首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sertoli cells have been insolated from the newborn calf testis using a combination of mechanical and enzymatic disruption. Testicular fragments, previously chopped into 1-mm pieces, are digested in an enzyme mixture consisting of hyaluronidase, collagenase, trypsin and DNAse, followed by a second digestion in trypsin and DNAse. Isolation of the resulting cellular fractions by sedimentation with unit gravity produces an aliquot of Sertoli cells which is over 95% pure when examined by light and electron microscopy. Cultures of these cells grow rapidly and produce Mullerian Inhibiting Substance as evidenced by their ability to cause the involution of the Mullerian duct of the female fetal rat when co-cultured in an organ-culture assay system.  相似文献   

2.
Using a dissociative solvent and a protease inhibitor, Mullerian inhibiting substance, a testicular substance responsible for regression of the Mullerian ducts in the mammalian male embryo, has been extracted from newborn calf testis. Data are presented which demonstrate that fractions with biological activity for Mullerian inhibiting substance can be extracted from whole tissue and that activity can be blocked by antisera raised to extracted testes components. Following extraction in guanidine hydrochloride the extract was fractionated by density gradient sedimentation, gel filtration chromatography, and ion-exchange chromatography. Fractions were subjected to amino acid and carbohydrate analyses and peptide constituents were determined by SDS gel electrophoresis. Fractions were dialyzed, concentrated, filtered, and added to an organ culture assay to detect Mullerian inhibiting substance activity, which was found (1) in the guanidine extract, (2) in a protein fraction of the cesium chloride gradient, (3) in constituents eluted with Kav values between 0.19 and 0.38 on gel filtration chromatography using a Bio-Gel A-0.5 M column, and (4) in constituents eluted between 0.15 and 0.20 M NaCl on ion-exchange chromatography using a DEAE Bio-Gel A-50 ion exchanger. Sequentially this scheme effected a 30-fold purification of a fraction with Mullerian inhibiting substance activity. Biological activity was lost when positive extracts were absorbed with antiserum raised to guanidine extract. The strong dissociative conditions employed in the gradient and extraction procedures make it likely that the distribution of activity obtained in the density gradient procedure was due to a macromolecule, and not to an interaction between an active low molecular weight component and an inactive macromolecule acting as a carrier. Further fractionation on the Bio-Gel column using a dissociative solvent also indicated that the active component was a macromolecule. Amino acid and carbohydrate analyses indicate that the active fractions are composed of proteins and glycoproteins.  相似文献   

3.
Antibodies to the Golgi complex and the rough endoplasmic reticulum   总被引:42,自引:78,他引:42       下载免费PDF全文
Rabbits were immunized with membrane fractions from either the Golgi complex or the rough endoplasmic reticulum (RER) by injection into the popliteal lymph nodes. The antisera were then tested by indirect immunofluorescence on tissue culture cells or frozen, thin sections of tissue. There were may unwanted antibodies to cell components other than the RER or the Golgi complex, and these were removed by suitable absorption steps. These steps were carried out until the pattern of fluorescent labeling was that expected for the Golgi complex or RER. Electron microscopic studies, using immunoperoxidase labeling of normal rat kidney (NRK) cells, showed that the anti-Golgi antibodies labeled the stacks of flattened cisternae that comprise the central feature of the Golgi complex, many of the smooth vesicles around the stacks, and a few coated vesicles. These antibodies were directed, almost entirely, against a single polypeptide with an apparent molecular weight of 135,000. The endoplasmic reticulum (ER) in NRK cells is an extensive, reticular network that pervades the entire cell cytoplasm and includes the nuclear membrane. The anit-RER antibodies labeled this structure alone at the light and electron microscopic levels. They were largely directed against four polypeptides with apparent molecular weights of 29,000, 58,000, 66,000, and 91,000. Some examples are presented, using immunofluorescence microscopy, where these antibodies have been used to study the Golgi complex and RER under a variety of physiological and experimental condition . For biochemical studies, these antibodies should prove useful in identifying the origin of isolated membranes, particularly those from organelles such as the Golgi complex, which tend to lose their characteristic morphology during isolation.  相似文献   

4.
Development of legume seeds is accompanied by the synthesis of storage proteins and lectins, and the deposition of these proteins in protein-storage vacuoles (protein bodies). We examined the subcellular distribution, in developing seeds of the common bean, Phaseolus vulgaris L., of the major storage protein (phaseolin) and the major lectin (phytohemagglutinin, PHA). The proteins were localized using an indirect immunocytochemical method in which ultrathin frozen sections were immunolabeled with rabbit antibodies specific for either PHA or phaseolin. Bound antibodies were then localized using goat-anti-rabbit immunoglobulin G adsorbed onto 4- to 5-nm colloidal gold particles. The sections were post-fixed with OsO4, dehydrated, and embedded in plastic on the grids. Both PHA and phaseolin exhibited a similar distribution in the storage-parenchyma cells, being found primarily in the developing protein bodies. Endoplasmic reticulum and Golgi complexes (cisternal stacks and associated vesicles) also were specifically labeled for both proteins, whereas the cytosol and other organelles, such as mitochondria, were not. We interpret these observations as supporting the hypothesis that the transport of storage proteins and lectins from their site of synthesis, the rough endoplasmic reticulum, to their site of deposition, the protein bodies, is mediated by the Golgi complex.Abbreviations ER endoplasmic reticulum - IgG immunoglobulin G - PBS phosphate-buffered saline - PHA phytohemagglutinin  相似文献   

5.
A mixture of UDP-N-acetylglucosamine labeled with different radioisotopes in the uridine and glucosamine was used to show that the intact sugar nucleotide was translocated across the membrane of vesicles derived from rat liver rough endoplasmic reticulum (RER) and Golgi apparatus. Translocation was dependent on temperature, saturable at high concentrations of sugar nucleotide, and inhibited by treatment of vesicles with proteases, suggesting protein carrier mediated transport. Translocation of UDP-GlcNAc by RER-derived vesicles appeared to be specific since these vesicles were unable to translocate UDP-galactose, in contrast to those derived from the Golgi apparatus. Preliminary results suggest that the mechanism of UDP-GlcNAc translocation into RER-derived vesicles is via a coupled exchange with lumenal nucleoside monophosphate. This is similar to the recently postulated mechanism for translocation of sugar nucleotides into vesicles derived from the Golgi apparatus.  相似文献   

6.
Membrane traffic between the endoplasmic reticulum and Golgi apparatus is a highly regulated process that uses distinct anterograde and retrograde pathways. These pathways link two organelles that together function as a dynamic membrane system specialized for the biosynthesis and sorting of membrane to be used throughout the cell. The nature and underlying biochemical control of membrane transport along these pathways is thought to be tied to a common regulatory system involving assembly and disassembly of cytosolic proteins on membranes.  相似文献   

7.
Chondroitin-sulfate containing proteoglycan (CSPG) of the extracellular matrix (ECM) was visualized in chick tissues and cell cultures with a monoclonal antibody, CS-56. Cultured cells of various origins contained dense punctate layers of CSPG on both the substrate and the cell surface, as determined by immunofluorescent and immunogold staining. Under culture conditions the CSPG-containing matrix was usually excluded from stable cell-to-substrate focal contacts. The substrate-attached CSPG exhibited remarkable chemical stability but could be successfully removed by pronase or chondroitinases ABC and AC. Incubation of living cells with CS-56 antibodies resulted in the clustering of surface CSPG into patches, indicating that the surface-bound CSPG is free to move laterally along the plasma membrane. The unique properties of the CSPG-containing ECM revealed by CS-56 antibodies and their relationships to specific types of cell contacts are discussed.  相似文献   

8.
9.
Mutants ts1 and ts227 of fowl plague virus have a temperature-sensitive defect in the transport of the hemagglutinin from the rough endoplasmic reticulum to the Golgi apparatus. The primary structure of the hemagglutinin of the mutants and of a number of revertants derived from them has been analysed by nucleotide sequencing. The transport block of the hemagglutinin of ts227 can be attributed to a single amino acid exchange. It involves the replacement of aspartic acid at position 457 by asparagine thereby introducing a new glycosylation site which appears to be located in a cryptic position in the lower part of the hemagglutinin stalk. Attachment of carbohydrate to this site is temperature-dependent. At permissive temperature only a small fraction of the monomers (approximately 30%) is glycosylated in this position, whereas at nonpermissive temperature this is the case with all subunits. The data suggest that under the latter conditions the new oligosaccharide interferes by steric hindrance with the trimerization of the hemagglutinin. The hemagglutinin of ts1 has an essential amino acid exchange at position 275 where serine is replaced by glycine. This substitution may increase the flexibility of the molecule in the hinge region between the globular domain and the stalk. The exchange of a conserved glutamic acid residue at position 398 that is involved in the interaction between different monomers contributes also to the structural instability of the ts1 hemagglutinin. These observations support the notion that the transport of the hemagglutinin from the rough endoplasmic reticulum to the Golgi apparatus depends on trimer assembly.  相似文献   

10.
Preclinical evidence depicts the capacity of redaporfin (Redp) to act as potent photosensitizer, causing direct antineoplastic effects as well as indirect immune‐dependent destruction of malignant lesions. Here, we investigated the mechanisms through which photodynamic therapy (PDT) with redaporfin kills cancer cells. Subcellular localization and fractionation studies based on the physicochemical properties of redaporfin revealed its selective tropism for the endoplasmic reticulum (ER) and the Golgi apparatus (GA). When activated, redaporfin caused rapid reactive oxygen species‐dependent perturbation of ER/GA compartments, coupled to ER stress and an inhibition of the GA‐dependent secretory pathway. This led to a general inhibition of protein secretion by PDT‐treated cancer cells. The ER/GA play a role upstream of mitochondria in the lethal signaling pathway triggered by redaporfin‐based PDT. Pharmacological perturbation of GA function or homeostasis reduces mitochondrial permeabilization. In contrast, removal of the pro‐apoptotic multidomain proteins BAX and BAK or pretreatment with protease inhibitors reduced cell killing, yet left the GA perturbation unaffected. Altogether, these results point to the capacity of redaporfin to kill tumor cells via destroying ER/GA function.  相似文献   

11.
The organization of intracellular compartments and the transfer of components between them are central to the correct functioning of mammalian cells. Proteins and lipids are transferred between compartments by the formation, movement and subsequent specific fusion of transport intermediates. These vesicles and membrane clusters must be coupled to the cytoskeleton and to motor proteins that drive motility. Anterograde ER (endoplasmic reticulum)-to-Golgi transport, and the converse step of retrograde traffic from the Golgi to the ER, are now known to involve coupling of membranes to the microtubule cytoskeleton. Here we shall discuss our current understanding of the mechanisms that link membrane traffic in the early secretory pathway to the microtubule cytoskeleton in mammalian cells. Recent data have also provided molecular detail of functional co-ordination of motor proteins to specify directionality, as well as mechanisms for regulating motor activity by protein phosphorylation.  相似文献   

12.
Immunoglobulin heavy chain binding protein (BiP) (also known as GRP 78) is a protein of the endoplasmic reticulum (ER) which has been shown to be involved in post-translational processing of nascent membrane and secretory proteins. To determine BiP's location in the exocytic pathway, we localized BiP at the electron microscopic level in mouse myeloma cell lines by immunoperoxidase cytochemistry. BiP was found to be present within the cisternal spaces of the RER and nuclear envelope but was not detected in the cisternae of the Golgi complex. BiP reaction product was also found within transitional elements of the RER but was absent from smooth-surfaced vesicles found between the ER and the Golgi complex. Immunoperoxidase staining of BiP was reduced or absent in regions of a smooth ER membrane system in myelomas that contained endogenous murine retrovirus A particles. All compartments of the exocytic pathway, including the virus-containing smooth ER, stained for IgG, a secretory protein. These observations suggest that BiP is selectively retained in the cisternae of the ER and is not free to enter Golgi-directed transport vesicles. These studies suggest that BiP's subcellular localization may occur by selective interaction with component(s) of the ER.  相似文献   

13.
Under artificial conditions Golgi enzymes have the capacity to rapidly accumulate in the endoplasmic reticulum (ER). These observations prompted the idea that Golgi enzymes constitutively recycle through the ER. We have tested this hypothesis under physiological conditions through use of a procedure that captures Golgi enzymes in the ER. In the presence of rapamycin, which induces a tight association between FKBP (FK506-binding protein) and FRAP (FKBP-rapamycin-associated protein), an FKBP-tagged Golgi enzyme can be trapped when it visits the ER by an ER-retained protein fused to FRAP. We find that although FKBP-ERGIC-53 of the ER-Golgi intermediate compartment (ERGIC) rapidly cycles through the ER (30 min), FKBP-Golgi enzyme chimeras remain stably associated with Golgi membranes. We also demonstrate that Golgi dispersion upon nocodazole treatment mainly occurs through a mechanism that does not involve the recycling of Golgi membranes through the ER. Our findings suggest that the Golgi apparatus, as defined by its collection of resident enzymes, exists independent of the ER.  相似文献   

14.
Significant advances have been made in recent years that have increased our understanding of the trafficking to and from membranes that are functionally linked to the Golgi apparatus in plants. New routes from the Golgi to organelles outside the secretory pathway are now being identified, revealing the importance of the Golgi apparatus as a major sorting station in the plant cell. This review discusses our current perception of Golgi structure and organization as well as the molecular mechanisms that direct traffic in and out of the Golgi.  相似文献   

15.
We have studied in rat liver the subcellular sites and topography of xylosylation and galactosylation reactions occurring in the biosynthesis of the D-glucuronic acid-galactose-galactose-D-xylose linkage region of proteoglycans and of glucuronosylation reactions involved in both glycosaminoglycan biosynthesis and bile acid and bilirubin conjugation. The specific translocation rate of UDP-xylose into sealed, "right-side-out" vesicles from the Golgi apparatus was 2-5-fold higher than into sealed right-side-out vesicles from the rough endoplasmic reticulum (RER). Using the above vesicle preparations, we only detected endogenous acceptors for xylosylation in the Golgi apparatus-rich fraction. The specific activity of xylosyltransferase (using silk fibroin as exogenous acceptor) was 50-100-fold higher in Golgi apparatus membranes than in those from the RER. Previous studies had shown that UDP-galactose is translocated solely into vesicles from the Golgi apparatus. In these studies, we found the specific activity of galactosyltransferase I to be 40-140-fold higher in membranes from the Golgi apparatus than in those from the RER. The specific translocation rate of UDP-D-glucuronic acid into vesicles from the Golgi apparatus was 10-fold higher than into those from the RER, whereas the specific activity of glucuronosyltransferase (using chondroitin nonasaccharide as exogenous acceptor) was 12-30-fold higher in Golgi apparatus membranes than in those from the RER. Together, the above results strongly suggest that, in rat liver, the biosynthesis of the above-described proteoglycan linkage region occurs in the Golgi apparatus. The specific activity of glucuronosyltransferase, using bile acids and bilirubin as exogenous acceptor, was 10-25-fold higher in RER membranes than those from the Golgi apparatus. This suggests that transport of UDP-D-glucuronic acid into the RER lumen is not required for such reactions.  相似文献   

16.
Previously we reported that the intracellular localization of the Golgi apparatus of rat Sertoli cells changes during the seminiferous epithelial cycle, and that the cyclic changes seem to be correlated to specific generations of germ cells. To ascertain which generations of germ cells are responsible for the cyclic changes, we determined the relative volume of the Golgi apparatus within the basal, mid, and apical cytoplasm of Sertoli cells in testes with and without mature spermatids. In normal adult rats, the Golgi apparatus was usually localized exclusively in the basal cytoplasm, whereas at stages VII-IX it increased remarkably in mid and apical cytoplasm, with a concomitant decrease in the basal cytoplasm. In young adult testes without spermatids at steps 15-19 of spermiogenesis (2nd layer spermatids), the Golgi apparatus was localized in the basal cytoplasm throughout the seminiferous epithelial cycle. Orchiopexy maintained for 35 days following 60 days of cryptorchidism allowed germ cells to regenerate to spermatids at steps 1-14 of sperminogenesis (1st layer spermatids), but failed to change the intracellular localization of the Golgi apparatus in Sertoli cells. At 50 days after orchiopexy, when all generations of germ cells appeared in the tubules, the cyclic changes in localization of the Golgi apparatus were restored similar to those in normal adult testes. These findings indicate that the cyclic change in localization of the Golgi apparatus in Sertoli cells is evoked by the presence of 2nd layer spermatids.  相似文献   

17.
The vesicular integral membrane protein VIP36 belongs to the family of animal lectins and may act as a cargo receptor trafficking certain glycoproteins in the secretory pathway. Immunoelectron microscopy of GH3 cells provided evidence that endogenous VIP36 is localized mainly in 70-100-nm-diameter uncoated transport vesicles between the exit site on the ER and the neighboring cis-Golgi cisterna. The thyrotrophin-releasing hormone (TRH) stimulation and treatment with actin filament-perturbing agents, cytochalasin D or B or latrunculin-B, caused marked aggregation of the VIP36-positive vesicles and the appearance of a VIP36-positive clustering structure located near the cis-Golgi cisterna. The size of this structure, which comprised conspicuous clusters of VIP36, depended on the TRH concentration. Confocal laser scanning microscopy confirmed the electron microscopically demonstrated distribution and redistribution of VIP36 in these cells. Furthermore, VIP36 colocalized with filamentous actin in the paranuclear Golgi area and its vicinity. This is the first study to show the ultrastructural distribution of VIP36 in the early secretory pathway in GH3 cells. It suggests that actin filaments are involved in glycoprotein transport between the ER and cis-Golgi cisterna by using the lectin VIP36.  相似文献   

18.
The impact of turnip mosaic virus (TuMV) infection on the endomembranes of the host early secretory pathway was investigated using an infectious clone that has been engineered for tagging viral membrane structures with a fluorescent protein fused to the viral protein 6K(2). TuMV infection led to the amalgamation of the endoplasmic reticulum (ER), Golgi apparatus, COPII coatamers, and chloroplasts into a perinuclear globular structure that also contained viral proteins. One consequence of TuMV infection was that protein secretion was blocked at the ER-Golgi interface. Fluorescence recovery after photobleaching (FRAP) experiments indicated that the perinuclear structure cannot be restocked in viral components but was dynamically connected to the bulk of the Golgi apparatus and the ER. Experiments with 6K(2) fused to photoactivable green fluorescent protein (GFP) showed that production of motile peripheral 6K(2) vesicles was functionally linked to the perinuclear structure. Disruption of the early secretory pathway did not prevent the formation of the perinuclear globular structure, enhanced the clustering of peripheral 6K(2) vesicles with COPII coatamers, and led to inhibition of cell-to-cell virus movement. This suggests that a functional secretory pathway is not required for the formation of the TuMV perinuclear globular structure and peripheral vesicles but is needed for successful viral intercellular propagation.  相似文献   

19.
20.
Cell-free transfer of radiolabeled membrane proteins from part-rough, part-smooth transitional elements of the endoplasmic reticulum to Golgi apparatus immobilized to nitrocellulose in the presence of nucleoside triphosphate, an ATP-regenerating system and a cytosol fraction was promoted by retinol. At an optimum concentration of 1 microgram/ml, the rate and amount of transfer was approximately doubled over 1 to 2 h of incubation in the cell-free system. The transition vesicles induced to form in the cell-free system were concentrated by preparative free-flow electrophoresis in order to study separately the steps of vesicle formation from transitional endoplasmic reticulum and the steps of vesicle fusion with Golgi apparatus. The retinol effect was on vesicle formation as evidenced by an approx. 2-fold increase in transition vesicle numbers, as determined by electron microscope morphometry, and amount from protein determinations on the isolated fractions enriched in transition vesicles. The retinol response in the complete transfer could be eliminated by addition of concentrated cytosol, including cytosol depleted of retinol. An interaction of retinol with some component of the vesicle formation process, possibly involving guanine nucleotides, is indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号