首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanomedicine concerns the use of precision-engineered nanomaterials to develop novel therapeutic and diagnostic modalities for human use. The present study demonstrates the efficacy of silver nanoparticles (AgNPs) biosynthesis from leaf extract of Vitex negundo L. as an antitumor agent using human colon cancer cell line HCT15. The AgNPs synthesis was determined by UV–visible spectrum and it was further characterized by field emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) analysis. The toxicity was evaluated using changes in cell morphology, cell viability, nuclear fragmentation, cell cycle and comet assay. The percentage of cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Our results showed that biosynthesized silver nanoparticles inhibited proliferation of human colon cancer cell line HCT15 with an IC50 of 20 μg/ml at 48 h incubation. AgNPs were shown to promote apoptosis as seen in the nuclear morphological examination study using propidium iodide staining and DNA fragmentation by single cell gel electrophoresis technique. Biosynthesized AgNPs arrested HCT15 cells at G0/G1 and G2/M phases with corresponding decrease in S-phase. These results suggest that AgNPs may exert its antiproliferative effects on colon cancer cell line by suppressing its growth, arresting the G0/G1-phase, reducing DNA synthesis and inducing apoptosis.  相似文献   

2.
Numerous studies investigated the biosynthesis of silver nanoparticles (AgNPs); however, there is a large gap for the ideal time-consuming process and their cytotoxicity. Herein, for the first time, rapid AgNPs was synthesized in a short time span, using Piper betle leaf (PBL) extract by applying microwave exposure. PB-AgNPs antibacterial activity and cell compatibility were enhanced by capping with chitosan (CS@PB-AgNPs). The synthesized nanoparticles were characterized by bioanalytical techniques. PB-AgNPs expressed significant antibacterial activity against Gram-positive and Gram-negative bacterial pathogens, while hybrid CS@PB-AgNPs presented the enhanced bactericidal activity. In addition, PB-AgNPs exhibited IC50 value of 140 μg/mL against RAW 264.7 macrophages and 100 μg/mL against lung cancer cells while, CS capping reduced its toxicity at IC50 values of 400 μg/mL and 180 μg/mL respectively were affirmed by MTT, apoptosis and DNA damage detection. Overall it was demonstrated that CS capping could be a phenomenal finding to improve the biomedical potential of AgNPs.  相似文献   

3.
In green chemistry, the application of a biogenic material as a mediator in nanoparticles formation is an innovative nanotechnology. Our current investigation aimed at testing the cytotoxic potential and antimicrobial ability of silver nanoparticles (AgNPs) that were prepared using Calligonum comosum roots and Azadirachta indica leaf extracts as stabilizing and reducing agents. An agar well diffusion technique was employed to detect synthesized AgNPs antibacterial ability on Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus bacterial strains. Furthermore, their cytotoxic capability against LoVo, MDA-MB231 and HepG2 ca cells was investigated. For phyto-chemical detection in the biogenic AgNPs the Fourier-transform infrared spectroscopy (FT-IR) was considered. Zeta sizer, TEM (Transmission Electron Microscope) and FE-SEM (Field Emission Scanning Electron Microscope) were used to detect biogenic AgNPs’ size and morphology. The current results showed the capability of tested plant extract for conversion of Ag ions to AgNPs with a mean size ranging between 90.8 ± 0.8 and 183.2 ± 0.7 nm in diameter. Furthermore, prepared AgNPs exhibited apoptotic potential against HepG2, LoVo, and MDA-MB 231cell with IC50 ranging between 10.9 and 21.4 μg/ml and antibacterial ability in the range of 16.0 ± 0.1 to 22.0 ± 1.8 mm diameter. Activation of caspases in AgNPs treated cells could be the main indicator for their positive effect causing apoptosis. The current investigation suggested that the green production of AgNPs could be a suitable substitute to large-scale production of AgNPs, since stable and active nanoparticles could be obtained.  相似文献   

4.
BackgroundWound healing is an essential physiological process involving many cell types and their products acting in a marvellous harmony to repair damaged tissues. During the healing process, cellular proliferation and extracellular matrix remodelling stages could be interrupted by undesired factors including microorganisms and altered metabolic activities. In such a case, the process requires some external stimulants to accelerate or remediate the healing stages.MethodsIn this study, we report a multifunctional wound healing stimulating agent. In this context, hexagonal boron nitride (hBN) nanoparticles, silver nanoparticles (AgNPs) and polydopamine(pdopa) were used through mussel-inspired chemistry of dopamine to obtain pdopa coated hBN (hBN@pdopa) and AgNPs decorated hBN@pdopa (hBN@pdopa-AgNPs). These two nanostructures were investigated to observe stages of healing.ResultsAgNPs were chosen for inflammation reduction and hBN for induced cell proliferation and migration. In in vitro experiments, firstly, high cellular uptake capacity and biocompatibility of hBN@pdopa and hBN@pdopa-AgNPs were evaluated. They were also tested for their reaction against increased concentration of reactive oxygen species (ROS) in injured cells. Finally, their effect on cellular migration, intracellular tube formation and F-actin organization were monitored by light and confocal microscopy, respectively.ConclusionThe results clearly indicate that the hBN@pdopa-AgNPs significantly decrease ROS production, promote wound closure, and reorganize tube formation in cells.  相似文献   

5.

Background

Many in vitro studies have revealed that the interference of dye molecules in traditional nanoparticle cytotoxicity assays results in controversial conclusions. The aim of this study is to establish an extensive and systematic method for evaluating biological effects of gold nanoparticles in mammalian cell lines.

Methods

We establish the cell-impedance measurement system, a label-free, real-time cell monitoring platform that measures electrical impedance, displaying results as cell index values, in a variety of mammalian cell lines. Cytotoxic effects of gold nanoparticles are also evaluated with traditional in vitro assays.

Results

Among the six cell lines, gold nanoparticles induce a dose-dependent suppression of cell growth with different levels of severity and the suppressive effect of gold nanoparticles was indirectly associated with their sizes and cellular uptake. Mechanistic studies revealed that the action of gold nanoparticles is mediated by apoptosis induction or cell cycle delay, depending on cell type and cellular context. Although redox signaling is often linked to the toxicity of nanoparticles, in this study, we found that gold nanoparticle-mediated reactive oxygen species generation was not sustained to notably modulate proteins involved in antioxidative defense system.

Conclusion

The cell-impedance measurement system, a dye-free, real-time screening platform, provides a reliable analysis for monitoring gold nanoparticle cytotoxicity in a variety of mammalian cell lines. Furthermore, gold nanoparticles induce cellular signaling and several sets of gene expression to modulate cellular physical processes.

General significance

The systematic approach, such as cell-impedance measurement, analyzing the toxicology of nanomaterials offers convincing evidence of the cytotoxicity of gold nanomaterials.  相似文献   

6.
The biological method for the synthesis of silver nanoparticles (AgNPs) using Annona squamosa leaf extract and its cytotoxicity against MCF-7 cells are reported. The synthesized AgNPs using A. squamosa leaf extract was determined by UV–visible spectroscopy and it was further characterized by FT-IR, X-ray diffraction (XRD), Transmission electron microscopy (TEM), Zeta potential and energy dispersive spectrometric (EDS) analysis. The UV–visible spectrum showed an absorption peak at 444 nm which reflects surface plasmon resonance (SPR) of AgNPs. TEM photography showed biosynthesized AgNPs were predominantly spherical in shape with an average size ranging from 20 to 100 nm. The Zeta potential value of ?37 mV revealed the stability of biosynthesized AgNPs. Furthermore, the green synthesized AgNPs exhibited a dose-dependent cytotoxicity against human breast cancer cell (MCF-7) and normal breast epithelial cells (HBL-100) and the inhibitory concentration (IC50) were found to be 50 μg/mL, 30 μg/mL, and 80 μg/mL, 60 μg/ml for AgNPs against MCF-7 and normal HBL-100 cells at 24 h and 48 h incubation respectively. An induction of apoptosis was evidenced by (AO/EtBr) and DAPI staining. Application of such eco-friendly nanoparticles makes this method potentially exciting for the large scale synthesis of nanoparticles.  相似文献   

7.
Nowadays, the innovative study of silver nanoparticles (AgNPs) is excessive since they have incredible biomedical applications. The current study aimed to find out the potential of honey from two different floral sources (Ziziphus spina-christi and Acacia gerrardii) as biogenic mediators to synthesize AgNPs and to evaluate their antioxidant, cytotoxic and antimicrobial abilities. Biogenic AgNPs were studied for particle characterizations and the expected biomolecules helped in the reduction process of silver (Ag) ions to AgNPs. Results demonstrated different sizes (50–98 nm) and potentials −42 and −40 for AgNPs prepared using different biological materials, therefore different 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging free radicals were observed. Cytotoxic effect in a dose-dependent manner was detected against HepG2 ca cells for biogenic AgNPs resulted from cell apoptosis that detected by caspase 3/7 activation and AO/EB staining in the treated cells compared to their corresponding controls. Furthermore, biogenic AgNPs suppressed the growth of Methicillin-resistant bacteria Staphylococcus aureus (Gram-positive) besides Escherichia coli and Peseudomonas aeruginosa (Gram-negative). The IC50 of AgNPs was between 15.8 and 14.1 μg/mL and the antibacterial capability was between 22.8 ± 1.2 and 17.0 ± 0.1 mm. Bacterial membrane disturbance was evident in the current study when treated bacteria were studied by field emission scanning electron microscopy (FE-SEM) in relation to untreated controls. Overall, the present findings indicated the possibility of simple green synthesis of AgNPs using bee’s honey, which are effective agents in some biomedical applications. Detailed future work is needed to further validate the results.  相似文献   

8.
In this report, we describe the effect of Gemini surfactants1, 6-Bis (N, N-hexadecyldimethylammonium) adipate (16-6-16) on synthesis, stability and antibacterial activity of silver nanoparticles (AgNPs). The stabilizing effect of Gemini surfactant and aggregation behavior of AgNPs was evaluated by plasmonic property and morphology of the AgNPs were characterized by UV–vis spectroscopy, Dynamic Light Scattering (DLS), X-ray diffraction (XRD), High resolution transmission electron microscopy (HRTEM) and Energy dispersive X-ray analysis (EDX) techniques. Interestingly, the formation of quite mono-dispersed spherical particles was found. Apart from the stabilizing role, the Gemini surfactant has promoted the agglomeration of individual AgNPs in small assemblies whose Plasmon band features differed from those of the individual nanoparticles. The antibacterial activity of the synthesized AgNPs on Gram-negative and Gram-positive bacterium viz., E. coli and S. aureus was carried out by plate count, growth kinetics and cell viability assay. Furthermore, the mechanism of antibacterial activity of AgNPs was tested by Zeta potential and DLS analysis, to conclude that surface charge of AgNPs disrupts the cells causing cell death.  相似文献   

9.
随着纳米材料在食品、药物、生物医学等多领域的应用,其在生产使用过程中对人类健康的影响引起了广泛关注.内质网是蛋白质折叠与加工修饰、脂质合成以及Ca~(2+)储存的主要场所,是维护细胞内稳态的重要细胞器.内质网作为纳米材料的主要靶细胞器之一,在纳米材料引起的毒性效应中起重要作用.本文结合近年来国内外相关研究进展,阐述了纳米银(Ag-NPs)、纳米金(Au-NPs)、纳米二氧化钛(TiO_2-NPs)、纳米氧化锌(ZnO-NPs)、纳米二氧化硅(SiO_2-NPs)、富勒烯(C_(60))、单壁与多壁碳纳米管(SWCNTs/MWCNTs)以及石墨烯与氧化石墨烯(GO)等典型纳米材料对内质网结构与功能的影响,并归纳总结了内质网在不同纳米材料诱导的毒性效应中的作用及其异同点.纳米材料可通过引起内质网应激诱导细胞凋亡、炎症反应以及细胞自噬,还可通过激活IP_3信号通路诱导内质网Ca~(2+)释放激活钙依赖的细胞凋亡.纳米材料可在内质网中积累造成结构损伤及功能障碍,还可诱导内质网自噬.  相似文献   

10.
In the field of nano-biotechnology, silver nanoparticles (AgNPs) share a status of high repute owing to their remarkable medicinal values. Biological synthesis of environment-friendly AgNPs using plant extracts has emerged as the beneficial alternative approach to chemical synthesis. In the current study, we have synthesized biogenic silver nanoparticles (PG-AgNPs) using the peel extract of Punica granatum as a reducing and stabilizing agent. The as-synthesized PG-AgNPs were characterized and evaluated for their antibacterial and anticancer potential. UV–Visible spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the formation of biogenic PG-AgNPs. The antibacterial potential was assessed against the biofilm of Listeria monocytogenes. The PG-AgNPs were efficacious against sessile bacteria and their biofilm as well. The as-synthesized nanoparticles at sub-MIC values showed dose-dependent inhibition of biofilm formation. Corroborating results were observed under crystal violet assay, Congo red staining, Confocal microscopy and SEM analysis. The anticancer ability of the nanoparticles was evaluated against MDA-MB-231 metastatic breast cancer cells. As evident from the MTT results, PG-AgNPs significantly reduced the cell viability in a dose-dependent manner. Exposure of MDA-MB-231 cells led to the accumulation of reactive oxygen species (ROS). Morphological changes and DNA fragmentation showed the strong positive effect of PG-AgNPs on the induction of apoptosis. Collectively, the as-synthesized PG-AgNPs evolved with synergistically emerged attributes that were effective against L. monocytogenes and also inhibited its biofilm formation; moreover, the system displayed lower cytotoxic manifestation towards mammalian cells. In addition, the PG-AgNPs embodies intriguing anticancer potential against metastatic breast cancer cells.  相似文献   

11.
Nanoparticles provide a potent tool for targeting and understanding disease mechanisms. In this regard, cancer cells are surprisingly resistant to the expected toxic effects of positively charged gold nanoparticles (+AuNPs). Our investigations led to the identification of MICU1, regulator of mitochondrial calcium uniporter, as a key molecule conferring cancer cells with resistance to +AuNPs. The increase in cytosolic [Ca2+]cyto in malignant cells induced by +AuNPs is counteracted by MICU1, preventing cell death. Pharmacological or siRNA-mediated inhibition of mitochondrial Ca+2 entry leads to endoplasmic reticulum stress and sensitizes cancer cells to +AuNP-induced cytotoxicity. Silencing MICU1 decreases Bcl-2 expression and increases caspase-3 activity and cytosolic cytochrome c levels, thus initiating the mitochondrial pathway for apoptosis: effects further enhanced by +AuNPs. This study highlights the potential of nanomaterials as a tool to broaden our understanding of cellular processes, establishes MICU1 as a novel regulator of the machinery in cancer cells that prevents apoptosis, and emphasizes the need to synergize nanoparticle design with understanding of mitochondrial machinery for enhancing targeted cellular toxicity.  相似文献   

12.
The biogenic engineered silver nanoparticles (AgNPs) were synthesized using aqueous extract of marine mangrove Avicennia marina leaves and its anticancer activity was checked in lung cancer cell line. Initially, the UV–vis spectra exhibited the characteristics SPR absorption peak for AgNPs at 425 nm and further characterized using TEM, SAED, XRD and FT-IR analysis. The TEM pictures displayed the spherical crystalline and monodispersed nature of AgNPs and the size range observed between 25–30 nm. The SAED showed the AgNPs are face-centered cubic pattern which is further confirmed with XRD analysis. The FTIR spectral analysis exposed the presence of necessary biomolecules for the reduction and stabilization of silver ions. Synthesized AgNPs showed dose-dependent cytotoxic activity in A549 cell line. The fluorescence studies showed that AgNPs induces apoptosis by increasing the generation of ROS in mitochondria and cleaving the mitochondrial membrane of A549 cells. Further, the molecular studies were conducted using RT-PCR and western blotting analysis and the results confirmed that the AgNPs induce apoptosis through both p53-dependent and -independent caspase intermediated signaling pathway. Together, the present study concludes that the bioengineered AgNPs can act as a potential therapeutic agent against lung cancer.  相似文献   

13.
An eco-friendly green approach was proposed to synthesise stable, cytotoxic colloidal silver nanoparticles (AgNPs) using Momordica charantia (M. charantia) fruit extract. Bioinspired green method adopted for fabrication of AgNPs because of easy, fast, low-cost and benign bioprocess. Phytocomponents played the crucial role in capping, stabilisation and inherent cytotoxic potential of colloidal nanosilver. The physiochemical, crystalline, optical and morphological properties of AgNPs were characterized using UV-vis, FT-IR, XRD, SEM, TEM, EDX and AFM. FT-IR reveals the presence of carbonyl, methyl, polyphenol (flavonoid), primary and secondary amine (protein), carboxyl group, ester as major functional groups over the surface of nanomaterials. Mechanistic pathway for formation and stabilisation of colloidal nanosilver has been discussed. Average crystalline size of AgNPs was found to be 12.55?nm from XRD. TEM shows AgNPs nanosphere with size range 1–13.85?nm. Consistency in spherical morphology was also confirmed through Atomic Force Microscopy (AFM). AFM measurement provided image Rq value 3.62, image Ra 2.47, roughness Rmax 36.4?nm, skewness 1.99 and kurtosis 9.87. The SRB assay revealed substantial in vitro noticeable anti-cancer activity of colloidal nanosilver on A549 and HOP-62 human lung cancer cells in a dose dependent manner with IC50 value of 51.93?µg/ml and 76.92?µg/ml. In addition, M. charantia capped AgNPs were found to be more biocompatible in comparison to M. charantia FE. Our study demonstrated the integration of green chemistry principle in nanomaterials fabrication and focused on the potential use of M. charantia fruit extract as an efficient precursor for biocompatible AgNPs anodrug formulation with improved cytotoxic applications.  相似文献   

14.
Silver nanoparticles are increasingly recognized for their utility in biological applications, especially antibacterial effects. Herein, we confirmed the antibacterial effect of silver nanoparticles on Escherichia coli using the conventional optical density (OD) and colony-forming units (CFU) method and used flow cytometry (FC), TEM and BrdU ELISA to investigate the mechanisms of this effect. From the results, we conclude that AgNPs can simultaneously induce apoptosis and inhibit new DNA synthesis in the cells in a positive concentration-dependent manner. This study presents the first induction of apoptosis in these bacteria by AgNPs in this field. Our findings may provide a new strategy for the use of silver nanoparticles in antibacterial applications.  相似文献   

15.
Candida albicans is the most common fungal pathogen in humans, and recently some studies have reported the antifungal activity of silver nanoparticles (AgNPs) against some Candida species. However, ultrastructural analyses on the interaction of AgNPs with these microorganisms have not been reported. In this work we evaluated the effect of AgNPs on C. albicans, and the minimum inhibitory concentration (MIC) was found to have a fungicidal effect. The IC50 was also determined, and the use of AgNPs with fluconazole (FLC), a fungistatic drug, reduced cell proliferation. In order to understand how AgNPs interact with living cells, the ultrastructural distribution of AgNPs in this fungus was determined. Transmission electron microscopy (TEM) analysis revealed a high accumulation of AgNPs outside the cells but also smaller nanoparticles (NPs) localized throughout the cytoplasm. Energy dispersive spectroscopy (EDS) analysis confirmed the presence of intracellular silver. From our results it is assumed that AgNPs used in this study do not penetrate the cell, but instead release silver ions that infiltrate into the cell leading to the formation of NPs through reduction by organic compounds present in the cell wall and cytoplasm.  相似文献   

16.
This communication explains the biosynthesis of stable silver nanoparticles (AgNPs) from Melia azedarach and its cytotoxicity against in vitro HeLa cells and in vivo Dalton's ascites lymphoma (DAL) mice model. The AgNPs synthesis was determined by UV–visible spectrum and it was further characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS) and X-ray diffraction (XRD) analysis. Zeta potential analysis revealed stable AgNPs at ?24.9 mV. UV visible spectrum indicated an absorption peak at 436 nm which reflects its specific Surface Plasmon Resonance (SPR). Biosynthesized AgNPs were predominantly cubical and spherical with an average particle size of 78 nm approximately as observed through SEM and DLS analysis, respectively. Cytotoxicity of biosynthesized AgNPs against in vitro Human epithelial carcinoma cell line (HeLa) showed a dose–response activity. Lethal dose (LD50) value was found to be 300 μg/mL of AgNPs against HeLa cell line. Cytotoxicity against normal continuous cell line human breast lactating, donor 100 (HBL 100) was found only in increased concentration of both AgNPs and 5-FU. In addition, in vivo DAL mice model showed significant increase in life span, induction of apoptosis was evidenced by acridine orange and ethidium bromide (AO and EB) staining.  相似文献   

17.
The human breast adenocarcinoma cell line MDA-MB-231 has the triple-negative breast cancer (TNBC) phenotype, which is an aggressive subtype with no specific treatment. MDA-MB-231 cells express neurotensin receptor type 1 (NTSR1), which makes these cells an attractive target of therapeutic genes that are delivered by the neurotensin (NTS)-polyplex nanocarrier via the bloodstream. We addressed the relevance of this strategy for TNBC treatment using NTS-polyplex nanoparticles harboring the herpes simplex virus thymidine kinase (HSVtk) suicide gene and its complementary prodrug ganciclovir (GCV). The reporter gene encoding green fluorescent protein (GFP) was used as a control. NTS-polyplex successfully transfected both genes in cultured MDA-MB-231 cells. The transfection was demonstrated pharmacologically to be dependent on activation of NTSR1. The expression of HSVtk gene decreased cell viability by 49% (P<0.0001) and induced apoptosis in cultured MDA-MB-231 cells after complementary GCV treatment. In the MDA-MB-231 xenograft model, NTS-polyplex nanoparticles carrying either the HSVtk gene or GFP gene were injected into the tumors or via the bloodstream. Both routes of administration allowed the NTS-polyplex nanoparticles to reach and transfect tumorous cells. HSVtk expression and GCV led to apoptosis, as shown by the presence of cleaved caspase-3 and Apostain immunoreactivity, and significantly inhibited the tumor growth (55–60%) (P<0.001). At the end of the experiment, the weight of tumors transfected with the HSVtk gene was 55% less than that of control tumors (P<0.05). The intravenous transfection did not induce apoptosis in peripheral organs. Our results offer a promising gene therapy for TNBC using the NTS-polyplex nanocarrier.  相似文献   

18.
Silver nanoparticles (AgNPs) have attracted considerable attentions due to their unique properties and diverse applications. Although it has been reported that AgNPs have acute toxic effects on a variety of cultured mammalian cells and animal models, few studies have been conducted to evaluate the associated risk of AgNPs to human health at non-cytotoxic doses. In this paper, HepG2 cells were exposed to 10 nm and 100 nm AgNPs under non-cytotoxic conditions, and cell viability was assessed. At low doses, AgNPs displayed “hormesis” effects by accelerating cell proliferation. Further studies indicated that the activation states of MAPKs were differentially regulated in this process. Specifically, by increasing the expression of downstream genes, p38 MAPK played a central role in non-cytotoxic AgNP-induced hormesis. Moreover, the treatment of HepG2 cells with silver ions (Ag+) at the same dose levels induced distinct biological effects, suggesting that different intrinsic properties exist for AgNPs and Ag+.  相似文献   

19.
Song XL  Li B  Xu K  Liu J  Ju W  Wang J  Liu XD  Li J  Qi YF 《Cell biology and toxicology》2012,28(4):225-237
Silver nanoparticles (AgNPs) are being used widely and increasingly in various products and medical supplies due to their antibacterial activity. However, little is known about the impacts of the AgNPs. Herein, The primary purpose of this study was to investigate the cytotoxic effect of AgNPs in the human liver cell line (HL-7702). The water-soluble α-Methoxy-poly (ethylene glycol)-ω-mercapto (mPEG-SH)-coated AgNPs (40 nm) were synthesized, which showed superior stabilization and uniform dispersion in culture medium. The effect of mPEG-SH-coated silver nanoparticles on cell viability, leakage of lactate dehydrogenase (LDH), oxidative stress, mitochondrial membrane potential (MMP), and cell cycle was evaluated after the cells were treated with nanoparticles. The results showed that the coated AgNPs could be taken up by cells, decreased cell viability in dose- and time-dependent manners at dosage levels between 6.25 and 100.00 μg/mL, caused membrane damage (LDH leakage), and decreased the activities of superoxide dismutase and glutathione peroxides. The level of malondialdehyde, an end product of lipid peroxidation, was also increased in AgNPs-exposed cells. Moreover, flow cytometric analysis showed that AgNP exposure decrease MMP and cause G?/M phase arrest. Thus, our data suggest that mPEG-SH-coated AgNPs have the potential toxicity that is associated with oxidative stress, apoptosis, and DNA damage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号