首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dynamics of membrane clathrin-coated structures during cytokinesis   总被引:1,自引:0,他引:1  
Remodeling of cell membranes takes place during motile processes such as cell migration and cell division. Defects of proteins involved in membrane dynamics, including clathrin and dynamin, disrupt cytokinesis. To understand the function of clathrin-containing structures (CCS) in cytokinesis, we have expressed a green fluorescent protein (GFP) fusion protein of clathrin light chain a (GFP-clathrin) in NRK epithelial cells and recorded images of dividing cells near the ventral surface with a spinning disk confocal microscope. Punctate GFP-CCS underwent dynamic appearance and disappearance throughout the ventral surface. Following anaphase onset, GFP-CCS between separated chromosomes migrated toward the equator and subsequently disappeared in the equatorial region. Movements outside separating chromosomes were mostly random, similar to what was observed in interphase cells. Directional movements toward the furrow were dependent on both actin filaments and microtubules, while the appearance/disappearance of CCS was dependent on actin filaments but not on microtubules. These results suggest that CCS are involved in remodeling the plasma membrane along the equator during cytokinesis. Clathrin-containing structures may also play a role in transporting signaling or structural components into the cleavage furrow.  相似文献   

2.
The T lymphocyte plasma membrane condenses at the site of activation but the functional significance of this receptor-mediated membrane reorganization is not yet known. Here we demonstrate that membrane condensation at the T cell activation sites can be inhibited by incorporation of the oxysterol 7-ketocholesterol (7KC), which is known to prevent the formation of raft-like liquid-ordered domains in model membranes. We enriched T cells with 7KC, or cholesterol as control, to assess the importance of membrane condensation for T cell activation. Upon 7KC treatment, T cell antigen receptor (TCR) triggered calcium fluxes and early tyrosine phosphorylation events appear unaltered. However, signaling complexes form less efficiently on the cell surface, fewer phosphorylated signaling proteins are retained in the plasma membrane and actin restructuring at activation sites is impaired in 7KC-enriched cells resulting in compromised downstream activation responses. Our data emphasizes lipids as an important medium for the organization at T cell activation sites and strongly indicates that membrane condensation is an important element of the T cell activation process.  相似文献   

3.
Clues to CD2-associated protein involvement in cytokinesis   总被引:5,自引:0,他引:5       下载免费PDF全文
Cytokinesis requires membrane trafficking coupled to actin remodeling and involves a number of trafficking molecules. CD2-associated protein (CD2AP) has been implicated in dynamic actin remodeling and membrane trafficking that occurs during endocytosis leading to the degradative pathway. In this study, we present several arguments for its implication in cytokinesis. First, endogenous CD2AP was found concentrated in the narrow region of the midzone microtubules during anaphase and in the midbody during late telophase. Moreover, we found that CD2AP is a membrane- and not a microtubule-associated protein. Second, the overexpression of the first two Src homology 3 domains of CD2AP, which are responsible for this localization, led to a significant increase in the rate of cell multinucleation. Third, the CD2AP small interfering RNA interfered with the cell separation, indicating that CD2AP is required for HeLa cells cytokinesis. Fourth, using the yeast two-hybrid system, we found that CD2AP interacted with anillin, a specific cleavage furrow component, and the two proteins colocalized at the midbody. Both CD2AP and anillin were found phosphorylated early in mitosis and also CD2AP phosphorylation was coupled to its delocalization from membrane to cytosol. All these observations led us to propose CD2AP as a new player in cytokinesis.  相似文献   

4.
Membrane blebs are round-shaped dynamic membrane protrusions that occur under many physiological conditions. Membrane bleb production is primarily controlled by actin cytoskeletal rearrangements mediated by RhoA. Tre2–Bub2–Cdc16 (TBC) domain-containing proteins are negative regulators of the Rab family of small GTPases and contain a highly conserved TBC domain. In this report, we show that the expression of TBC1D15 is associated with the activity of RhoA and the production of membrane blebs. Depletion of TBC1D15 induced activation of RhoA and membrane blebbing, which was abolished by the addition of an inhibitor for RhoA signaling. In addition, we show that TBC1D15 is required for the accumulation of RhoA at the equatorial cortex for the ingression of the cytokinetic furrow during cytokinesis. Our results demonstrate a novel role for TBC1D15 in the regulation of RhoA during membrane blebbing and cytokinesis.  相似文献   

5.
mDia proteins are mammalian homologues of Drosophila diaphanous and belong to the formin family proteins that catalyze actin nucleation and polymerization. Although formin family proteins of nonmammalian species such as Drosophila diaphanous are essential in cytokinesis, whether and how mDia proteins function in cytokinesis remain unknown. Here we depleted each of the three mDia isoforms in NIH 3T3 cells by RNA interference and examined this issue. Depletion of mDia2 selectively increased the number of binucleate cells, which was corrected by coexpression of RNAi-resistant full-length mDia2. mDia2 accumulates in the cleavage furrow during anaphase to telophase, and concentrates in the midbody at the end of cytokinesis. Depletion of mDia2 induced contraction at aberrant sites of dividing cells, where contractile ring components such as RhoA, myosin, anillin, and phosphorylated ERM accumulated. Treatment with blebbistatin suppressed abnormal contraction, corrected localization of the above components, and revealed that the amount of F-actin at the equatorial region during anaphase/telophase was significantly decreased with mDia2 RNAi. These results demonstrate that mDia2 is essential in mammalian cell cytokinesis and that mDia2-induced F-actin forms a scaffold for the contractile ring and maintains its position in the middle of a dividing cell.  相似文献   

6.
The Mps1 family of protein kinases contributes to cell cycle control by regulating multiple microtubule cytoskeleton activities. We have uncovered a new Mps1 substrate that provides a novel link between Mps1 and the actin cytoskeleton. We have identified a conserved human Mps1 (hMps1) interacting protein we have termed Mps1 interacting protein-1 (Mip1). Mip1 defines an uncharacterized family of conserved proteins that contain coiled-coil and calponin homology domains. We demonstrate that Mip1 is a phosphoprotein that interacts with hMps1 in vitro and in vivo and is a hMps1 substrate. Mip1 exhibits dynamic localization during the cell cycle; Mip1 localizes to the actin cytoskeleton during interphase, the spindle in early mitosis, and the cleavage furrow during cytokinesis. Mip1 function is required to ensure proper spindle positioning at the onset of anaphase after cells begin furrow ingression. Cells depleted of Mip1 exhibit aberrant mitotic actin filament organization, excessive membrane blebbing, dramatic spindle rocking, and chromosome distribution errors during early cytokinesis producing high numbers of binucleate cells. Our data indicate that Mip1 is a newly recognized component of the actin cytoskeleton that interacts with hMps1 and that it is essential to ensure proper segregation of the genome during cell cleavage.  相似文献   

7.
PTP-BL is a highly modular protein tyrosine phosphatase of unknown function. It consists of an N-terminal FERM domain, five PDZ domains, and a C-terminally located tyrosine phosphatase domain. Here we show that PTP-BL is involved in the regulation of cytokinesis. We demonstrate localization of endogenous PTP-BL at the centrosomes during inter- and metaphase and at the spindle midzone during anaphase. Finally PTP-BL is concentrated at the midbody in cytokinesis. We show that PTP-BL is targeted to the midbody and centrosome by a specific splicing variant of the N-terminus characterized by an insertion of 182 amino acids. Moreover, we demonstrate that the FERM domain of PTP-BL is associated with the contractile ring and can be cosedimented with filamentous actin, whereas the N-terminus can be cosedimented with microtubules. We demonstrate that elevating the expression level of wild-type PTP-BL or expression of PTP-BL with an inactive tyrosine phosphatase domain leads to defects in cytokinesis and to the generation of multinucleate cells. We suggest that PTP-BL plays a role in the regulation of cytokinesis.  相似文献   

8.
It has recently been demonstrated that phosphatidylinositol 4,5-bisphosphate (PIP2) is localized at the cleavage furrow in dividing cells and its hydrolysis is required for complete cytokinesis, suggesting a pivotal role of PIP2 in cytokinesis. Here, we report that at least three mammalian isoforms of phosphoinositide-specific phospholipase C (PLC), PLCdelta1, PLCdelta3 and PLCbeta1, are localized to the cleavage furrow during cytokinesis. Targeting of the delta1 isoform to the furrow depends on the specific interaction between the PH domain and PIP2 in the plasma membrane. The necessity of active PLC in animal cell cytokinesis was confirmed using the specific inhibitors for PIP2 hydrolysis. These results support the model that activation of selected PLC isoforms at the cleavage furrow controls progression of cytokinesis through regulation of PIP2 levels: induction of the cleavage furrow by a contractile ring consisting of actomyosin is regulated by PIP2-dependent actin-binding proteins and formation of specific lipid domains required for membrane separation is affected by alterations in the lipid composition of the furrow.  相似文献   

9.
The Mps1 family of protein kinases contributes to cell cycle control by regulating multiple microtubule cytoskeleton activities. We have uncovered a new Mps1 substrate that provides a novel link between Mps1 and the actin cytoskeleton. We have identified a conserved human Mps1 (hMps1) interacting protein and have termed Mps1 interacting protein-1 (Mip1). Mip1 defines an uncharacterized family of conserved proteins that contain coiled-coil and calponin homology domains. We demonstrate that Mip1 is a phosphoprotein that interacts with hMps1 in vitro and in vivo and is a hMps1 substrate. Mip1 exhibits dynamic localization during the cell cycle; Mip1 localizes to the actin cytoskeleton during interphase, the spindle in early mitosis and the cleavage furrow during cytokinesis. Mip1 function is required to ensure proper spindle positioning at the onset of anaphase after cells begin furrow ingression. Cells depleted of Mip1 exhibit aberrant mitotic actin filament organization, excessive membrane blebbing, dramatic spindle rocking and chromosome distribution errors during early cytokinesis producing high numbers of binucleate cells. Our data indicate that Mip1 is a newly recognized component of the actin cytoskeleton that interacts with hMps1 and that it is essential to ensure proper segregation of the genome during cell cleavage.Key words: Mps1 kinase, actin, Mip1, cytokinesis  相似文献   

10.
In leukocytes such as thymocytes and basophilic leukemia cells, a glycosilated integral membrane protein called CD43 (leukosialin or sialophorin), which is defective in patients with Wiskott-Aldrich syndrome, was highly concentrated in the cleavage furrow during cytokinesis. Not only at the mitotic phase but also at interphase, CD43 was precisely colocalized with ezrin-radixin-moesin family members. (ERM), which were previously reported to play an important role in the plasma membrane-actin filament association in general. At the electron microscopic level, throughout the cell cycle, both CD43 and ERM were tightly associated with microvilli, providing membrane attachment sites for actin filaments. We constructed a cDNA encoding a chimeric molecule consisting of the extracellular domain of mouse E-cadherin and the transmembrane/cytoplasmic domain of rat CD43, and introduced it into mouse L fibroblasts lacking both endogenous CD43 and E-cadherin. In dividing transfectants, the chimeric molecules were concentrated in the cleavage furrow together with ERM, and both proteins were precisely colocalized throughout the cell cycle. Furthermore, using this transfection system, we narrowed down the domain responsible for the CD43-concentration in the cleavage furrow. Based on these findings, we conclude that CD43 is concentrated in the cleavage furrow through the direct or indirect interaction of its cytoplasmic domain with ERM and actin filaments.  相似文献   

11.
Treatment with methyl-beta-cyclodextrin (MCD) induced a time- and dose-dependent efflux of cholesterol, sphingolipids, and phosphatidylcholine (PC) from cerebellar neurons differentiated in culture. With a "mild" treatment, the loss of cell lipids induced a deep reorganization of the remaining membrane lipids. In fact, the amount of PC associated with a Triton X-100-insoluble membrane fraction (highly enriched in sphingolipids and cholesterol in nontreated cells) was lowered by the treatment. This suggested a reduction of the lipid domain area. However, the cholesterol and sphingolipid enrichment of this fraction remained substantially unchanged, suggesting the existence of dynamic processes aimed at preserving the segregation of cholesterol and sphingolipids in membrane domains. Under these conditions, the lipid membrane domains retained the ability to sort signaling proteins, such as Lyn and c-Src, but cells displayed deep alterations in their membrane permeability. However, normal membrane permeability was restored by loading cells with cholesterol. When MCD treatment was more stringent, a large loss of cell lipids occurred, and the lipid domains were much less enriched in cholesterol and lost the ability to sort specific proteins. The loss of the integrity and properties of lipid domains was accompanied by severe changes in the membrane permeability, distress, and eventually cell death.  相似文献   

12.
Formation of domains by the membrane binding motifs of caveolin and src were studied in large unilamellar vesicles using fluorescence digital imaging microscopy. Caveolin, a major structural protein of caveolae, contains a scaffolding region (residues 82-101) that contributes to the binding of the protein to the plasma membrane. A caveolin peptide (82-101) corresponding to this scaffolding region induced the formation of membrane domains enriched in the acidic lipids phosphatidylserine and phosphatidylinositol-4,5-bisphosphate. Cholesterol, another predominant component of caveolae, was also enriched in these domains. Caveolae also contain many different signaling molecules including src family tyrosine kinases. Src proteins bind to the plasma membrane via a N-terminal myristate chain and a cluster of basic residues that can interact electrostatically with negatively charged lipids. A peptide corresponding to the src membrane binding motifs (residues myr-2-19) sequestered acidic lipids into lateral membrane domains. Both the src and the caveolin peptides colocalized together with acidic lipids in the domains. Control experiments show the domains are not the result of vesicle aggregation. Two-photon fluorescence correlation spectroscopy experiments suggest diffusion in the domains was slower, but the domains were dynamic. Protein kinase C phosphorylated src in its N-terminal membrane binding region; however, the caveolin scaffolding peptide inhibited this activity. Consequently, protein-induced membrane domains may affect cell signaling by organizing signal transduction components within the membrane and changing reaction rates.  相似文献   

13.
We have characterized a human homologue of anillin, a Drosophila actin binding protein. Like Drosophila anillin, the human protein localizes to the nucleus during interphase, the cortex following nuclear envelope breakdown, and the cleavage furrow during cytokinesis. Anillin also localizes to ectopic cleavage furrows generated between two spindles in fused PtK(1) cells. Microinjection of antianillin antibodies slows cleavage, leading to furrow regression and the generation of multinucleate cells. GFP fusions that contain the COOH-terminal 197 amino acids of anillin, which includes a pleckstrin homology (PH) domain, form ectopic cortical foci during interphase. The septin Hcdc10 localizes to these ectopic foci, whereas myosin II and actin do not, suggesting that anillin interacts with the septins at the cortex. Robust cleavage furrow localization requires both this COOH-terminal domain and additional NH(2)-terminal sequences corresponding to an actin binding domain defined by in vitro cosedimentation assays. Endogenous anillin and Hcdc10 colocalize to punctate foci associated with actin cables throughout mitosis and the accumulation of both proteins at the cell equator requires filamentous actin. These results indicate that anillin is a conserved cleavage furrow component important for cytokinesis. Interactions with at least two other furrow proteins, actin and the septins, likely contribute to anillin function.  相似文献   

14.
The plasma membrane contains ordered lipid domains, commonly called lipid rafts, enriched in cholesterol, sphingolipids, and certain signaling proteins. Lipid rafts play a structural role in signal initiation by the high affinity receptor for IgE. Cross-linking of IgE-receptor complexes by antigen causes their coalescence with lipid rafts, where they are phosphorylated by the Src family tyrosine kinase, Lyn. To understand how lipid rafts participate in functional coupling between Lyn and FcepsilonRI, we investigated whether the lipid raft environment influences the specific activity of Lyn. We used differential detergent solubility and sucrose gradient fractionation to isolate Lyn from raft and nonraft regions of the plasma membrane in the presence or absence of tyrosine phosphatase inhibitors. We show that Lyn recovered from lipid rafts has a substantially higher specific activity than Lyn from nonraft environments. Furthermore, this higher specific activity correlates with increased tyrosine phosphorylation at the active site loop of the kinase domain. Based on these results, we propose that lipid rafts exclude a phosphatase that negatively regulates Lyn kinase activity by constitutive dephosphorylation of the kinase domain tyrosine residue of Lyn. In this model, cross-linking of FcepsilonRI promotes its proximity to active Lyn in a lipid raft environment.  相似文献   

15.
BACKGROUND: SH2/SH3 adaptor proteins play a critical role in tyrosine kinase signaling pathways, regulating essential cell functions by increasing the local concentration or altering the subcellular localization of downstream effectors. The SH2 domain of the Nck adaptor can bind tyrosine-phosphorylated proteins, while its SH3 domains can modulate actin polymerization by interacting with effectors such as WASp/Scar family proteins. Although several studies have implicated Nck in regulating actin polymerization, its role in living cells is not well understood. RESULTS: We used an antibody-based system to experimentally modulate the local concentration of Nck SH3 domains on the plasma membrane of living cells. Clustering of fusion proteins containing all three Nck SH3 domains induced localized polymerization of actin, including the formation of actin tails and spots, accompanied by general cytoskeletal rearrangements. All three Nck SH3 domains were required, as clustering of individual SH3 domains or a combination of the two N-terminal Nck SH3 domains failed to promote significant local polymerization of actin in vivo. Changes in actin dynamics induced by Nck SH3 domain clustering required the recruitment of N-WASp, but not WAVE1, and were unaffected by downregulation of Cdc42. CONCLUSIONS: We show that high local concentrations of Nck SH3 domains are sufficient to stimulate localized, Cdc42-independent actin polymerization in living cells. This study provides strong evidence of a pivotal role for Nck in directly coupling ligand-induced tyrosine phosphorylation at the plasma membrane to localized changes in organization of the actin cytoskeleton through a signaling pathway that requires N-WASp.  相似文献   

16.
Cell division after mitosis is mediated by ingression of an actomyosin-based contractile ring. The active, GTP-bound form of the small GTPase RhoA is a key regulator of contractile-ring formation. RhoA concentrates at the equatorial cell cortex at the site of the nascent cleavage furrow. During cytokinesis, RhoA is activated by its RhoGEF, ECT2. Once activated, RhoA promotes nucleation, elongation, and sliding of actin filaments through the coordinated activation of both formin proteins and myosin II motors (reviewed in [1, 2]). Anillin is a 124 kDa protein that is highly concentrated in the cleavage furrow in numerous animal cells in a pattern that resembles that of RhoA [3-7]. Although anillin contains conserved N-terminal actin and myosin binding domains and a PH domain at the C terminus, its mechanism of action during cytokinesis remains unclear. Here, we show that human anillin contains a conserved C-terminal domain that is essential for its function and localization. This domain shares homology with the RhoA binding protein Rhotekin and directly interacts with RhoA. Further, anillin is required to maintain active myosin in the equatorial plane during cytokinesis, suggesting it functions as a scaffold protein to link RhoA with the ring components actin and myosin. Although furrows can form and initiate ingression in the absence of anillin, furrows cannot form in anillin-depleted cells in which the central spindle is also disrupted, revealing that anillin can also act at an early stage of cytokinesis.  相似文献   

17.
In animal cells, formation of the cytokinetic furrow requires activation of the GTPase RhoA by the guanine nucleotide exchange factor Ect2. How Ect2, which is associated with the spindle midzone, controls RhoA activity at the equatorial cortex during anaphase is not understood. Here, we show that Ect2 concentrates at the equatorial membrane during cytokinesis in live cells. Ect2 membrane association requires a pleckstrin homology domain and a polybasic cluster that bind to phosphoinositide lipids. Both guanine nucleotide exchange function and membrane targeting of Ect2 are essential for RhoA activation and cleavage furrow formation in human cells. Membrane localization of Ect2 is spatially confined to the equator by centralspindlin, Ect2's spindle midzone anchor complex, and is temporally coordinated with chromosome segregation through the activation state of CDK1. We propose that targeting of Ect2 to the equatorial membrane represents a key step in the delivery of the cytokinetic signal to the cortex.  相似文献   

18.
The Drosophila Formin Homology (FH) protein Diaphanous has an essential role during cytokinesis. To gain insight into the function of Diaphanous during cytokinesis and explore its role in other processes, we generated embryos deficient for Diaphanous and analyzed three cell-cycle-regulated actin-mediated events during embryogenesis: formation of the metaphase furrow, cellularization and formation of the pole cells. In dia embryos, all three processes are defective. Actin filaments do not organize properly to the metaphase and cellularization furrows and the actin ring is absent from the base of the presumptive pole cells. Furthermore, plasma membrane invaginations that initiate formation of the metaphase furrow and pole cells are missing. Immunolocalization studies of wild-type embryos reveal that Diaphanous localizes to the site where the metaphase furrow is anticipated to form, to the growing tip of cellularization furrows, and to contractile rings. In addition, the dia mutant phenotype reveals a role for Diaphanous in recruitment of myosin II, anillin and Peanut to the cortical region between actin caps. Our findings thus indicate that Diaphanous has a role in actin cytoskeleton organization and is essential for many, if not all, actin-mediated events involving membrane invagination. Based on known biochemical functions of FH proteins, we propose that Diaphanous serves as a mediator between signaling molecules and actin organizers at specific phases of the cell cycle.  相似文献   

19.
Mitochondria are dynamic organelles with multiple cellular functions, including ATP production, calcium buffering, and lipid biosynthesis. Several studies have shown that mitochondrial positioning is regulated by the cytoskeleton during cell division in several eukaryotic systems. However, the distribution of mitochondria during mammalian cytokinesis and whether the distribution is regulated by the cytoskeleton has not been examined. Using live spinning disk confocal microscopy and quantitative analysis of mitochondrial fluorescence intensity, we demonstrate that mitochondria are recruited to the cleavage furrow during cytokinesis in HeLa cells. After anaphase onset, the mitochondria are recruited towards the site of cleavage furrow formation, where they remain enriched as the furrow ingresses and until cytokinesis completion. Furthermore, we show that recruitment of mitochondria to the furrow occurs in multiple mammalian cells lines as well as in monopolar, bipolar, and multipolar divisions, suggesting that the mechanism of recruitment is conserved and robust. Using inhibitors of cytoskeleton dynamics, we show that the microtubule cytoskeleton, but not actin, is required to transport mitochondria to the cleavage furrow. Thus, mitochondria are specifically recruited to the cleavage furrow in a microtubule-dependent manner during mammalian cytokinesis. Two possible reasons for this could be to localize mitochondrial function to the furrow to facilitate cytokinesis and / or ensure accurate mitochondrial inheritance.  相似文献   

20.
We have investigated the function of mitotic kinesin-like protein (MKlp) 2, a kinesin localized to the central spindle, and demonstrate that its depletion results in a failure of cleavage furrow ingression and cytokinesis, and disrupts localization of polo-like kinase 1 (Plk1). MKlp2 is a target for Plk1, and phosphorylated MKlp2 binds to the polo box domain of Plk1. Plk1 also binds directly to microtubules and targets to the central spindle via its polo box domain, and this interaction controls the activity of Plk1 toward MKlp2. An antibody to the neck region of MKlp2 that prevents phosphorylation of MKlp2 by Plk1 causes a cytokinesis defect when introduced into cells. We propose that phosphorylation of MKlp2 by Plk1 is necessary for the spatial restriction of Plk1 to the central spindle during anaphase and telophase, and the complex of these two proteins is required for cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号