首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
B cell-activating factor (BAFF) is a cytokine belonging to the tumor necrosis factor (TNF) superfamily. It has been reported that BAFF is elevated in patients with autoimmune pancreatitis and contributes to the malignant potential of blood cancers and solid tumors. In this study, clinical evidence of increased BAFF levels in patients with pancreatic ductal adenocarcinoma (PDAC) was obtained, and the roles and mechanisms of BAFF in PDAC were clarified in human tissues of PDAC and from in vitro data of PDAC cell lines. Serum levels of BAFF in patients with PDAC were significantly higher than in healthy subjects (p = 0.0121). Patients with UICC stage IV PDAC (T1-4, N0-1, M1) had significantly higher levels of serum BAFF compared to patients with PDAC (p = 0.0182). BAFF was remarkably expressed in infiltrating B lymphocytes surrounding pancreatic cancer in human pancreatic tissues, suggesting that BAFF may play a role in progression of pancreatic cancer. PDAC cell lines were cultured with human recombinant BAFF, and morphology and gene expression were analyzed; pancreatic cancer cells changed to a fibroblast-like morphology, and showed altered gene expression of E-cadherin, vimentin and Snail. These BAFF-induced changes reflect enhanced cell motility and invasion. BAFF-R-overexpressing cell clones confirmed the association between these BAFF-induced changes and epithelial-mesenchymal transition (EMT)-related genes. BAFF was elevated in patients with metastatic advanced PDAC and induced alterations in PDAC cells via regulation of EMT-related genes. Elucidation of the precise role and mechanism of control of BAFF may lead to new therapeutic approaches with the aim of improving pancreatic cancer survival.  相似文献   

3.
ADAM8 belongs to a family of transmembrane proteins implicated in cell-cell interactions, proteolysis of membrane proteins, and various aspects of carcinogenesis. In the present study, we aimed to evaluate the expression and function of ADAM8 in pancreatic cancer. ADAM8 mRNA levels were analysed by quantitative RT-PCR and correlated to patient survival. Immunohistochemistry was performed to localize ADAM8 in pancreatic tis-sues. Silencing of ADAM8 expression was carried out by transfection with specific siRNA oligonucleotides. Cell growth and invasion assays were used to assess the functional consequences of ADAM8 silencing. SELDI-TOF-MS was performed to detect the proteolytic activity of ADAM8 in pancreatic cancer cells. ADAM8 mRNA was significantly overexpressed in pancreatic ductal adenocarcinoma (PDAC) compared with normal pancreatic tissues (5.3-fold increase; P= 0.0008), and high ADAM8 mRNA and protein expression levels correlated with reduced survival time of PDAC patients (P= 0.048 and P= 0.065, respectively). Silencing of ADAM8 expression did not significantly influence pancreatic cancer cell growth but suppressed invasiveness. In addition, decreased proteolytic activity was measured in cell culture supernatants following silencing of ADAM8. In conclusion, ADAM8 is overexpressed in PDAC, influences cancer cell invasiveness and correlates with reduced survival, suggesting that ADAM8 might be a potential target in pancreatic cancer therapy.  相似文献   

4.
Epiregulin belongs to the epidermal growth factor (EGF) family of polypeptides. Previous studies have underscored the important role of the EGF family of ligands and receptors in the pathology of pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP). It is not known, however, whether epiregulin may also have a role in these diseases. Therefore, in the present study we investigated the expression and function of epiregulin in five pancreatic cancer cell lines and in PDAC and CP tissue samples. Epiregulin mRNA was present at high (MIA-PaCa-2 cells) or moderate levels (ASPC-1, CAPAN-1, and T3M4) in most cells, but was below detection levels in PANC-1 cells. All the cell lines exhibited a dose-dependent increase in growth in response to recombinant human epiregulin. Epiregulin mRNA levels were increased 2.1-fold in PDAC samples (P < 0.01) and 1.7-fold in CP samples (P < 0.01), when compared with the normal controls. There was no correlation between epiregulin mRNA levels and tumor stage or grade. By in situ hybridization, a moderate to intense epiregulin mRNA signal was present in most pancreatic cancer cells in PDAC. In contrast, only a weak (normal pancreas) to moderate (CP) signals were present in the ductal and acinar cells in CP. These findings suggest that epiregulin may contribute to the pathobiology of PDAC, and may also have a role in CP.  相似文献   

5.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, with a high mortality rate and poor prognosis. However, little is known concerning the molecular mechanism of PDAC at the proteomics level. Here we report a proteomics analysis of PDAC tumor and adjacent tissues by shotgun proteomics followed by label-free quantification, and in total, 3031 and 3306 proteins were identified in three pairs of PDAC tumor and adjacent tissues, respectively; 40 of them were differentially expressed for at least three-fold in PDAC tumor tissues. Ontological and interaction network analysis highlighted the dysregulation of a set of four proteins in the carboxypeptidase family: carboxypeptidase A1 (CPA1), A2 (CPA2), B1 (CPB1), and chymotrypsin C (CTRC). Western blotting confirmed the downregulation of the carboxypeptidase network in PDAC. Immunohistochemistry of tissue microarray from 90 PDAC patients demonstrated that CPB1 was downregulated 7.07-fold (P < .0001, n = 81) in tumor comparing with the peritumor tissue. Further 208 pancreatic tissues from PDAC tumor, peritumor, and pancreatis confirmed the downregulation of CPB1 in the PDAC patients. In summary, our results displayed that the expression of carboxypeptidase is significantly downregulated in PDAC tumor tissues and may be novel biomarker in the patient with PDAC.  相似文献   

6.

Background

Apolipoprotein A-II (ApoA-II) is down regulated in the sera of pancreatic ductal adenocarcinoma (PDAC) patients, which may be due to increase utilization of high density lipoprotein (HDL) lipid by pancreatic cancer tissue. This study examined the influence of exogenous ApoA-II on lipid uptake and cell growth in pancreatic cancer (PC) both in vitro and in vivo.

Methods

Cryo transmission electron microscopy (TEM) examined ApoA-II’s influence on morphology of SMOFLipid emulsion. The influence of ApoA-II on proliferation of cancer cell lines was determined by incubating them with lipid+/-ApoA-II and anti-SR-B1 antibody. Lipid was labeled with the fluorophore, DiD, to trace lipid uptake by cancer cells in vitro by confocal microscopy and in vivo in PDAC patient derived xenograft tumours (PDXT) by fluorescence imaging. Scavenger receptor class B type-1(SR-B1) expression in PDAC cell lines and in PDAC PDXT was measured by western blotting and immunohistochemistry, respectively.

Results

ApoA-II spontaneously converted lipid emulsion into very small unilamellar rHDL like vesicles (rHDL/A-II) and enhanced lipid uptake in PANC-1, CFPAC-1 and primary tumour cells as shown by confocal microscopy. SR-B1 expression was 13.2, 10.6, 3.1 and 2.3 fold higher in PANC-1, MIAPaCa-2, CFPAC-1 and BxPC3 cell lines than the normal pancreatic cell line (HPDE6) and 3.7 fold greater in PDAC tissue than in normal pancreas. ApoA-II plus lipid significantly increased the uptake of labeled lipid and promoted cell growth in PANC-1, MIAPaCa-2, CFPAC-1 and BxPC3 cells which was inhibited by anti SR-B1 antibody. Further, ApoA-II increased the uptake of lipid in xenografts by 3.4 fold.

Conclusion

Our data suggest that ApoA-II enhance targeting potential of lipid in pancreatic cancer which may have imaging and drug delivery potentialities.  相似文献   

7.
8.
Ro60/SSA is a vital auto antigen that is targeted in Sjogren's syndrome and systemic lupus erythematosus (SLE). However, its role in solid cancers has rarely been reported. The present study investigated the expression and function of Ro60/SSA in the development of pancreatic ductal adenocarcinoma (PDAC) both in vitro and in vivo. Immunohistochemistry was used to examine the expression of Ro60/SSA in PDAC and normal pancreatic tissues by using tissue microarray chips. The results showed that Ro60/SSA expression was increased in PDAC tissues compared with normal pancreatic tissues. Knockdown of Ro60/SSA by siRNA transfection significantly decreased cell proliferation and invasion in vitro. Furthermore, knockdown of Ro60/SSA inhibited the growth of subcutaneous tumors in vivo. Taken together, the current study provides evidence of new function of Ro60/SSA in the development of cancer. It facilitates pancreatic cancer proliferation, migration and invasion. Therefore, it may represent a novel molecular target for the management of pancreatic cancer.  相似文献   

9.
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal solid tumor due to the lack of reliable early detection markers and effective therapies. MicroRNAs (miRNAs), noncoding RNAs that regulate gene expression, are involved in tumorigenesis and have a remarkable potential for the diagnosis and treatment of malignancy. In this study, we investigated aberrantly expressed miRNAs involved in PDAC by comparing miRNA expression profiles in PDAC cell lines with a normal pancreas cell line and found that miR-135a was significantly down-regulated in the PDAC cell lines. The microarray results were validated by qRT-PCR in PDAC tissues, paired adjacent normal pancreatic tissues, PDAC cell lines, and a normal pancreas cell line. We then defined the tumor-suppressing significance and function of miR-135a by constructing a lentiviral vector to express miR-135a. The overexpression of miR-135a in PDAC cells decreased cell proliferation and clonogenicity and also induced G1 arrest and apoptosis. We predicted Bmi1 may be a target of miR-135a using bioinformatics tools and found that Bmi1 expression was markedly up-regulated in PDAC. Its expression was inversely correlated with miR-135a expression in PDAC. Furthermore, a luciferase activity assay revealed that miR-135a could directly target the 3''-untranslated region (3''-UTR) of Bmi1. Taken together, these results demonstrate that miR-135a targets Bmi1 in PDAC and functions as a tumor suppressor. miR-135a may offer a new perspective for the development of effective miRNA-based therapy for PDAC.  相似文献   

10.

Background

Pancreatic cancer (PDAC) is characterized by an abundant fibrous tissue rich in Tenascin-C (TNC), a large ECM glycoprotein mainly synthesized by pancreatic stellate cells (PSCs). In human pancreatic tissues, TNC expression increases in the progression from low-grade precursor lesions to invasive cancer. Aim of this study was the functional characterization of the effects of TNC on biologic relevant properties of pancreatic cancer cells.

Methods

Proliferation, migration and adhesion assays were performed on pancreatic cancer cell lines treated with TNC or grown on a TNC-rich matrix. Stable transfectants expressing the large TNC splice variant were generated to test the effects of endogenous TNC. TNC-dependent integrin signaling was investigated by immunoblotting, immunofluorescence and pharmacological inhibition.

Results

Endogenous TNC promoted pancreatic cancer cell growth and migration. A TNC-rich matrix also enhanced migration as well as the adhesion to the uncoated growth surface of poorly differentiated cell lines. In contrast, adhesion to fibronectin was significantly decreased in the presence of TNC. The effects of TNC on cell adhesion were paralleled by changes in the activation state of paxillin and Akt.

Conclusion

TNC affects proliferation, migration and adhesion of poorly differentiated pancreatic cancer cell lines and might therefore play a role in PDAC spreading and metastasis in vivo.  相似文献   

11.
Diffuse panbronchiolitis critical region 1 (DPCR1) is located in the major histocompatibility complex (MHC) class I. It was reported to be downregulated in invasive pituitary adenoma compared with that in non-invasive tumors, but upregulated in the precursor of gastric carcinogenesis. However, the direct effect of DPCR1 on cancer cells has rarely been reported, and the role DPCR1 in pancreatic ductal adenocarcinoma (PDAC) remains unclear. The clinical sample validation and public data analysis of the present study demonstrated that DPCR1 was upregulated markedly in PDAC and this high expression was negatively correlated with the patient prognosis. Functionally, knocking down DPCR1 in PDAC cell lines inhibited cell proliferation, migration and invasion in vitro. Tumor xenograft experiments further showed that suppression of DPCR1 inhibited tumor growth in vivo. In addition, the results of RNA deep sequencing and qRT-PCR assay showed that DPCR1 participated in PADC progression by regulating nuclear factor-kappa B signaling pathway, suggesting that it might be a novel oncogene in tumor progression and a potential therapeutic target in PDAC as well.  相似文献   

12.
CD90 (Thy-1) plays important roles in oncogenesis and shows potential as a candidate marker for cancer stem cells (CSCs) in various malignancies. Herein, we investigated the expression of CD90 in pancreatic adenocarcinoma (PDAC), with a comparison to normal pancreas and non-malignant pancreatic disease, by immunohistochemical (IHC) analysis of tissue microarrays containing 183 clinical tissue specimens. Statistical analysis was performed to evaluate the correlation between CD90 expression and the major clinicopathological factors after adjustment of age and gender. The IHC data showed that CD90 was significantly overexpressed in PDAC and its metastatic cancers as compared to chronic pancreatitis and benign islet tumors, while it was negative in normal pancreas and 82.7% of adjacent normal pancreas tissues. The abundant CD90 expression was predominantly present in PDAC stroma, such as fibroblasts and vascular endothelial cells, which could serve as a promising marker to distinguish pancreatic adenocarcinoma from normal pancreas and non-malignant pancreatic diseases. Double immunostaining of CD90 with CD24, a CSC marker for PDAC, showed that there was little overlap between these two markers. However, CD90+ fibroblast cells were clustered around CD24+ malignant ducts, suggesting that CD90 may be involved in the tumor-stroma interactions and promote pancreatic cancer development. Furthermore, CD90 mostly overlapped with α-smooth muscle actin (αSMA, a marker of activated pancreatic stellate cells (PSCs)) in PDAC stroma, which demonstrated that CD90+ stromal cells consist largely of activated PSCs. Double immunostaining of CD90 and a vascular endothelial cell marker CD31 demonstrated that CD90 expression on vascular endothelial cells was significantly increased in PDACs as compared to normal pancreas and non-malignant pancreatic diseases. Our findings suggest that CD90 could serve as a promising marker for pancreatic adenocarcinoma where desmoplastic stroma plays an important role in tumor growth and angiogenesis.  相似文献   

13.
Pancreatic ductal adenocarcinoma (PDAC) is an invasive and aggressive cancer that remains a major threat to human health across the globe. Despite advances in cancer treatments and diagnosis, the prognosis of PDAC patients remains poor. New and more effective PDAC therapies are therefore urgently required. In this study, we identified a novel host factor, namely the LncRNA TP73-AS1, as overexpressed in PDAC tissues compared to adjacent healthy tissue samples. The overexpression of TP-73-AS1 was found to correlate with both PDAC stage and lymph node metastasis. To reveal its role in PDCA, we targeted TP73-AS1 using LnRNA inhibitors in a range of pancreatic cancer (PC) cell lines. We found that the inhibition of TP73-AS1 led to a loss of MMP14 expression in PC cells and significantly inhibited their migratory and invasive capacity. No effects of TP73-AS1 on cell survival or proliferation were observed. Mechanistically, we found that TP73-AS1 suppressed the expression of the known oncogenic miR-200a. Taken together, these data highlight the prognostic potential of TP73-AS1 for PC patients and highlight it as a potential anti-PDAC therapeutic target.  相似文献   

14.
The low survival of patients with pancreatic ductal adenocarcinoma (PDAC) makes the treatment of this disease one of the most challenging task in modern medicine. Here, by mining a large‐scale cancer genome atlas data set of pancreatic cancer tissues, we identified 21 long noncoding RNAs (lncRNAs) that significantly associated with overall survival in patients with PDAC (P < .01). Further analysis revealed that 8 lncRNAs turned out to be independently correlated with patients’ overall survival, and the risk score could be calculated based on their expression. To obtain a better predicting power, we integrated lncRNA data with a total of 410 differently expressed messenger RNAs (mRNAs) screened from PDAC and normal tissues in gene expression omnibus (GEO) database. The integration resulted in a much better panel including 8 lncRNAs (RP3.470B24.5, CTA.941F9.9, RP11.557H15.3, LINC00960, AP000479.1, LINC00635, LINC00636, and AC073133.1) and 8 mRNAs (DHRS9, ONECUT1, OR8D4, MT1M, TCN1, MMP9, DPYSL3, and TTN) to predict prognosis. A functional evaluation showed that these lncRNAs might play roles in pancreatic secretion, cell adhesion, and proteolysis. Using normal and pancreatic cancer cell lines, we confirmed that a majority of identified lncRNAs and mRNAs showed altered expressions in pancreatic cancer cells. Especially, LINC01589, LINC00960, TCN1, and MT1M showed a profoundly increased expression in pancreatic cancer cells, which suggests their potentially important role in pancreatic cancer. The results of our work indicate that lncRNAs have vital roles in PADC and provide new insights to integrate multiple kinds of markers in clinical practices.  相似文献   

15.
16.

Background

MicroRNAs (miRNAs) are reportedly involved in pancreatic ductal adenocarcinoma (PDAC) development. Current methods do not allow us to reliably monitor miRNA function. Asensors are adeno-associated virus (AAV) vector miRNA sensors for real-time consecutive functional monitoring of miRNA profiling in living cells.

Methods

miR-200a, -200b, -21, -96, -146a, -10a, -155, and -221 in three PDAC cell lines (BxPC-3, CFPAC-1, SW1990), pancreatic epithelioid carcinoma cells (PANC-1), and human pancreatic nestin-expressing cells (hTERT-HPNE) were monitored by Asensors. Subsequently, the real-time consecutive functional profile of all miRNAs was evaluated.

Results

Selected miRNAs were detectable in all cell lines with high sensitivity and reproducibility. In the three PDAC cell lines, BxPC-3, CFPAC-1, and SW1990, the calibrated signal unit of the eight miRNAs Asensors was significantly lower than that of the Asensor control. However, in PANC-1 cells, miR-200a and -155 showed upregulation of target gene expression at 24 hours after infection with the sensors; at 48 hours, miR-200b and -155 displayed upregulation of reporter expression; and at 72 hours, reporter gene expression was upregulated by miR-200a and -200b. The result that miRNA could upregulate gene expression was further confirmed in miR-155 of hTERT-HPNE cells. Furthermore, miRNA activity varied among cell/tissue types and time.

Conclusion

It is possible that miRNA participates in the pathophysiology of pancreatic cancer, but the current popular methods do not accurately reveal the real-time miRNA function. Thus, this report provided a convenient, accurate, and sensitive approach to miRNA research.  相似文献   

17.
T Zhao  S Gao  X Wang  J Liu  Y Duan  Z Yuan  J Sheng  S Li  F Wang  M Yu  H Ren  J Hao 《PloS one》2012,7(8):e43399
CX3CR1 is an important chemokine receptor and regulates the chemotactic migration of pancreatic ductal adenocarcinoma (PDAC) cells. Up to now, its regulatory mechanism remains largely undefined. Here, we report that hypoxia upregulates the expression of CX3CR1 in pancreatic cancer cells. When hypoxia-inducible factor (HIF)-1α expression was knocked down in vitro and in vivo, the expression of CX3CR1 was significantly decreased. Chromatin immunoprecipitation assay demonstrated that HIF-1α bound to the hypoxia-response element (HRE; 5'-A/GCGTG-3') of CX3CR1 promoter under normoxia, and this binding was significantly enhanced under hypoxia. Overexpression of HIF-1α significantly upregulated the expression of luciferase reporter gene under the control of the CX3CR1 promoter in pancreatic cancer cells. Importantly, we demonstrated that HIF-1α may regulate cancer cell migration through CX3CR1. The HIF-1α/CX3CR1 pathway might represent a valuable therapeutic target to prevent invasion and distant metastasis in PDAC.  相似文献   

18.
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy. Long non‐coding RNAs (lncRNAs) are important regulators in pathological processes, yet their potential roles in PDAC are poorly understood. Here, we identify a fundamental role for a novel lincRNA, linc00511, in the progression of PDAC. Linc00511 levels in PDAC tissue specimens and cell lines were examined by quantitative real‐time PCR. Corresponding adjacent non‐neoplastic tissues were used as controls. The function of linc00511 in PDAC cell lines was determined by RNA interference approach in vitro and in vivo. Fluorescence in situ hybridization (FISH) was used to characterize linc00511 expression in PDAC cells. Insights of the mechanism of competitive endogenous RNAs (ceRNAs) were obtained from bioinformatic analysis, luciferase assays and RIP assays. The association between the linc00511/hsa‐miR29b‐3p axis and VEGFA was verified by Western blotting assay. Immunohistochemistry was performed to evaluate the expression of VEGFA in PDAC samples. The aberrant up‐regulation of linc00511 was detected in PDAC cell lines and patient specimens compared with controls. An increase in linc00511 expression indicates the adverse clinical pathological characteristics and poor prognosis. Functionally, linc00511 depletion in PDAC cells decreased proliferation, migration, invasion and endothelial tube formation. Mechanistically, linc00511 could up‐regulate VEGFA via its competing endogenous RNA (ceRNA) activity on hsa‐miR‐29b‐3p. In summary, our results define an important axis controlling proliferation, invasion and tumour angiogenesis in PDAC. Linc00511 is a novel lncRNA that plays a significant regulatory role in the pathogenesis and progression of PDAC. Thus, Linc00511 represents a new prognostic biomarker to predict clinical outcome of PDAC patients after surgery and may serve as a potential therapeutic target for PDAC treatment.  相似文献   

19.
Circular RNAs (circRNAs) have been regarded as critical regulators of human diseases and biological markers in some types of malignancies, including pancreatic ductal adenocarcinoma (PDAC). Recently, circ_0007534 has been identified as a novel cancer-related circRNA. Nevertheless, its clinical relevance, functional roles, and mechanism have not been studied in PDAC. In the current study, real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of circ_0007534 in 60-paired PDAC tissue samples and different cell lines. Loss-of-function and gain-of-function assays were performed to detect cell proliferation, apoptosis, and metastatic properties affected by circ_0007534. An animal study was also carried out. The luciferase reporter assay was performed to uncover the underlying mechanism of circ_0007534. As a result, circ_0007534 was overexpressed not only in PDAC tissues but also in a panel of PDAC cell lines, and this overexpression is closely associated with advanced tumor stage and positive lymph node invasion. In addition, circ_0007534 may be regarded as an independent prognostic factor for patients with PDAC. For the part of functional assays, circ_0007534 significantly increased cell proliferation, migratory, and invasive potential of PDAC cells. Circ_0007534 could inhibit cell apoptosis partly via a Bcl-2/caspase-3 pathway. The xenograft study further confirmed the cell growth promoting the role of circ_0007534. Mechanistically, miR-625 and miR-892b were sponged by circ_0007534. The oncogenic functions of circ_0007534 is partly dependent on its regulation of miR-625 and miR-892b. In conclusion, our study illuminates a novel circRNA that confers an oncogenic function in PDAC.  相似文献   

20.

Background

Normal tissue homeostasis is maintained by dynamic interactions between epithelial cells and their microenvironment. Disrupting this homeostasis can induce aberrant cell proliferation, adhesion, function and migration that might promote malignant behavior. Indeed, aberrant stromal-epithelial interactions contribute to pancreatic ductal adenocarcinoma (PDAC) spread and metastasis, and this raises the possibility that novel stroma-targeted therapies represent additional approaches for combating this malignant disease. The aim of the present study was to determine the effect of human stromal cells derived from adipose tissue (ADSC) on pancreatic tumor cell proliferation.

Principal Findings

Co-culturing pancreatic tumor cells with ADSC and ADSC-conditioned medium sampled from different donors inhibited cancer cell viability and proliferation. ADSC-mediated inhibitory effect was further extended to other epithelial cancer-derived cell lines (liver, colon, prostate). ADSC conditioned medium induced cancer cell necrosis following G1-phase arrest, without evidence of apoptosis. In vivo, a single intra-tumoral injection of ADSC in a model of pancreatic adenocarcinoma induced a strong and long-lasting inhibition of tumor growth.

Conclusion

These data indicate that ADSC strongly inhibit PDAC proliferation, both in vitro and in vivo and induce tumor cell death by altering cell cycle progression. Therefore, ADSC may constitute a potential cell-based therapeutic alternative for the treatment of PDAC for which no effective cure is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号