首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyclin-dependent kinase 5 (CDK5) is a unique CDK, the activity of which can be detected in postmitotic neurons. To date, CDK5 purified from mammalian brains has always been associated with a truncated form of the 35-kDa major brain specific activator (p35, also known as nck5a) of CDK5, known as p25. In this study, we report that p35 can be cleaved to p25 both in vitro and in vivo by calpain. In a rat brain extract, p35 was cleaved to p25 by incubation with Ca(2+). This cleavage was inhibited by a calpain inhibitor peptide derived from calpastatin and was ablated by separating the p35.CDK5 from calpain by centrifugation. The p35 recovered in the pellet after centrifugation could then be cleaved to p25 by purified calpain. Cleavage of p35 was also induced in primary cultured neurons by treatment with a Ca(2+) ionophore and Ca(2+) and inhibited by calpain inhibitor I. The cleavage changed the solubility of the CDK5 active complex from the particulate fraction to the soluble fraction but did not affect the histone H1 kinase activity. Increased cleavage was detected in cultured neurons undergoing cell death, suggesting a role of the cleavage in neuronal cell death.  相似文献   

2.
Hisanaga S  Saito T 《Neuro-Signals》2003,12(4-5):221-229
Cyclin-dependent kinase 5 (Cdk5) displays kinase activity predominantly in post-mitotic neurons and its physiological roles are unrelated to cell cycle progression. Cdk5 is activated by its binding to a neuron-specific activator, p35 or p39. The protein amount of p35 or p39 is a primary determinant of the Cdk5 activity in neurons, with the amount of p35 or p39 being determined by its synthesis and degradation. The expression of p35 is induced in differentiated neurons and is enhanced by extracellular stimuli such as neurotrophic factors or extracellular matrix molecules, specifically those acting on the ERK/Erg pathway. p35 is a short-lived protein and its degradation determines the life span. Degradation is mediated by the ubiquitin/proteasome system, similar to that for cyclins in proliferating cells. Autophosphorylation of p35 by Cdk5 is a signal for ubiquitination/degradation, and the degradation of p35 is triggered by glutamate treatment in cultured neurons. p35 is cleaved to p25 by calpain at the time of neuronal cell death, and this limited cleavage is suggested to be the cause of neurodegenerative diseases such as Alzheimer's disease. Active Cdk5 changes the cellular localization by cleavage of p35 to p25; p35/Cdk5 is associated with membrane or cytoskeletons, but p25/Cdk5 is a soluble protein. Cleavage also increases the life span of p25 and changes the activity or substrate specificity of Cdk5. p25/Cdk5 shows higher phosphorylating activity to tau than p35/Cdk5 in a phosphorylation site-specific manner. Phosphorylation of p35 suppresses cleavage by calpain. Thus, phosphorylation of p35 modulates its proteolytic pattern, stimulates proteasomal degradation and suppresses calpain cleavage. Phosphorylation is age dependent, as p35 is phosphorylated in foetal brains, but unphosphorylated in adult brains. Therefore, foetal phosphorylated p35 is turned over rapidly, whereas adult unphosphorylated p35 has a long life and is easily cleaved to p25 when calpain is activated. p39 is also a short-lived protein and cleaved to the N-terminal truncation form of p29 by calpain. How the metabolism of p39 is regulated, however, is a future problem to be investigated.  相似文献   

3.
Hyperphosphorylated tau protein is the primary component of neurofibrillary tangles observed in several neurodegenerative disorders. It has been hypothesized that in certain pathological conditions, the calcium activated protease, calpain, would cleave the cyclin-dependent kinase 5 (cdk5) activator p35 to a p25 fragment, which would lead to augmented cdk5 activity, and cdk5-mediated tau hyperphosphorylation. To test this hypothesis, we induced calpain-mediated p35 cleavage in rat hippocampal neuronal cultures and studied the relationship between p25 production, cdk5 activity, and tau phosphorylation. In glutamate-treated cells p35 was cleaved to p25 and this was associated with elevated cdk5 activity. However, tau phosphorylation was concomitantly decreased at multiple sites. The calpain inhibitor MDL28170 prevented the cleavage of p35 but had no effect on tau phosphorylation, suggesting that calpain-mediated processes, i.e., the cleavage of p35 to p25 and cdk5 activation, do not contribute to tau phosphorylation in these conditions. Treatment of the neuronal cultures with N-methyl-D-aspartic acid or with calcium ionophores resulted in an outcome highly similar to that of glutamate. We conclude that, in neuronal cells, the cleavage of p35 to p25 is associated with increased activity of cdk5 but not with tau hyperphosphorylation.  相似文献   

4.
We have investigated the role of cyclin-dependent kinases in cell death and found that the expression of cyclin-dependent kinase 5 (Cdk5) is associated with apoptotic cell death in both adult and embryonic tissues. By double labeling immunohistochemistry and confocal microscopy, we specifically associated the expression of Cdk5 to dying cells. The association of Cdks with cell death is unique to Cdk5 as this association is not found with the other Cdks (Cdk 1–8) and cell death. The differential increase in Cdk5 expression is at the level of protein only, and no differences can be detected at the level of mRNA. Using both limbs of mutant mice defective in the pattern of interdigital cell death and limbs with increased interdigital cell death by retinoic acid treatment, we confirmed the specificity of Cdk5 protein expression in dying cells. To investigate the regulation of Cdk5 during cell death, we examined the expression of a regulatory protein of Cdk5, p35, and found p35 to be expressed in the dying cells as well. Similar to Cdk5, there is also no specific differential expression of the p35 mRNA in dying cells. Our results suggest a role for Cdk5 and p35 proteins in cell death. This protein complex may function in the rearrangement of the cytoskeleton during apoptosis. Dev. Genet. 21:258–267, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Although the roles of cyclin-dependent kinase 5 (Cdk5) in neurodevelopment and neurodegeneration have been studied extensively, regulation of Cdk5 activity has remained largely unexplored. We report here that glutamate, acting via NMDA or kainate receptors, can induce a transient Ca(2+)/calmodulin-dependent activation of Cdk5 that results in enhanced autophosphorylation and proteasome-dependent degradation of a Cdk5 activator p35, and thus ultimately down-regulation of Cdk5 activity. The relevance of this regulation to synaptic plasticity was examined in hippocampal slices using theta burst stimulation. p35(-/-) mice exhibited a lower threshold for induction of long-term potentiation. Thus excitatory glutamatergic neurotransmission regulates Cdk5 activity through p35 degradation, and this pathway may contribute to plasticity.  相似文献   

6.
7.
Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology   总被引:7,自引:0,他引:7  
The small GTPase Rac and its effectors, the Pak1 and p35/Cdk5 kinases, have been assigned important roles in regulating cytoskeletal dynamics in neurons. Our previous work revealed that the neuronal p35/Cdk5 kinase associates with Pak1 in a RacGTP-dependent manner, causing hyperphosphorylation and down-regulation of Pak1 kinase activity. We have now demonstrated direct phosphorylation of Pak1 on threonine 212 by the p35/Cdk5 kinase. In neuronal growth cones, Pak1 phosphorylated on Thr-212 localized to actin and tubulin-rich areas, suggesting a role in regulating growth cone dynamics. The expression of a non-phosphorylatable Pak1 mutant (Pak1A212) induced dramatic neurite disorganization. We also observed a strong association between p35/Cdk5 and the Pak1 C-terminal kinase domain. Overall, our data show that in neurons, membrane-associated, active Pak1 is regulated by the p35/Cdk5 kinase both by association and phosphorylation, which is essential for the proper regulation of the cytoskeleton during neurite outgrowth and remodeling.  相似文献   

8.
One of the major pathological hallmarks of Alzheimer disease is neurofibrillary tangles. Neurofibrillary tangles are bundles of paired helical filaments composed of hyperphosphorylated tau. Cyclin-dependent kinase 5 (Cdk5) is one of the tau protein kinases that increase paired helical filament epitopes in tau by phosphorylation. Recently, various mutations of tau have been identified in frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). Here, we investigated the phosphorylation of FTDP-17 mutant tau proteins, K257T, P301L, P301S, and R406W, by Cdk5 complexed with p35, p25, or p39 in vitro and in cultured cells. The extent of phosphorylation by all Cdk5 species was slightly lower in mutant tau than in wild-type tau. Major phosphorylation sites, including Ser202, Ser235, and Ser404, were the same among the wild-type, K257T, P301L, and P301S tau proteins phosphorylated by any Cdk5. On the other hand, R406W tau was less phosphorylated at Ser404 than were the other variants. This was not due to the simple replacement of amino acid Arg406 with Trp close to the phosphorylation site, because Ser404 in a R406W peptide was equally phosphorylated in a wild-type peptide. The decreased phosphorylation of mutant tau by Cdk5s was canceled when tau protein bound to microtubules was phosphorylated. These results indicate that FTDP-17 mutations do not affect the phosphorylatability of tau by Cdk5 complexed with p35, p25, or p39 and may explain part of the discrepancy reported previously between in vivo and in vitro phosphorylation of FTDP-17 tau mutants.  相似文献   

9.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective loss of motor neurons in the brain and spinal cord. Neurotoxicity mediated by glutamate is thought to play a role in the neuronal death through intracellular calcium-dependent signaling cascades. Cyclin-dependent kinase 5 (Cdk5) has been proposed as one of the calcium-dependent mediators that may cause neuronal death observed in this disease. Cdk5 is activated in neurons by the association with its activators, p35 or p39. The calcium-activated protease calpain cleaves p35 to its truncated product, p25, which eventually causes the cellular mislocalization and prolonged activation of Cdk5. This deregulated Cdk5 induces cytoskeletal disruption and apoptosis. To examine whether inhibition of the calpain-mediated conversion of p35 to p25 can delay the disease progression of ALS, we generated double transgenic mice in which ALS-linked mutant copper/zinc superoxide dismutase 1 (SOD1G93A) was expressed in a p35-null background. The absence of p35 neither affected the onset and progression of motor neuron disease in the mutant SOD1 mice nor ameliorated the pathological lesions in these mice. Our results provide direct evidence that the pathogenesis of motor neuron disease in the mutant SOD1 mice is independent of the Cdk5 activation by p35 or p25.  相似文献   

10.
The role of the Cdk5--p35 kinase in neuronal development.   总被引:2,自引:0,他引:2  
Cyclin-dependent kinase 5 (Cdk5) plays a key role in proper development of the nervous system. To be activated, Cdk5 associates with regulatory subunits not related to cyclins, such as p35 (the regulatory subunit of Cdk5). In this article, we review some of the experimental evidence supporting a central role for the Cdk5/p35 kinase in neuronal migration and process formation.  相似文献   

11.
One hallmark of Alzheimer's disease (AD) is the formation of neurofibrillary tangles, aggregated paired helical filaments composed of hyperphosphorylated tau. Amyloid-beta (Abeta) induces tau hyperphosphorylation, decreases microtubule (MT) stability and induces neuronal death. MT stabilizing agents have been proposed as potential therapeutics that may minimize Abeta toxicity and here we report that paclitaxel (taxol) prevents cell death induced by Abeta peptides, inhibits Abeta-induced activation of cyclin-dependent kinase 5 (cdk5) and decreases tau hyperphosphorylation. Taxol did not inhibit cdk5 directly but significantly blocked Abeta-induced calpain activation and decreased formation of the cdk5 activator, p25, from p35. Taxol specifically inhibited the Abeta-induced activation of the cytosolic cdk5-p25 complex, but not the membrane-associated cdk5-p35 complex. MT-stabilization was necessary for neuroprotection and inhibition of cdk5 but was not sufficient to prevent cell death induced by overexpression of p25. As taxol is not permeable to the blood-brain barrier, we assessed the potential of taxanes to attenuate Abeta toxicity in adult animals using a succinylated taxol analog (TX67) permeable to the blood-brain barrier. TX67, but not taxol, attenuated the magnitude of both basal and Abeta-induced cdk5 activation in acutely dissociated cortical cultures prepared from drug treated adult mice. These results suggest that MT-stabilizing agents may provide a therapeutic approach to decrease Abeta toxicity and neurofibrillary pathology in AD and other tauopathies.  相似文献   

12.
Previous studies implicate cyclin-dependent kinase 5 in cell adhesion and migration of epithelial cells of the cornea and lens. To explore molecular interactions underlying these functions, we performed yeast two-hybrid screening of an embryonic rat lens library for proteins that interact with cyclin-dependent kinase 5 and its regulators, p35 and p39. This screen identified a specific interaction between p39 and muskelin, an intracellular protein known to affect cytoskeletal organization in adherent cells. Immunohistochemistry detected muskelin in the developing lens and in other tissues, including brain and muscle. Glutathione S-transferase pull-down experiments and co-immunoprecipitations confirmed the specificity of the p39-muskelin interaction. Deletion analysis of p39 showed that muskelin binds to the p39 C terminus, which contains a short insertion (amino acids 329-366) absent from p35. Similar analysis of muskelin mapped the interaction with p39 to the fifth kelch repeat. Co-expression of p39 and muskelin in COS1 cells or lens epithelial cells altered the intracellular localization of muskelin, recruiting it to the cell periphery. These findings demonstrate a novel interaction between muskelin and the cyclin-dependent kinase 5 activator p39 and suggest that p39 may regulate the subcellular localization of muskelin.  相似文献   

13.
Cdk5 is a member of the cyclin-dependent kinases (Cdks), activated by the neuron-specific activator p39 or p35. The activators also determine the cytoplasmic distribution of active Cdk5, but the mechanism is not yet known. In particular, little is known for p39. p39 and p35 contain localization motifs, such as a second Gly for myristoylation and Lys clusters in the N-terminal p10 region. Using mutant constructs, we investigated the cellular distribution mechanism. We observed that p39 localizes the active Cdk5 complex in the perinuclear region and at the plasma membrane as does p35. We demonstrated the myristoylation of both p39 and p35, and found that it is a major determinant of their membrane association. Plasma membrane targeting depends on the amino acid sequence containing the Lys-cluster in the N-terminal p10 region. In contrast, a non-myristoylated Ala mutant (p39G2A or p35G2A) showed nuclear localization with stronger accumulation of p39G2A than p35G2A. These results indicate that myristoylation regulates the membrane association of p39 as well as p35 and that the Lys cluster controls their trafficking to the plasma membrane. The differential nuclear accumulation of p39 and p35 suggests their segregated functions, p35–Cdk5 in the cytoplasm and p39–Cdk5 in the nucleus.  相似文献   

14.
Tau protein kinase II (TPKII) is a heterodimer comprising a catalytic cyclin-dependent kinase subunit (Cdk5) and a regulatory protein called neuronal Cdk5 activator (Nck5a). TPKII is somewhat reminiscent, therefore, of the Cdk2-cyclin complex important in cell cycle regulation. In fact, although the amino acid sequence of Nck5a has little similarity to those of cyclins, recent experimental results obtained by site-directed mutagenesis studies have indicated that its activation domain, Nck5a*, may adopt a conformation of the cyclin-fold structure. Based on this structural inference, a 3-dimensional model of the Cdk5-Nck5a*-ATP complex was derived from the X-ray structure of Cdk2-cyclinA-ATP complex. The computed structure for TPKII is fully compatible with experimental data derived from studies of the Cdk5-Nck5a system, and also predicts which amino acid residues might be involved in formation of the Cdk5-Nck5a* interface and ATP binding pocket in TPKII. The computational structure also shows the interactive region of Nck5a* and the T-loop of Cdk5, a critical region in TPKII which functions as a gate-control-lever of the catalytic cleft. Furthermore, a physical mechanism is put forth to explain why the activation of TPKII is not dependent upon phosphorylation of the Cdk5 subunit, a puzzle long-standing in this area. These findings provide a model with which to consider design of compounds which might serve as inhibitors of TPKII.  相似文献   

15.
16.
17.
Neuronal precursors remain in the proliferative zone of the developing mammalian neocortex until after they have undergone neuronal differentiation and cell cycle arrest. The newborn neurons then migrate away from the proliferative zone and enter the cortical plate. The molecules that coordinate migration with neuronal differentiation have been unclear. We have proposed in this study that the cdk inhibitors p57 and p27 play a role in this coordination. We have found that p57 and p27 mRNA increase upon neuronal differentiation of neocortical neuroepithelial cells. Knockdown of p57 by RNA interference resulted in a significant delay in the migration of neurons that entered the cortical plate but did not affect neuronal differentiation. Knockdown of p27 also inhibits neuronal migration in the intermediate zone as well as in the cortical plate, as reported by others. We have also found that knockdown of p27 increases p57 mRNA levels. These results suggest that both p57 and p27 play essential roles in neuronal migration and may, in concert, coordinate the timing of neuronal differentiation, migration, and possibly cell cycle arrest in neocortical development.  相似文献   

18.
J Vlach  S Hennecke    B Amati 《The EMBO journal》1997,16(17):5334-5344
The p27(Kip1) protein associates with G1-specific cyclin-CDK complexes and inhibits their catalytic activity. p27(Kip1) is regulated at various levels, including translation, degradation by the ubiquitin/proteasome pathway and non-covalent sequestration. Here, we describe point mutants of p27 deficient in their interaction with either cyclins (p27(c-)), CDKs (p27(k-)) or both (p27(ck-)), and demonstrate that each contact is critical for kinase inhibition and induction of G1 arrest. Through its intact cyclin contact, p27(k-) associated with active cyclin E-CDK2 and, unlike wild type p27, p27(c-) or p27(ck-), was efficiently phosphorylated by CDK2 on a conserved C-terminal CDK target site (TPKK). Retrovirally expressed p27(k-) was rapidly degraded through the proteasome in Rat1 cells, but was stabilized by secondary mutation of the TPKK site to VPKK. In this experimental setting, exogenous wild-type p27 formed inactive ternary complexes with cellular cyclin E-CDK2, was not degraded through the proteasome, and was not further stabilized by the VPKK mutation. p27(ck-), which was not recruited to cyclin E-CDK2, also remained stable in vivo. Thus, selective degradation of p27(k-) depended upon association with active cyclin E-CDK2 and subsequent phosphorylation. Altogether, these data show that p27 must be phosphorylated by CDK2 on the TPKK site in order to be degraded by the proteasome. We propose that cellular p27 must also exist transiently in a cyclin-bound non-inhibitory conformation in vivo.  相似文献   

19.
20.
Cdk5 and its neuronal activator p35 play an important role in neuronal migration and proper development of the brain cortex. We show that p35 binds directly to alpha/beta-tubulin and microtubules. Microtubule polymers but not the alpha/beta-tubulin heterodimer block p35 interaction with Cdk5 and therefore inhibit Cdk5-p35 activity. p25, a neurotoxin-induced and truncated form of p35, does not have tubulin and microtubule binding activities, and Cdk5-p25 is inert to the inhibitory effect of microtubules. p35 displays strong activity in promoting microtubule assembly and inducing formation of microtubule bundles. Furthermore, microtubules stabilized by p35 are resistant to cold-induced disassembly. In cultured cortical neurons, a significant proportion of p35 localizes to microtubules. When microtubules were isolated from rat brain extracts, p35 co-assembled with microtubules, including cold-stable microtubules. Together, these findings suggest that p35 is a microtubule-associated protein that modulates microtubule dynamics. Also, microtubules play an important role in the control of Cdk5 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号