for 3 min with successive increases of 30 W every min except at the end of the test where the increase was reduced to 20 and 10 W.min-1. Ventilatory flow (VE), oxygen uptake (VO2), carbon dioxide production (VCO2, ventilatory equivalents of O2 (EO2 = VE/VO2) and CO2 (ECO2 = VE/VCO2), and heart rate (HR) were determined during the last 20 s of every min. Venous blood samples were drawn at the end of each stage of effort and analyzed enzymatically for lactate concentration ([La]). The HR deflection, S[La]2, and SV2 were represented graphically by two investigators using a double blind procedure. Following the method proposed by Conconi et al. 1982, the deflection in HR was considered to begin at the point beyond which the increase in work intensity exceeded the increase in HR and the linearity of the work rate/HR relationship was lost. S[La]2 corresponded to the second breaking point of the lactate time-course curve (onset of blood lactate accumulation) and SV2 was identified at the second breaking point in the increase in VE and ventilatory equivalent for O2 uptake accompanied by a concomitant increase in ventilatory equivalent for CO2 output. We observed that the deflection point in HR was present only in 7 subjects. The work load, VO2, HR, and [La] levels at which heart rate departed from linearity did not differ significantly from those determined with S[La]2 ans SV2. The VO2 and HR values at HR deflection point were significantly correlated with those measured at S[La]2 and SV2. It is concluded that deflection in heart rate does not always occur, and when it does, it coincides with the second lactate and ventilatory gas exchange thresholds. It can thus be used for the determination of optimal intensity for individualized aerobic training.  相似文献   

4.
The purposes of this investigation were to quantify the noise component of child breath-by-breath data, investigate the major determinants of the breath-to-breath noise, and to characterise the noise statistically. Twenty-four healthy children (12 males and 12 females) of mean (SD) age 13.1 (0.3) years completed 25 min of steady-state cycle ergometry at an exercise intensity of 50 W. Ventilatory and gas exchange variables were computed breath-by-breath. The mean (SD) oxygen consumption (VO2) ranged from 0.72 (0.16) to 0.92 (0.26) l x min(-1); mean (SD) carbon dioxide production (VCO2) ranged from 0.67 (0.20) l x min(-1) to 0.85 (0.16) l x min(-1); and mean (SD) minute ventilation ranged from 17.81 (3.54) l x min(-1) to 24.97 (5.63) l x min(-1). The majority of the breath-to-breath noise distributions differed significantly from Gaussian distributions with equivalent mean and SD parameters. The values of the normalised autocorrelation functions indicated a negligible breath-to-breath correlation. Tidal volume accounted for the majority of the VO2 (43%) and VCO2 (49%) variance. The breath-to-breath noise can be explained in terms of variations in the breathing pattern, although the large noise magnitude, together with the relatively small attainable response amplitudes in children reduces the certainty with which ventilatory and gas exchange kinetics can be measured.  相似文献   

5.
To test the hypothesis that in chronic obstructive pulmonary disease (COPD) patients the ventilatory and metabolic requirements during cycling and walking exercise are different, paralleling the level of breathlessness, we studied nine patients with moderate to severe, stable COPD. Each subject underwent two exercise protocols: a 1-min incremental cycle ergometer exercise (C) and a "shuttle" walking test (W). Oxygen uptake (VO(2)), CO(2) output (VCO(2)), minute ventilation (VE), and heart rate (HR) were measured with a portable telemetric system. Venous blood lactates were monitored. Measurements of arterial blood gases and pH were obtained in seven patients. Physiological dead space-tidal volume ratio (VD/VT) was computed. At peak exercise, W vs. C VO(2), VE, and HR values were similar, whereas VCO(2) (848 +/- 69 vs. 1,225 +/- 45 ml/min; P < 0. 001) and lactate (1.5 +/- 0.2 vs. 4.1 +/- 0.2 meq/l; P < 0.001) were lower, DeltaVE/DeltaVCO(2) (35.7 +/- 1.7 vs. 25.9 +/- 1.3; P < 0. 001) and DeltaHR/DeltaVO(2) values (51 +/- 3 vs. 40 +/- 4; P < 0.05) were significantly higher. Analyses of arterial blood gases at peak exercise revealed higher VD/VT and lower arterial partial pressure of oxygen values for W compared with C. In COPD, reduced walking capacity is associated with an excessively high ventilatory demand. Decreased pulmonary gas exchange efficiency and arterial hypoxemia are likely to be responsible for the observed findings.  相似文献   

6.
Humoral factors play an important role in the control of exercise hyperpnea. The role of neuromechanical ventilatory factors, however, is still being investigated. We tested the hypothesis that the afferents of the thoracopulmonary system, and consequently of the neuromechanical ventilatory loop, have an influence on the kinetics of oxygen consumption (VO2), carbon dioxide output (VCO2), and ventilation (VE) during moderate intensity exercise. We did this by comparing the ventilatory time constants (tau) of exercise with and without an inspiratory load. Fourteen healthy, trained men (age 22.6 +/- 3.2 yr) performed a continuous incremental cycle exercise test to determine maximal oxygen uptake (VO2max = 55.2 +/- 5.8 ml x min(-1) x kg(-1)). On another day, after unloaded warm-up they performed randomized constant-load tests at 40% of their VO2max for 8 min, one with and the other without an inspiratory threshold load of 15 cmH2O. Ventilatory variables were obtained breath by breath. Phase 2 ventilatory kinetics (VO2, VCO2, and VE) could be described in all cases by a monoexponential function. The bootstrap method revealed small coefficients of variation for the model parameters, indicating an accurate determination for all parameters. Paired Student's t-tests showed that the addition of the inspiratory resistance significantly increased the tau during phase 2 of VO2 (43.1 +/- 8.6 vs. 60.9 +/- 14.1 s; P < 0.001), VCO2 (60.3 +/- 17.6 vs. 84.5 +/- 18.1 s; P < 0.001) and VE (59.4 +/- 16.1 vs. 85.9 +/- 17.1 s; P < 0.001). The average rise in tau was 41.3% for VO2, 40.1% for VCO2, and 44.6% for VE. The tau changes indicated that neuromechanical ventilatory factors play a role in the ventilatory response to moderate exercise.  相似文献   

7.
We investigated the effect of central hypervolaemia during water immersion up to the xiphoid process on the oxygen uptake (VO2) and heart rate (HR) response to arm cranking. Seven men performed a 6-min arm-cranking exercise at an intensity requiring a VO2 at 80% ventilatory threshold both in air [C trial, 29 (SD 9) W] and immersed in water [WI trial, 29 (SD 11) W] after 6 min of sitting. The VO2 (phase 2) and HR responses to exercise were obtained from a mono-exponential fit [f(t) = baseline + gain x (1 - e(-(t-TD)/tau))]. The response was evaluated by the mean response time [MRT; sum of time constant (tau) and time delay (TD)]. No significant difference in VO2 and HR gains between the C and WI trials was observed [VO2 0.78 (SD 0.1) vs 0.80 (SD 0.2) l x min(-1), HR 36 (SD 7) vs 37 (SD 8) beats x min(-1), respectively]. Although the HR MRT was not significantly different between the C and WI trials [17 (SD 3), 19 (SD 8) s, respectively), VO2 MRT was greater in the WI trial than in the C trial [40 (SD 6), 45 (SD 6) s, respectively; P < 0.05]. Assuming no difference in VO2 in active muscle between the two trials, these results would indicate that an increased oxygen store and/or an altered response in muscle blood distribution delayed the VO2 response to exercise.  相似文献   

8.
Diurnal variations in ventilatory and cardiorespiratory responses to submaximal treadmill exercise were analysed in 11 eumenorrhoeic women and in 10 women using monophasic oral contraceptives. Subjects performed submaximal treadmill exercise at three intensities averaging 7, 8, and 9 km x h(-1), each for 4 min at 0800, 1300 and 1700 hours, assigned randomly on 3 separate days. Rectal temperature was measured before (T(rec(b))) and after (T(rec(a))) exercise. Cardiac frequency (f(c)), ventilation (V(E)), oxygen uptake (VO(2)), carbon dioxide output (VCO(2)), and respiratory exchange ratio (R) were assessed in the last minute of each stage of the exercise. Both T(rec(b)) and T(rec(a)) increased from 0800 to 1700 hours (P < 0.001). For a given submaximal work rate, VO(2) and VCO(2) were higher in the afternoon compared to the morning. Similarly, R was increased at 1700 hours compared to 0800 hours during the recovery period following exercise (P < 0.05). However, V(E) did not vary significantly during the day at any of the running intensities. No significant interactions (group x time of day) were observed in any of the studied parameters. In contrast to ventilation, the VO(2) and VCO(2) of the females during submaximal exercise were both affected by the time of day, without any differences between eumenorrhoeic women and users of oral contraceptives.  相似文献   

9.
The purpose of this investigation was to determine the validity of the non-exercise-based equations of Davis et al. (13), Jones et al. (20), and Neder et al. (30) for estimating the ventilatory threshold (VT) in samples of aerobically trained men and women. One hundred and forty-four aerobically trained men (mean +/- SD age, 41.0 +/- 11.6 years; N = 83) and women (37.1 +/- 9.0 years, N = 61) performed a maximal incremental test to determine VO2max and observed VT on a cycle ergometer. The observed VT was determined by gas exchange measurements using the V-slope method (VCO2/VO2) in conjunction with analyses of the ventilatory equivalents (i.e., minute ventilation VE/VO2 and VE/VCO2) and end-tidal gas tensions (i.e., P(ET)O2 and P(ET)CO2) for oxygen and carbon dioxide. The predicted VT values from 14 equations were compared to the observed VT values by examining the constant error (CE), standard error of estimate (SEE), Pearson correlation coefficient (r), and total error (TE). The results of this investigation indicated that all 14 equations resulted in significant (p < 0.008) CE values ranging from 1.13 to 1.72 L x min(-1) for the men and from 0.58 to 1.12 L x min(-1) for the women. Furthermore, the SEE, r, and TE values ranged from 0.37 to 0.54, from 0.36 to 0.53, and from 0.68 to 1.81 L x min(-1), respectively. The lowest TE values for the men and women represented 45 and 36% of the mean of the observed VT values, respectively. The results of this study indicated that the errors associated with all 14 equations were too large to be of practical value for estimating VT in aerobically trained men and women.  相似文献   

10.
This study examined the effects of aerobic conditioning during the second and third trimesters of human pregnancy on ventilatory responses to graded cycling. Previously sedentary pregnant women were assigned randomly to an exercise group (n = 14) or a nonexercising control group (n = 14). Data were collected at 15-17 weeks, 25-27 weeks and 34-36 weeks of pregnancy. Testing involved 20 W.min-1 increases in work rate to a heart rate of 170 beats.min-1 and (or) volitional fatigue. Breath-by-breath ventilatory and alveolar gas exchange measurements were compared at rest, a standard submaximal .VO2 and peak exercise. Within both groups, resting .V(E), .V(A), and V(T)/T(I) increased significantly with advancing gestation. Peak work rate, O2 pulse (.VO2/HR), .V(E), .V(A) respiratory rate, V(T)/T(I), .VO2, .VCO2, and the ventilatory threshold (T(vent)) were increased after physical conditioning. Chronic maternal exercise has no significant effect on pregnancy-induced changes in ventilation and (or) alveolar gas exchange at rest or during standard submaximal exercise. Training-induced increases in T(vent) and peak oxygen pulse support the efficacy of prenatal fitness programs to improve maternal work capacity.  相似文献   

11.
To determine why black distance runners currently out-perform white distance runners in South Africa, we measured maximum oxygen consumption (VO2max), maximum workload during a VO2max test (Lmax), ventilation threshold (VThr), running economy, inspiratory ventilation (VI), tidal volume (VT), breathing frequency (f) and respiratory exchange ratio (RER) in sub-elite black and white runners matched for best standard 42.2 km marathon times. During maximal treadmill testing, the black runners achieved a significantly lower (P less than 0.05) Lmax (17 km h-1, 2% grade, vs 17 km h-1, 4% grade) and VI max (6.21 vs 6.82 l kg-2/3 min-1), which was the result of a lower VT (101 vs 119 ml kg-2/3 breath-1) as fmax was the same in both groups. The lower VT in the black runners was probably due to their smaller body size. The VThr occurred at a higher percentage VO2max in black than in white runners (82.7%, SD 7.7% vs 75.6%, SD 6.2% respectively) but there were no differences in the VO2max. However, during a 42.2-km marathon run on a treadmill, the black athletes ran at the higher percentage VO2max (76%, SD 7.9% vs 68%, SD 5.3%), RER (0.96, SD 0.07 vs 0.91, SD 0.04) and f (56 breaths min-1, SD 11 vs 47 breaths min-1, SD 10), and at lower VT (78 ml kg-2/3 breath-1, SD 15 vs 85 ml kg-2/3 breath-1, SD 19). The combination of higher f and lower VT resulted in an identical VI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effects of beta-blockade on tidal volume (VT), breath cycle timing, and respiratory drive were evaluated in 14 endurance-trained [maximum O2 uptake (VO2max) approximately 65 ml X kg-1 X min-1] and 14 untrained (VO2max approximately 50 ml X kg-1 X min-1) male subjects at 45, 60, and 75% of unblocked VO2max and at VO2max. Propranolol (PROP, 80 mg twice daily), atenolol (ATEN, 100 mg once a day) and placebo (PLAC) were administered in a randomized double-blind design. In both subject groups both drugs attenuated the increases in VT associated with increasing work rate. CO2 production (VCO2) was not changed by either drug during submaximal exercise but was reduced in both subject groups by both drugs during maximal exercise. The relationship between minute ventilation (VE) and VCO2 was unaltered by either drug in both subject groups due to increases in breathing frequency. In trained subjects VT was reduced during maximal exercise from 2.58 l/breath on PLAC to 2.21 l/breath on PROP and to 2.44 l/breath on ATEN. In untrained subjects VT at maximal exercise was reduced from 2.30 l/breath on PLAC to 1.99 on PROP and 2.12 on ATEN. These observations indicate that 1) since VE vs. VCO2 was not altered by beta-adrenergic blockade, the changes in VT and f did not result from a general blunting of the ventilatory response to exercise during beta-adrenergic blockade; and 2) blockade of beta 1- and beta 2-receptors with PROP caused larger reductions in VT compared with blockade of beta 1-receptors only (ATEN), suggesting that beta 2-mediated bronchodilation plays a role in the VT response to heavy exercise.  相似文献   

13.
14.
This study was to assess whether the point of deflection from linearity of heart rate (HRd) could be an accurate predictor of ventilatory threshold (VT2) during a specific cross-country roller-skiing (RS) test. Ten well-trained cross-country skiers performed a maximal and incremental RS test in the field and a standardized maximal and incremental treadmill running (TR) test in the laboratory. Values of oxygen uptake (VO2) and heart rate (HR) were continuously recorded during all exercises by a portable breath-by-breath gas exchange measurement system and a wireless Polar monitoring system, respectively. The VT2 and HRd points were individually determined by visual analysis during RS. Maximal VO2 (VO2 max) and HR were higher (p < 0.05) during TR (67.1 +/- 7.3 ml x min(-1) x kg(-1) and 196.0 +/- 14.1 bpm, respectively) compared with RS (64.2 +/- 7.3 ml x min(-1) x kg(-1) and 191.5 +/- 13.1 bpm, respectively). However, a high correlation (r = 0.94, p < 0.01) between TR and VO2 max was observed. Paired t-tests showed no significant differences in HR (183.6 +/- 15.1 vs. 185.2 +/- 13.9 bpm) and VO2 (55.5 +/- 7.1 vs. 55.8 +/- 6.1 ml x min(-1) x kg(-1)) at intensities corresponding to HRd and VT2 during the RS test, respectively; Pearson product-moment correlation coefficients demonstrated significant relationships for HR at the HRd and VT2 points (r = 0.99, p < 0.001) as well as for VO2 (r = 0.95, p < 0.001). Our results indicate that the specific incremental RS test is effective in eliciting HRd in the field for all skiers and is an accurate predictor of VT2. These findings give very interesting practical applications to cross-country coaches and skiers to evaluate and control specific aerobic training loads.  相似文献   

15.
Nine male patients (mean age 65 yr) with chronic atrial fibrillation underwent maximal exercise testing during placebo, beta-adrenergic (celiprolol, 600 mg), or calcium (diltiazem, 30 or 60 mg four times daily) channel blockade. The results were analyzed to determine which factors most closely related to ratings of perceived exertion (RPE) during exercise. Heart rate (HR), blood pressure (BP), oxygen uptake (VO2), minute ventilation (VE), and carbon dioxide production (VCO2) were evaluated at rest, 3.0 mph/0% grade, the gas exchange anaerobic threshold (ATge), 80% of placebo maximal O2 uptake, and maximal exercise. Both beta-adrenergic and calcium channel blockade significantly reduced heart rate and systolic blood pressure relative to placebo; these effects were more profound during beta-adrenergic blockade and as exercise progressed. Correlation coefficients and estimates of slope were derived for changes in RPE during exercise vs. changes in HR, VO2, VE, and VCO2 during the three treatments (r = 0.76 to 0.92, P less than 0.001). Although RPE was significantly correlated with HR during placebo and diltiazem therapy (r = 0.45, P less than 0.01), this was not the case during beta-adrenergic blockade (r = 0.31, NS). Slope of the regression lines between RPE and VO2, VE, and VCO2 did not differ between the three treatments. Slope of the regression lines between RPE and HR differed only during calcium channel blockade. Because the presence of atrial fibrillation and beta-adrenergic blockade altered the associations between RPE, VO2, and HR, these results suggest that VE is more closely related to RPE than the other parameters.  相似文献   

16.
The aim of this study was to assess the discriminatory power of the new reference system, power-duration product (PDP), for the analysis of haemodynamic and metabolic variables derived from cardiopulmonary exercise tests. The PDP was calculated as the cumulative index of the product of power (W) times the duration (minutes) of each individual exercise step. The study comprised 30 healthy male volunteers, who were classified into three groups with respect to their regular physical activity: 10 untrained medical students (students), 10 sprinters and long-jumpers (athletes) and 10 endurance athletes performing triathlon (triathletes). Twenty metabolic and haemodynamic variables were recorded throughout exhaustion-limited cycling ergometry. The data were analysed with respect to five reference systems (heart rate, relative and absolute oxygen consumption/body surface area, power, and PDP). A total of 14 differences between modified time courses of haemodynamic and metabolic variables in the three groups of volunteers were observed by reference to PDP, 12 by reference to relative oxygen consumption/body surface area, 11 by reference to heart rate, 8 by reference to absolute oxygen consumption/body surface area, and 7 by reference to power. When using PDP as the reference, the time courses of 8 parameters differed significantly between students and triathletes, 5 between students and athletes, and 1 between athletes and triathletes. In addition to its discriminatory superiority for the comparison of different groups characterized by different cardiopulmonary training and endurance, it was found that PDP permitted a better characterization of the individually performed exercise than the consideration of power per se.  相似文献   

17.
The purpose of this study was to determine the optimal 1.63-km (1-mile) pacing strategy for 5-km running performance in moderately trained women distance runners. Eleven women distance runners (20.7 +/- 0.8 years, 163.8 +/- 2.0 cm, 57.0 +/- 2.2 kg, 51.7 +/- 1.0 ml.kg(-1).min(-1), 18.9 +/- 0.8% fat, 78.1 +/- 1.4% VO(2)max at lactate threshold) performed 2 preliminary 5-km time trials on a treadmill to establish baseline 5-km times. The average 1.63-km split pace of the fastest preliminary trial was manipulated for the first 1.63 km of the experimental trials and run either equal to (EVEN), 3% faster than (3%), or 6% faster than (6%) the current baseline average 1.63-km pace for each subject. Ventilation (V(E)), oxygen consumption VO(2)max )), respiratory exchange ratio, and heart rate were measured continuously. Overall 5-km times were not different (p > 0.05) for the EVEN, 3% and 6% trials finishing in 21:11 (minutes/seconds) +/- 29 seconds, 20:52 +/- 36 seconds and 20:39 +/- 29 seconds, respectively. The fastest time for 8 subjects resulted from the 6% trial and the other 3 subjects' fastest times resulted from the 3% trial. The overall exercise intensity (%VO(2)max , %VO(2)max above lactate threshold, V(E), and respiratory exchange ratio) of the first 1.63-km split was not different between the 3 and 6% trials, despite the 6% trial being 13 seconds faster than the 3% trial. Based on these findings, initial 1.63-km starting paces of a 5-km race can be 3 to 6% greater than current average race pace without negatively impacting performance. In order to optimize 5-km performance, runners should start the initial 1.63 km of a 5-km race at paces 3-6% greater than their current average race pace.  相似文献   

18.
Seven men and four women (age 63 +/- 2 yr, mean +/- SD, range 61-67 yr) participated in a 12-mo endurance training program to determine the effects of low-intensity (LI) and high-intensity (HI) training on the blood lactate response to submaximal exercise in older individuals. Maximal oxygen uptake (VO2max), blood lactate, O2 uptake (VO2), heart rate (HR), ventilation (VE), and respiratory exchange ratio (R) during three submaximal exercise bouts (65-90% VO2max) were determined before training, after 6 mo of LI training, and after an additional 6 mo of HI training. VO2max (ml X kg-1 X min-1) was increased 12% after LI training (P less than 0.05), while HI training induced a further increase of 18% (P less than 0.01). Lactate, HR, VE, and R were significantly lower (P less than 0.05) at the same absolute work rates after LI training, while HI training induced further but smaller reductions in these parameters (P greater than 0.05). In general, at the same relative work rates (ie., % of VO2max) after training, lactate was lower or unchanged, HR and R were unchanged, and VO2 and VE were higher. These findings indicate that LI training in older individuals results in adaptations in the response to submaximal exercise that are similar to those observed in younger populations and that additional higher intensity training results in further but less-marked changes.  相似文献   

19.
The influence of a pattern of exercise and dietary manipulation, intended to alter carbohydrate (CHO) availability, on pre-exercise acid-base status and plasma ammonia and blood lactate accumulation during incremental exercise was investigated. On three separate occasions, five healthy male subjects underwent a pre-determined incremental exercise test (IET) on an electrically braked cycle ergometer. Each IET involved subjects exercising for 5 min at 30%, 50%, 70% and 95% of their maximal oxygen uptake (VO2max) and workloads were separated by 5 min rest. The first IET took place after 3 days of normal dietary CHO intake. The second and third tests followed 3 days of low or high CHO intake, which was preceded by prolonged exercise to exhaustion in an attempt to deplete muscle and liver glycogen stores. Acid-base status and plasma ammonia and blood lactate levels were measured on arterialised venous blood samples immediately prior to and during the final 15 s of exercise at each workload and for 40 min following the completion of each IET. Three days of low CHO intake resulted in the development of a mild metabolic acidosis in all subjects. Plasma ammonia (NH3) accumulation on the low-CHO diet tended to be greater than normal at each exercise workload. Values returned towards resting levels during each recovery period. After the normal and high-CHO diets plasma NH3 levels did not markedly increase above resting values until after exercise at 95% VO2max. Plasma NH3 levels after the high-CHO diet were similar to those after the normal CHO diet.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
This double-blind, randomized, placebo-controlled trial examined the effects of 4 wk of resting exposure to intermittent hypobaric hypoxia (IHE, 3 h/day, 5 days/wk at 4,000-5,500 m) or normoxia combined with training at sea level on performance and maximal oxygen transport in athletes. Twenty-three trained swimmers and runners completed duplicate baseline time trials (100/400-m swims, or 3-km run) and measures for maximal oxygen uptake (VO(2max)), ventilation (VE(max)), and heart rate (HR(max)) and the oxygen uptake at the ventilatory threshold (VO(2) at VT) during incremental treadmill or swimming flume tests. Subjects were matched for sex, sport, performance, and training status and divided randomly between hypobaric hypoxia (Hypo, n = 11) and normobaric normoxia (Norm, n = 12) groups. All tests were repeated within the first (Post1) and third weeks (Post2) after the intervention. Time-trial performance did not improve in either group. We could not detect a significant difference between groups for a change in VO(2max), VE(max), HR(max), or VO(2) at VT after the intervention (group x test interaction P = 0.31, 0.24, 0.26, and 0.12, respectively). When runners and swimmers were considered separately, Hypo swimmers appeared to increase VO(2max) (+6.2%, interaction P = 0.07) at Post2 following a precompetition taper and increased VO(2) at VT (+8.9 and +12.1%, interaction P = 0.007 and 0.006, at Post1 and Post2). We conclude that this "dose" of IHE was not sufficient to improve performance or oxygen transport in this heterogeneous group of athletes. Whether there are potential benefits of this regimen for specific sports or training/tapering strategies may require further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号