共查询到20条相似文献,搜索用时 15 毫秒
1.
Preferential association of apocytochrome c with negatively charged phospholipids in mixed model membranes 总被引:2,自引:0,他引:2
A Rietveld T A Berkhout A Roenhorst D Marsh B de Kruijff 《Biochimica et biophysica acta》1986,858(1):38-46
The mitochondrial precursor protein, apocytochrome c, binds to model membranes containing negatively charged phospholipids (Rietveld, A., Sijens, R., Verkleij, A.J. and Kruijff, B. (1983) EMBO J. 2, 907-913). In the present paper the effect of apocytochrome c on the lipid distribution in model membranes, consisting of neutral and acidic phospholipids, is examined. Both ESR and fluorescence energy transfer experiments show that the protein preferentially interacts with the negatively charged phospholipid in the mixed model membranes. Semi-quantitative analysis of the fluorescence energy transfer from the single tryptophan in apocytochrome c to the parinaric acid in phosphatidylserine or phosphatidylcholine in mixed bovine brain phosphatidylserine/egg phosphatidylcholine vesicles reveals and average donor-acceptor distance of 22-26 A and 26-30 A for phosphatidylserine and phosphatidylcholine, respectively. In addition, these experiments demonstrate that this preferential interaction does not induce the separation of large domains enriched in complexes of apocytochrome c with negatively charged phospholipids and domains enriched in neutral lipids. 相似文献
2.
B Vallée C Teyssier R Maget-Dana J Ramstein N Bureaud F Schoentgen 《European journal of biochemistry》1999,266(1):40-52
The equilibrium behaviour of the bovine phosphatidylethanolamine-binding protein (PEBP) has been studied under various conditions of pH, temperature and urea concentration. Far-UV and near-UV CD, fluorescence and Fourier transform infrared spectroscopies indicate that, in its native state, PEBP is mainly composed of beta-sheets, with Trp residues mostly localized in a hydrophobic environment; these results suggest that the conformation of PEBP in solution is similar to the three-dimensional structure determined by X-ray crystallography. The pH-induced conformational changes show a transition midpoint at pH 3.0, implying nine protons in the transition. At neutral pH, the thermal denaturation is irreversible due to protein precipitation, whereas at acidic pH values the protein exhibits a reversible denaturation. The thermal denaturation curves, as monitored by CD, fluorescence and differential scanning calorimetry, support a two-state model for the equilibrium and display coincident values with a melting temperature Tm = 54 degrees C, an enthalpy change DeltaH = 119 kcal.mol-1 and a free energy change DeltaG(H2O, 25 degrees C) = 5 kcal.mol-1. The urea-induced unfolding profiles of PEBP show a midpoint of the two-state unfolding transition at 4.8 M denaturant, and the stability of PEBP is 4.5 kcal.mol-1 at 25 degrees C. Moreover, the surface active properties indicate that PEBP is essentially a hydrophilic protein which progressively unfolds at the air/water interface over the course of time. Together, these results suggest that PEBP is well-structured in solution but that its conformation is weakly stable and sensitive to hydrophobic conditions: the PEBP structure seems to be flexible and adaptable to its environment. 相似文献
3.
G. Fujii M. E. Selsted D. Eisenberg 《Protein science : a publication of the Protein Society》1993,2(8):1301-1312
Defensins, a family of cationic peptides isolated from mammalian granulocytes and believed to permeabilize membranes, were tested for their ability to cause fusion and lysis of liposomes. Unlike alpha-helical peptides whose lytic effects have been extensively studied, the defensins consist primarily of beta-sheet. Defensins fuse and lyse negatively charged liposomes but display reduced activity with neutral liposomes. These and other experiments suggest that fusion and lysis is mediated primarily by electrostatic forces and to a lesser extent, by hydrophobic interactions. Circular dichroism and fluorescence spectroscopy of native defensins indicate that the amphiphilic beta-sheet structure is maintained throughout the fusion process. Taken together, these results support the idea that protein-mediated membrane fusion depends not only on hydrophobic and electrostatic forces but also on the spatial arrangement of the amino acid residues to form a three-dimensional amphiphilic structure, which promotes the efficient mixing of the lipids between membranes. A molecular model for membrane fusion by defensins is presented, which takes into account the contributions of electrostatic forces, hydrophobic interactions, and structural amphiphilicity. 相似文献
4.
E.J.J. Van Zoelen R.F.A. Zwaal F.A.M. Reuvers R.A. Demel L.L.M. van Deenen 《生物化学与生物物理学报:生物膜》1977,464(3):482-492
Glycophorin, extracted from the erythrocyte membrane after treatment with lithium-diiodo-salicylate, still contains a significant amount of phospholipid, consisting predominantly of phosphatidylserine. Methods are described wich lead to a full delipidation of the protein.After treatment with neuraminidase, delipidated glycophorin shows a preferential interaction with monolayers of negatively-charged phospholipids. This lipid-protein interaction is decreased by the presence of cholesterol in the lipid film. 相似文献
5.
6.
The interaction of the antitumor compound adriamycin with human erythrocyte membranes, used as models of target cell membranes, has been studied using circular dichroism measurements. In order to elucidate the nature of the sites involved in the electrostatic interaction between adriamycin and erythrocyte membranes, its interaction with the following macromolecular systems was studied: phosphatidylserine-containing small unilamellar vesicles (SUV), prepared from total lipid extracts of erythrocytes, sialic acid-depleted erythrocyte ghosts and mucopolysaccharides. We have shown that the interaction between adriamycin and carboxylate groups is very weak and that negatively charged phosphate groups, in the case of membranes, or sulfate groups, in the case of mucopolysaccharides, are responsible for the prime interaction of adriamycin with these macromolecular systems. 相似文献
7.
To obtain cationic liposomes of which affinity to negatively charged membranes can be controlled by temperature, cationic liposomes consisting of 3beta-[N-(N', N'-dimethylaminoethane)carbamoyl]cholesterol and dioleoylphosphatidylethanolamine were modified with poly(N-acryloylpyrrolidine), which is a thermosensitive polymer exhibiting a lower critical solution temperature (LCST) at ca. 52 degrees C. The unmodified cationic liposomes did not change its zeta potential between 20-60 degrees C. The polymer-modified cationic liposomes revealed much lower zeta potential values below the LCST of the polymer than the unmodified cationic liposomes. However, their zeta potential increased significantly above this temperature. The unmodified cationic liposomes formed aggregates and fused intensively with anionic liposomes consisting of egg yolk phosphatidylcholine and phosphatidic acid in the region of 20-60 degrees C, due to the electrostatic interaction. In contrast, aggregation and fusion of the polymer-modified cationic liposomes with the anionic liposomes were strongly suppressed below the LCST. However, these interactions were enhanced remarkably above the LCST. In addition, the polymer-modified cationic liposomes did not cause leakage of calcein from the anionic liposomes below the LCST, but promoted the leakage above this temperature as the unmodified cationic liposomes did. Temperature-induced conformational change of the polymer chains from a hydrated coil to a dehydrated globule might affect the affinity of the polymer-modified cationic liposomes to the anionic liposomes. 相似文献
8.
Lars Thomas Holger A. Scheidt Andrea Bettio Annette G. Beck-Sickinger Daniel Huster Olaf Zschörnig 《European biophysics journal : EBJ》2009,38(5):663-677
The interaction of the 36 amino acid neuropeptide Y (NPY) with liposomes was studied using the intrinsic tyrosine fluorescence of NPY and an NPY fragment comprising amino acids 18–36. The vesicular membranes were composed of phosphatidylcholine and phosphatidylserine at varying mixing ratios. From the experimentally measured binding curves, the standard Gibbs free energy for the peptide transfer from aqueous solution to the lipid membrane was calculated to be around ?30 kJ/mol for membrane mixtures containing physiological amounts of acidic lipids at pH 5. The effective charge of the peptide depends on the pH of the buffer and is about half of its theoretical net charge. The results were confirmed using the fluorescence of the NPY analogue [Trp32]-NPY. Further, the position of NPY’s α-helix in the membrane was estimated from the intrinsic tyrosine fluorescence of NPY, from quenching experiments with spin-labelled phospholipids using [Trp32]-NPY, and from 1H magic-angle spinning NMR relaxation measurements using spin-labelled [Ala31, TOAC32]-NPY. The results suggest that the immersion depth of NPY into the membrane is triggered by the membrane composition. The α-helix of NPY is located in the upper chain region of zwitterionic membranes but its position is shifted to the glycerol region in negatively charged membranes. For membranes composed of phosphatidylcholine and phosphatidylserine, an intermediate position of the α-helix is observed. 相似文献
9.
Interaction of gentamicin and spermine with bilayer membranes containing negatively charged phospholipids 总被引:12,自引:0,他引:12
We measured the electrophoretic mobility of multilamellar phospholipid vesicles, the 31P NMR spectra of both sonicated and multilamellar vesicles, and the conductance of planar bilayer membranes to study the binding of spermine and gentamicin to membranes. Spermine and gentamicin do not bind significantly to the zwitterionic lipid phosphatidylcholine. We measured the concentrations of gentamicin and spermine that reverse the charge on vesicles formed from a mixture of phosphatidylcholine and either phosphatidylserine or phosphatidylinositol. From these measurements, we determined that the intrinsic association constants of the cations with these negative lipids are all about 10 M-1. This value is orders of magnitude lower than the apparent binding constants reported in the literature by other groups because the negative electrostatic surface potential of the membranes and the resultant accumulation of these cations in the aqueous diffuse double layer adjacent to the membranes have not been explicitly considered in previous studies. Our main conclusion is that the Gouy-Chapman-Stern theory of the aqueous diffuse double layer can describe surprisingly well the interaction of gentamicin and spermine with bilayer membranes formed in a 0.1 M NaCl solution if the negative phospholipids constitute less than 50% of the membrane. Thus, the theory should be useful for describing the interactions of these cations with the bilayer component of biological membranes, which typically contain less than 50% negative lipids. For example, our results support the suggestion of Sastrasinh et al. [Sastrasinh, M., Krauss, T. C., Weinberg, J. M., & Humes, H. D. (1982) J. Pharmacol. Exp. Ther. 222, 350-358] that phosphatidylinositol is the major binding site for gentamicin in renal brush border membranes. 相似文献
10.
11.
Mechanism of the interaction of beta(2)-glycoprotein I with negatively charged phospholipid membranes. 总被引:5,自引:0,他引:5
M Hammel R Schwarzenbacher A Gries G M Kostner P Laggner R Prassl 《Biochemistry》2001,40(47):14173-14181
In an attempt to understand the multifunctional involvement of beta(2)-glycoprotein I (beta(2)GPI) in autoimmune diseases, thrombosis, atherosclerosis, and inflammatory processes, substantial interest is focused on the interaction of beta(2)GPI with negatively charged ligands, in particular, with acidic phospholipids. In this study, unilamellar vesicles composed of cardiolipin were used as in vitro membrane system to test and further refine a model of interaction based on the crystal structure of beta(2)GPI. The data suggest that beta(2)GPI anchors to the membrane surface with its hydrophobic loop adjacent to the positively charged lysine rich region in domain V. Subsequently, beta(2)GPI penetrates the membrane interfacial headgroup region as indicated by a restriction of the lipid side chain mobility, but without formation of a nonbilayer lipid phase. A structural rearrangement of beta(2)GPI upon lipid binding was detected by microcalorimetry and may result in the exposure of cryptic epitopes located in the complement control protein domains. This lipid-dependent conformational change may induce oligomerization of beta(2)GPI and promote intermolecular associations. Thus, the aggregation tendency of beta(2)GPI may serve as the basis for the formation of a molecular link between cells but may also be an essential feature for binding of autoantibodies and hence determine the role of beta(2)GPI in autoimmune diseases. 相似文献
12.
Gómez CM Codoñer A Campos A Abad C 《International journal of biological macromolecules》2000,27(4):291-299
We have investigated the binding of a new dansylcadaverine derivative of substance P (DNC-SP) with negatively charged small unilamellar vesicles composed of a mixture of phosphatidylcholine (PC) and either phosphatidylglycerol (PG) or phosphatidylserine (PS) using fluorescence spectroscopic techniques. The changes in fluorescence properties were used to obtain association isotherms at variable membrane negative charges and at different ionic strengths. The experimental association isotherms were analyzed using two binding approaches: (i) the Langmuir adsorption isotherm and the partition equilibrium model, that neglect the activity coefficients; and (ii) the partition equilibrium model combined with the Gouy-Chapman formalism that considers electrostatic effects. A consistent quantitative analysis of each DNC-SP binding curve at different lipid composition was achieved by means of the Gouy-Chapman approach using a peptide effective interfacial charge (v) value of (0.95 +/- 0.02), which is lower than the physical charge of the peptide. For PC/PG membranes, the partition equilibrium constant were 7.8 x 10(3) M(-1) (9/1, mol/mol) and 6.9 x 10(3) M(-1) (7/3, mol/mol), whereas for PC/PS membranes an average value of 6.8 x 10(3) M(-1) was estimated. These partition equilibrium constants were similar to those obtained for the interaction of DNC-SP with neutral PC membranes (4.9 x 10(3) M(-1)), as theoretically expected. We demonstrate that the v parameter is a determinant factor to obtain a unique value of the binding constant independently of the surface charge density of the vesicles. Also, the potential of fluorescent dansylated SP analogue in studies involving interactions with cell membranes is discussed. 相似文献
13.
Requirement for negatively charged dispersions of phospholipids for interaction with lipid-depleted adenosine triphosphatase. 下载免费PDF全文
The basis of the requirement for a net negative charge on phospholipid dispersions able to re-activate lipid-depleted (Na++K+)-dependent adenosine triphosphatase was studied. The origin and density of the charge in phospholipid dispersions were varied before interaction with the adenosine triphosphatase protein, and the charge density on restored phospholipid-adenosine triphosphatase complexes was changed after interaction. The results indicated that: (a) re-activation requires a lamellar arrangement of the lipid molecules with sufficient density of negative charge, but not necessarily negatively charged phospholipid molecules; (b) the net charge appears to be necessary for the correct interaction between the enzyme protein and the phospholipids, although the amount of phospholipid that binds to the protein is also a function of the nature of the acyl chains; (c) it is not possible on the basis of these findings and those in the literature to decide unequivocally if the charge is also required for the enzyme reaction itself. The possible relevance of the findings to the situation in vivo is discussed in terms of the charge being concerned only with lipid-protein interaction. 相似文献
14.
Comparison of affinity membranes and conventional affinity matrices with regard to protein purification 总被引:3,自引:0,他引:3
Summary Binding capacities for purified malate dehydrogenase from pig heart and malate dehydrogenase from Escherichia coli were determined for different gel matrices and a Cibacron Blue modified membrane. During batch adsorption the membrane has nearly the same capacity as Blue Sepharose. During filtration the effective capacity of the membrane was increased in contrast to Blue Sepharose. With cell homogenates, when used under cross-flow conditions, the membrane displayed better performance than Blue Sepharose. 相似文献
15.
Effect of polymyxin B on the planar bilayer lipid membranes (BLM) formed from synthetic phosphatidic acid has been studied. The addition of cholesterol to phospholipid in molar ratio 1 : 2 was followed by an increase of BLM conductance from 2 x 10(-8) to 3 x 10(-7) Ohm-1 cm-2. It was suggested that the observed increase of conductance was due to the fluidity of the membrane matrix in the presence of cholesterol. It was shown that 10(-6)--10(-5) M polymyxin slightly affected the conductance of BLM from phosphatidic acid. It was found that polymyxin increased conductance of negatively charged BLM modified by palmitic acid from 10(-8) to 10(-6) Ohm-1 cm-2. 相似文献
16.
The methods of computer simulation in all-atom and coarse-grained approximations have been used to study specific interactions
of the isolated domain I-BAR of the actin-binding protein IRSp53 with model membranes containing neutral phospholipids and
those including negatively charged PI(4,5)P2 phospholipids. It has been shown that the I-BAR domain does not interact with neutral lipids but induces bending of the synthetic
membrane rich in negatively charged phospholipids. Clustering of charged lipids on the surface of the membrane at the sites
of its interaction with the protein has been observed. This indicates that the interaction of I-BAR with negatively charged
lipids is of electrostatic and hydrophobic nature. 相似文献
17.
Buchoux S Lai-Kee-Him J Garnier M Tsan P Besson F Brisson A Dufourc EJ 《Biophysical journal》2008,95(8):3840-3849
The molecular mode of action of the lipopeptide SF with zwitterionic and negatively charged model membranes has been investigated with solid-state NMR, light scattering, and electron microscopy. It has been found that this acidic lipopeptide (negatively charged) induces a strong destabilization of negatively charged micrometer-scale liposomes, leading to the formation of small unilamellar vesicles of a few 10s of nanometers. This transformation is detected for very low doses of SF (Ri = 200) and is complete for Ri = 50. The phenomenon has been observed for several membrane mixtures containing phosphatidylglycerol or phosphatidylserine. The vesicularization is not observed when the lipid negative charges are neutralized and a cholesterol-like effect is then evidenced, i.e., increase of gel membrane dynamics and decrease of fluid membrane microfluidity. The mechanism for small vesicle formation thus appears to be linked to severe changes in membrane curvature and could be described by a two-step action: 1), peptide insertion into membranes because of favorable van der Waals forces between the rather rigid cyclic and lipophilic part of SF and lipid chains and 2), electrostatic repulsion between like charges borne by lipid headgroups and the negatively charged SF amino acids. This might provide the basis for a novel mode of action of negatively charged lipopeptides. 相似文献
18.
The influence of the binding of poly(l-lysine) (PLL) to negatively charged membranes containing phosphatidylglycerols (PG) was studied by DSC and FT-IR spectroscopy.
We found a general increase in the main transition temperature as well as increase in hydrophobic order of the membrane upon
PLL binding. Furthermore we observed stronger binding of hydration water to the lipid head groups after PLL binding. The secondary
structure of the PLL after binding was studied by FT-IR spectroscopy. We found that PLL binds in an α-helical conformation
to negatively charged DPPG membranes or membranes with DPPG-rich domains. Moreover we proved that PLL binding induces domain
formation in the gel state of mixed DPPC/DPPG or DMPC/DPPG membranes as well as lipid remixing in the liquid–crystalline state.
We studied these effects as a function of PLL chain length and found a significant dependence of the secondary structure,
phase transition temperature and domain formation capacity on PLL chain length and also a correlation between the peptide
secondary structure and the phase transition temperature of the membrane. We present a system in which the membrane phase
transition triggers a highly cooperative secondary structure transition of the membrane-bound peptide from α-helix to random
coil.
Dedicated to Prof. K. Arnold on the occasion of his 65th birthday. 相似文献
19.
Several kinds of hydrophilic proteins were examined to determine their interaction with artificial liposomes. Mitochondrial aspartate aminotransferase (m-GOT) [EC 2.6.1.1], as well as cytochrome c, was found to interact strongly with negatively charged liposomes. In each case, an appreciable amount of the protein bound to liposomes remained unreleased after raising the salt concentration in the medium. The m-GOT tightly bound to the liposomes was also found to become latent in its enzymatic activity, and could be reversibly activated by solubilization of the liposomes with detergent. This is also the case for cytochrome c, which ceases to be reducible by external reductant, such as dithionite. Furthermore, the tightly bound m-GOT was not susceptible to the proteolytic action of trypsin, or that of Nagarse. From these observations it can be inferred that these basic proteins interact with acidic liposomes not only electrostatically but also hydrophobically. This kind of hydrophobic interaction was not observed in the combination of positively charged liposomes and acidic proteins, including s-GOT. Mitochondrial GOT was shown to be bound to isolated intact mitochondrial, but the bound enzyme was fully active, in contrast to the case of acidic liposomes. The hydrophobic interaction of water-soluble protein with liposomes is discussed in connection with the penetration of matrix enzyme through mitochondrial membranes. 相似文献
20.
Evidence for protein synthesis in synaptosomal membranes 总被引:3,自引:0,他引:3
J M Gilbert 《The Journal of biological chemistry》1972,247(20):6541-6550