首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
J. D. Taylor  L. H. Pazder  V. Markle 《CMAJ》1965,92(26):1342-1344
The excretion of delta-aminolevulinic acid and porphobilinogen in the urine of 31 patients with multiple sclerosis did not differ significantly from that of 51 hospitalized control patients or eight patients with poliomyelitis. There was no relationship between exacerbations, remissions or duration of the illness, and levels of delta-aminolevulinic acid or of porphobilinogen. These assays therefore appear to be of no value in the differential diagnosis of multiple sclerosis or in following the severity or stage of this illness. Whereas demyelination does occur in acute porphyria where the levels of delta-aminolevulinic acid and porphobilinogen are elevated, the converse is not true; that is, demyelination is not always associated with an increase in the excretion of porphobilinogen or delta-aminolevulinic acid.  相似文献   

2.
Levulinic acid, a competitive inhibitor of delta-aminolevulinic acid dehydratase, was used to inhibit cytochrome biosynthesis in growing yeast cells. In Saccharomyces cerevisiae the antimetabolite acts by inhibiting delta-aminolevulinic acid dehydratase in vivo, causing an accumulation of intracellular delta-aminolevulinic acid and simultaneous decreases in all classes of mitochondrial cytochromes. Changes in cellular cytochrome content with increasing levulinic acid concentration suggested the existence of different regulatory patterns in S. cerevisiae and Candida utilis. In C. utilis, cytochrome a.a3 formation is very resistant to the antimetabolite action of levulinic acid. In this aerobic yeast, cytochrome c+c1 is the most sensitive to levulinic acid, and cytochrome b exhibits intermediate sensitivity.  相似文献   

3.
W Wang  J E Boynton  N W Gillham 《Cell》1975,6(1):75-84
A Mendelian mutation, r-1, in Chlamydomonas reinhardtii has been isolated which elevates protoporphyrin accumulation of the Mendelian protoporphyrin mutants brS-1 and brC-1 more than 20 fold. This increased protoporphyrin accumulation is shown to result from increased delta-aminolevulinic acid synthesis in the double mutants brS-1 r-1 and brC-1 r-1 over that of brS-1 and brC-1 alone. By itself, the r-1 mutation has no detectable protoporphyrin accumulation and has reduced levels of delta-aminolevulinic acid synthesizing activity, chlorophyll, protoheme, and cytochrome oxidase activity. The low levels of chlorophyll and protoheme in r-1 can be increased by feeding delta-aminolevulinic acid. We hypothesize that r-1 may be a mutation of the gene coding for the delta-aminolevulinic acid synthesizing enzyme which reduces the sensitivity of this enzyme to feedback inhibition by protoporphyrin or heme as well as reducing the overall activity of the enzyme. Evidence is also presented for a single delta-aminolevulinic acid synthesizing enzyme serving both chlorophyll and heme biosynthesis.  相似文献   

4.
In the present work we demonstrate that insulin decreases the phenobarbital-induced activities of delta-aminolevulinic acid synthase and ferrochelatase in isolated hepatocytes from normal and experimental-diabetic rats. Insulin concentrations required to produce significant inhibition in diabetic hepatocytes were higher than in normal cells. Under similar experimental conditions, insulin decreased the basal activities of delta-aminolevulinic acid synthase and ferrochelatase in hepatocytes from normal rats; no inhibitory effect was observed on the basal activity of delta-aminolevulinic acid synthase in hepatocytes from diabetic rats. Cytochrome P-450 content of both normal and diabetic cells was not affected by insulin in absence or presence of phenobarbital. The inhibitory action of insulin was exerted even when effective concentrations of glucagon, dexamethasone, or 8-(p-chlorophenylthio)-cAMP were present.  相似文献   

5.
The in vivo effect of the known herbicide, paraquat, on both hepatic oxidative stress and heme metabolism was studied. A marked increase in lipid peroxidation and a decrease in reduced glutathione (GSH) content were observed 1 h after paraquat administration. The activity of liver antioxidant enzymes, superoxide dismutase, catalase and glutathione peroxidase was decreased 3 h after paraquat injection. Heme oxygenase-1 induction started 9 h after treatment, peaking at 15 h. delta-aminolevulinic acid synthase induction occurred once heme oxygenase had been enhanced, reaching its maximum (1.5-fold of control) at 16 h. delta-aminolevulinic acid dehydratase activity was 40% inhibited at 3 h showing a profile similar to that of GSH, while porphobilinogenase activity was not modified along the whole period of the assay. Administration of alpha-tocopherol (35 mmol/kg body weight) 2 h before paraquat treatment entirely prevented the increase in thiobarbituric acid reactive substances (TBARS) content, the decrease in GSH levels as well as heme oxygenase-1 and delta-aminolevulinic acid synthase induction. This study shows that oxidative stress produced by paraquat leads to an increase in delta-aminolevulinic acid synthase and heme oxygenase-1 activities, indicating that the herbicide affects both heme biosynthesis and degradation.  相似文献   

6.
The effects of iron deficiency on heme biosynthesis in Rhizobium japonicum were examined. Iron-deficient cells had a decreased maximum cell yield and a decreased cytochrome content and excreted protoporphyrin into the growth medium. The activities of the first two enzymes of heme biosynthesis, delta-aminolevulinic acid synthase (EC 2.3.1.37) and delta-aminolevulinic acid dehydrase (EC 4.2.1.24), were diminished in iron-deficient cells, but were returned to normal levels upon addition of iron to the cultures. The addition of iron salts, iron chelators, hemin, or protoporphyrin to cell-free extracts did not affect the activity of these enzymes. The addition of levulinic acid to iron-deficient cultures blocked protoporphyrin excretion and also resulted in high delta-aminolevulinic acid synthase and delta-aminolevulinic acid dehydrase activities. These results suggest the possibility that rhizobial heme biosynthesis in the legume root nodule may be affected by the release of iron from the host plant to the bacteroids.  相似文献   

7.
Delta-aminolevulinic acid, precursor of heme, accumulates in a number of organs, especially in the liver, of patients with acute intermittent porphyria. The potential protective effect of melatonin against oxidative damage to nuclear DNA and microsomal and mitochondrial membranes in rat liver, caused by delta-aminolevulinic acid, was examined. Changes in 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, an index of DNA damage, and alterations in membrane fluidity (the inverse of membrane rigidity) and lipid peroxidation in microsomal and mitochondrial membranes, as indices of damage to lipid and protein molecules in membranes, were estimated. Measurements were made in rat liver after a 2 week treatment with delta-aminolevulinic acid (40 mg/kg b.w., every other day). To test the potential protective effects of melatonin, the indole was injected (i.p. 10 mg/kg b.w.) 3 times daily for 2 weeks. 8-OHdG levels and lipid peroxidation in microsomal membranes increased significantly whereas microsomal and mitochondrial membrane fluidity decreased as a consequence of delta-aminolevulinic acid treatment. Melatonin completely counteracted the effects of delta-aminolevulinic acid. Melatonin was highly effective in protecting against oxidative damage to DNA as well as to microsomal and mitochondrial membranes in rat liver and it may be useful as a cotreatment in patients with acute intermittent porphyria.  相似文献   

8.
The betaine-stimulated differential synthesis of vitamin B(12), i.e., the increase in B(12) per increase in dry cell weight, by Pseudomonas denitrificans was inhibited by rifampin and chloramphenicol but not by benzylpenicillin and carbenicillin at concentrations of antibiotic that inhibit growth. The level of the first enzyme of corrin (and porphyrin) biosynthesis, delta-aminolevulinic acid synthetase, was decreased to a much greater degree by rifampin and chloramphenicol than by the penicillins. These data support the concept that betaine stimulation of B(12) synthesis is a result of its stimulation of synthesis of delta-aminolevulinic acid synthetase, a labile and presumably rate-limiting enzyme of corrin formation requiring continuous induction. In further support of this hypothesis, it was found that chloramphenicol immediately interfered with both vitamin B(12) and delta-aminolevulinic acid synthetase formation, no matter when it was added to the system.  相似文献   

9.
The synthesis of various cell components was examined during the anaerobic photosynthetic growth of synchronous populations of Rhodopseudomonas spheroides. Net deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein increased continuously as did the rate of incorporation of radioactive precursors into protein. The rates of incorporation of radioactive precursors into RNA and DNA were marked by abrupt discontinuities. It is not clear whether these discontinuities represent changes in rates of synthesis or fluctuations in precursor pools. Although the synthesis of bacteriochlorophyll occurred in a continuous manner, those enzymes examined which are involved in the synthesis of tetrapyrroles, i.e., succinyl CoA thiokinase, delta-aminolevulinic acid synthetase, and delta-aminolevulinic acid dehydrase, increased discontinuously. Two other enzymes not involved in tetrapyrrole biosynthesis were examined. Alkaline phosphatase increased in a stepwise manner during the division cycle, whereas the synthesis of ornithine transcarbamylase increased rapidly before leveling off for a period of time until synthesis began again. In each instance of discontinuous enzyme synthesis, increases occurred at regular and characteristic times during the division cycle. Ammonium sulfate precipitation was employed to remove low molecular weight end product inhibitors from enzyme preparations. These studies suggested that the stepwise increases in enzyme activity observed in the present investigation were not affected by periodic end product inhibition. A temporal map of enzyme synthesis during the division cycle was constructed. Both delta-aminolevulinic acid synthetase and delta-aminolevulinic acid dehydrase appeared early in the division cycle, whereas alkaline phosphatase and succinyl CoA thiokinase appeared later on.  相似文献   

10.
Colchicine at the concentrations of 5 X 10(-7) - 5 X 10(-6) M decreased significantly both delta-aminolevulinic acid synthase activity and accumulation of porphyrins in monolayers of chick embryo liver cells induced by allyl-isopropylacetamide, by 3,5-diethoxycarbonyl-1,4-dihydrocollidine or by phenobarbitone. No effect was noted in non-induced cells. In rats, colchicine 0.3 mg/kg, reduced significantly the allyl-isopropylacetamide induced increase in the activity of delta-aminolevulinic acid synthase in the liver and the concentration of urinary porphyrins while it did not affect these parameters in non-induced rats.  相似文献   

11.
When levulinic acid was added to a growing culture of the cyanobacterium (blue-green alga) Agmenellum quadruplicatum PR-6, delta-aminoelevulinic acid accumulated in the medium and chlorophyll a synthesis and cell growth were inhibited, but there was a small amount of c-phycocyanin synthesis. The amount of delta-aminolevulinic acid produced in the treated culture did not fully account for the amount of pigment synthesized in the untreated control. Levulinic acid and either sodium nitrate or ammonium chloride were added to nitrogen-starved cultures of PR-6, and delta-aminolevulinic acid production and chlorophyll a and c-phycocyanin content were monitored. When ammonium chloride was added as a nitrogen source after nitrogen starvation, the cells recovered more rapidly than when sodium nitrate was added as a nitrogen source. In cultures recovering from nitrogen starvation, synthesis of c-phycocyanin occurred before synthesis of chlorophyll a.  相似文献   

12.
Yeast cells almost completely deficient in all cytochromes were obtained by introducing two defective nuclear genes, cyd1 and cyc4, into the same haploid strain. The action of the two mutant genes is synergistic, since either gene acting singly results in only partial cytochrome deficiency. Normal synthesis of all cytochromes can be restored in the double mutant by adding delta-aminolevulinic acid to the growth medium. The optimum concentration of delta-aminolevulinate for restoration of cytochrome synthesis is about 40 muM; when higher concentrations are used, synthesis of cytochromes is partially suppressed, particularly that of cytochrome a.a3. Growth yield of the double mutant is stimulated by ergosterol and Tween 80, a source of unsaturated fatty acid. Methionine stimulates further. None of these nutrients is required for growth when sufficient delta-aminolevulinic acid is present in the growth medium. With respect to nutritional responses, the single-gene, cytochrome-deficient mutant, ole3, behaves like the double mutant. The frequency of the p-mutation in the double mutant grown in the absence of ergosterol, Tween 80, and delta-aminolevulinic acid is at least 15%. The frequency can be reduced to less than 1% by either delta-aminolevulinic acid or Tween 80. Ergosterol alone does not decrease the p- frequency. The ole3 mutant does not exhibit increased p-frequency under similar conditions of unsaturated fatty acid deficiency.  相似文献   

13.
With the introduction of delta-aminolevulinic acid, uterin extracts, in vitro, can synthesize porphyrins (uroporphyrin, 62%; coproporphyrin, 27%; and protoporphyrin, 11%). At the stage where the uterus contains a white egg, various phenotypes in the dominant form are capable of synthesizing with the introduction of delta-aminolevulinic acid, the same quantity of porphyrins. These results are interpreted, assuming the existence of differences in the activity of the enzymes involved during the laying cycle.  相似文献   

14.
Effects of the prooxidant delta-aminolevulinic acid (ALA) and the antioxidant melatonin (MEL) were investigated in the male Syrian hamster Harderian gland (HG). Rodent Harderian glands are highly porphyrogenic organs, which may be used as model systems for studying damage by delta-aminolevulinic acid and its metabolites, as occurring in porphyrias. Chronic administration of delta-aminolevulinic acid (2 weeks) markedly decreased activities of the porphyrogenic enzymes delta-aminolevulinate synthase (ALA-S) and delta-aminolevulinate dehydratase (ALA-D) and of the antioxidant enzymes superoxide dismutase (SOD), glutathione reductase (GR) and catalase (CAT), whereas porphobilinogen deaminase (PBG-D) remained unaffected. This treatment led to increased lipid peroxidation (LPO) and oxidatively modified protein (protein carbonyl) as well as to morphologically apparent tissue damage. Melatonin also caused decreases in delta-aminolevulinate synthase, delta-aminolevulinate dehydratase, superoxide dismutase, glutathione reductase and catalase. Despite lower activities of antioxidant enzymes, lipid peroxidation and protein carbonyl were markedly diminished. The combination of delta-aminolevulinic acid and melatonin led to approximately normal levels of delta-aminolevulinate dehydratase, glutathione reductase, catalase and protein carbonyl, and to rises in superoxide dismutase and porphobilinogen deaminase activities; lipid peroxidation remained even lower than in controls and the appearance of the tissue revealed a protective influence of melatonin. These results suggest that melatonin may have profound effects on the oxidant status of the Harderian gland.  相似文献   

15.
Isolated hepatocytes from rats with experimental diabetes exhibit increased content of cytochrome P-450 and cyclic AMP and normal activities of the regulatory enzymes delta-aminolevulinic acid synthase and ferrochelatase. The inducing effect exerted by phenobarbital on cytochrome P-450, delta-aminolevulinic acid synthase and ferrochelatase biosynthesis and cyclic AMP content in diabetic hepatic cells is markedly greater than that observed in normal hepatocytes. This stimulatory response is neither enhanced by added dibutyryl cyclic AMP nor repressed by glucose. The present results suggest that the heme pathway of diabetic hepatocytes is more susceptible to porphyrinogenic factors.  相似文献   

16.
Glutamate was converted to the chlorophyll and heme precursor delta-aminolevulinic acid in soluble extracts of Euglena gracilis. delta-Aminolevulinic acid-forming activity depended on the presence of native enzyme, glutamate, ATP, Mg2+, NADPH or NADH, and RNA. The requirement for reduced pyridine nucleotide was observed only if, prior to incubation, the enzyme extract was filtered through activated carbon to remove firmly bound reductant. Dithiothreitol was also required for activity after carbon treatment. delta-Aminolevulinic acid formation was stimulated by RNA from various plant tissues and algal cells, including greening barley leaves and members of the algal groups Chlorophyta (Chlorella vulgaris, Chlamydomonas reinhardtii), Rhodophyta (Cyanidium caldarium), Cyanophyta (Anacystis nidulans, Synechocystis sp. PCC 6803), and Prochlorophyta (Prochlorothrix hollandica), but not by RNA derived from Escherichia coli, yeast, wheat germ, bovine liver, and Methanobacterium thermoautotrophicum. E. coli glutamate-specific tRNA was inhibitory. Several of the RNAs that did not stimulate delta-aminolevulinic acid formation nevertheless became acylated when incubated with glutamate in the presence of Euglena enzyme extract. RNA extracted from nongreen dark-grown wild-type Euglena cells was about half as stimulatory as that from chlorophyllous light-grown cells, and RNA from aplastidic mutant cells stimulated only slightly. delta-Aminolevulinic acid-forming enzyme activity was present in extracts of light-grown wild-type cells, but undetectable in extracts of aplastidic mutant and dark-grown wild-type cells. Gabaculine inhibited delta-aminolevulinic acid formation at submicromolar concentration. Heme inhibited 50% at 25 microM, but protoporphyrin IX, Mg-protoporphyrin IX, and protochlorophyllide inhibited only slightly at this concentration.  相似文献   

17.
Although it is recognized that 4,5-diaminovaleric acid, formed from glutamate 1-semialdehyde, functions as the intermediate in the last step of delta-aminolevulinic acid formation from glutamate, the enantioselectivity of the participating glutamate 1-semialdehyde aminotransferase for 4,5-diaminovaleric acid has remained unknown. In the present work the involvement of (S)- and (R)-4,5-diaminovaleric acids, newly available by organic synthesis, was investigated, using glutamate 1-semialdehyde aminotransferase from Synechococcus. The preferred enantiomer was (S)-4,5-diaminovalerate. In experiments on the transformation of (S)-4,5-diaminovalerate to delta-aminolevulinate it was found that glutamate 1-semialdehyde aminotransferase was unusual among aminotransferases in that the common amino acceptors pyruvate, oxaloacetate, alpha-ketoglutarate were inactive, while 4,5-dioxovaleric acid could be utilized as a sluggish amino acceptor in place of glutamate 1-semialdehyde. In conclusion, glutamate 1-semialdehyde aminotransferase is highly but not absolutely enantioselective for (S)-4,5-diaminovaleric acid, and 4,5-dioxovaleric acid can function as amino acceptor not because of a physiological role in the C5 pathway of delta-aminolevulinic acid formation, but because of its structural resemblance to glutamate 1-semialdehyde.  相似文献   

18.
1. Activities of delta-aminolevulinic acid synthetase (ALA-S) and delta-aminolevulinic acid dehydratase (ALA-D) in trout liver and kidney were compared with those in the mouse. 2. ALA-S activity (per unit tissue fresh weight) exceeded ALA-D activity in trout liver and kidney. 3. In trout kidney, ALA-S activity slightly exceeded, and ALA-D activity far exceeded, their activities in trout liver. 4. In trout, heme synthesis differs from that in mammals in that appreciable synthesis occurs in the kidney, and in that ALA-S activity is not rate limiting.  相似文献   

19.
Primary chick embryo liver cells, which had been previously cultured in Eagle's medium containing 10% fetal bovine serum, had the same characteristics (inducibility of delta-aminolevulinic acid synthetase and synthesis of plasma proteins) when cultured in a completely defined Ham F-12 medium containing insulin. Insulin was active in the physiological range; 2 to 3 nM were sufficient to increase the induced delta-aminolevulinic acid synthetase to 50% of the maximum effect obtained with a saturating amount of insulin (30 nM). Serum albumin added to the Ham-insulin medium caused protoporphyrin but not uroporphyrin, generated in the cultured liver cells, to be transferred to the medium. As little as 10 mug of human serum albumin per ml caused the transfer of one-half of the protoporphyrin. Bovine serum albumin was only about 1/30 as effective. A spectrofluorometric method and calculation procedure are described for quantitation, in the nanomolar range, of total porphyrin and the percentage of this that is protoporphyrin or uroporphyrin plus coproporphyrin. The method is satisfactory for the measurement of porphyrins generated by 1 mg wet weight of cells in culture in 20 hours. Heme (0.1 to 0.3 muM), when added to the medium as hemin, human hemoglobin, or chicken hemoglobin, specifically inhibited the induction of delta-aminolevulinic acid synthetase by one-half. This high sensitivity for heme was observed under conditions in which the defined medium was free of serum and where a chelator of iron was added to the medium to diminish the synthesis of endogenous heme. Heme endogenously generated from exogenous delta-aminolevulinic acid also inhibited the induction; chelators of iron prevented this inhibition. The migration of heme from the mitochondria to other portions of the cell is discussed in terms of the affinities of different proteins for heme. A hypothesis of a steady state of liver heme metabolism, controlled by the concentration of "free" heme, is presented. The different effects of heme on the synthesis of a number of proteins are summarized.  相似文献   

20.
delta-Aminolevulinic acid is the first committed precursor in the biosynthesis of hemes, phycobilins, and chlorophylls. Plants and algae synthesize delta-aminolevulinic acid from glutamate via an RNA-dependent 5-carbon pathway. Previous reports demonstrated that cyanobacteria form delta-aminolevulinic acid from glutamate in vivo. We now report the direct measurement of this activity in vitro. Three oxygenic prokaryotes were examined, the unicellular cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 (Agmenellum quadruplicatum PR-6) and the chlorophyll a- and b-containing filamentous prochlorophyte Prochlorothrix hollandica. delta-Aminolevulinic acid-forming activity was detected in soluble extracts of all three species. delta-Aminolevulinic acid formation by Synechocystis extracts was further characterized. Activity depended upon addition of reduced pyridine nucleotide, ATP, and Mg2+ to the incubation mixture. NADPH was a more effective pyridine nucleotide than NADH at low concentrations, but NADPH inhibited delta-amino-levulinic acid formation above 1 mM, whereas NADH did not. The pH optimum was about 7.6, and the ATP concentration optimum was 0.1 mM. Activity was stimulated by addition of RNA derived from Synechocystis or Chlorella, and abolished by preincubation with RNase A. After RNase inactivation, activity was restored by addition of RNasin to block further RNase action, followed by supplementation with Synechocystis RNA. Activity was inhibited by micromolar concentrations of hemin, as was previously found with plant and algal extracts. Complete dependence on added glutamate could not be achieved. Radioactivity was incorporated into delta-aminolevulinic acid when the incubation mixture contained 1-[14C]glutamate. Activity in the Synechocystis enzyme extract was stimulated by the addition of a partially purified enzyme fraction from Chlorella. It thus appears that prokaryotic oxygenic organisms share with chloroplasts the capacity for biosynthesis of photosynthetic pigments from glutamate via the RNA-dependent 5-carbon pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号