首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The internalization and degradation of insulin was assessed in Chinese hamster ovary cell lines expressing either the wild-type receptor or mutated receptors lacking kinase activity. The mutated receptors included receptors which differed from the wild-type receptor by a single amino acid (substitution of an arginine for lysine at position 1030, a site critical for ATP binding) as well as receptors which had a deletion of 112 amino acids at the carboxyl terminus. Cells expressing mutated receptors lacking kinase activity were found to internalize and degrade insulin at about half the rate of cells expressing wild-type receptors with kinase activity. Moreover, insulin was found incapable of inducing the internalization of the mutated receptors, whereas it could stimulate the internalization of the wild-type receptor. Finally, the constitutive rate of receptor internalization was found to be the same for the mutant and wild-type receptors. These results implicate the intrinsic tyrosine-specific kinase activity of the insulin receptor in the ligand-induced, but not the constitutive, internalization of this receptor.  相似文献   

2.
The exon 16-encoded juxtamembrane (JM) domain of human insulin receptor (hIR) harbors the NPEY motif which couples the insulin-activated hIR kinase to downstream signal transduction molecules. We sought to determine if signal transduction requires the entire exon 16-encoded 22-amino acid JM domain. Transfected CHO cells were generated stably expressing either the wild-type hIR (hIR-WT) or two mutant hIRs (hIRDeltaEx16 in which the JM domain was deleted, and hIRrosJM in which the deleted segment was replaced by the corresponding domain of v-ros protein). The mutant hIRDeltaEx16 and hIRrosJM exhibited similar insulin-binding as the hIRWT. Insulin internalization and insulin dose-response experiments toward activation of downstream signal transduction molecules demonstrated that: i) the presence of intact hIR-JM domain which harbors the NPEY motif is essential for Shc phosphorylation but not for IRS-1 phosphorylation; ii) insulin signal transduction can occur independent of the JM domain of hIR and without participation of the NPEY motif; iii) engagement of this putative alternative downstream signal transduction is Shc independent and is dependent on insulin concentration; and iv) insulin internalization does not necessarily require the hIR specific aa sequence of the JM domain which can be partially substituted by the JM domain of the v-ros tyrosine kinase.  相似文献   

3.
Internalization, degradation, and insulin-induced down-regulation of insulin receptors were studied comparatively in transformed Chinese hamster ovary (CHO) cell lines, CHO.T and CHO.IR.ros, respectively expressing either the wild-type human insulin receptor (hIR) or a mutated hybrid receptor in which the transmembrane and cytoplasmic domains of hIR were replaced by corresponding domains of the transforming protein p68gag-ros (v-ros) of avian sarcoma virus UR2. At 37 degrees C, degradation of insulin receptors photoaffinity labeled on the cell surface (440 kDa) was most rapid for the hybrid hIR.ros (t1/2 1.0 +/- 0.1 h), intermediate for the wild-type hIR (t1/2 2.7 +/- 0.5 h), and slowest for the endogenous CHO insulin receptors (t1/2 3.7 +/- 0.7 h). Initial intracellular accumulation of the hIR.ros hybrid was also most rapid, reaching maximal amounts in 20 min following which the receptors disappeared rapidly from the intracellular compartment. In contrast, intracellular accumulation of the receptors in the CHO.T and CHO cells was slower, reaching maximal amounts in 60 min, and rapid disappearance of the receptors from the intracellular compartment did not occur. Chloroquine, a lysosomotropic agent, inhibited degradation of both the wild-type hIR and the chimeric hIR.ros and increased their intracellular accumulation. However, the chloroquine effect was much more marked for the hIR.ros receptors whose intracellular accumulation was increased by greater than 300% (in comparison with approximately 60% increase for the wild-type hIR), demonstrating marked intracellular degradation of the hybrid hIR.ros at chloroquine-sensitive sites. Insulin-induced down-regulation of the cell surface hIR.ros (52% loss in 3 h) was also more marked than the wild-type hIR (approximately 30% loss in 3 h). Thus, in the hybrid hIR.ros receptor, which was shown previously to exhibit insulin-stimulated autophosphorylation and kinase activity but not insulin-stimulated metabolic function, the capacity for internalization and down-regulation is not only preserved but is also markedly accelerated. These findings suggest that 1) the postreceptor coupling mechanisms mediating insulin-induced receptor internalization, degradation, and down-regulation are different from those mediating metabolic functions; and 2) v-ros may contain the structural information directing accelerated receptor catabolism.  相似文献   

4.
Insulin internalization and degradation, insulin receptor internalization and recycling, as well as long term receptor down-regulation were comparatively studied in Chinese hamster ovary (CHO) cell lines, either parental or expressing the wild-type human insulin receptor (CHO.R) or a mutated receptor in which the tyrosine residues in positions 1162 and 1163 were replaced by phenylalanines (CHO.Y2). The two transfected cell lines presented very similar binding characteristics, and their pulse labeling with [35S]methionine revealed that the receptors were processed normally. As expected, the mutation of these twin tyrosines resulted in a defective insulin stimulation of both receptor kinase activity and glycogen synthesis. We now present evidence that compared to CHO.R cells, which efficiently internalized and degraded insulin, CHO.Y2 cells exhibited a marked defect in hormone internalization, leading to impaired insulin degradation. Moreover, the mutated receptors were found to be less effective than the wild-type receptors in transducing the hormone signal for receptor internalization, whereas the process of receptor recycling after internalization seemed not to be altered. In parental CHO cells, insulin induced long term receptor down-regulation, but was totally ineffective in both transfected cell lines. These results reveal that the tyrosines 1162 and 1163 in the kinase regulatory domain of the receptor beta-subunit play a pivotal role in insulin and receptor internalization.  相似文献   

5.
The complementary DNAs for wildtype and tyrosine kinase-inactivated (K634A) forms of the PDGF beta-receptor were expressed in porcine aortic endothelial cells. We examined the internalization and degradation of ligands and receptors after exposure of receptor expressing cells to PDGF-BB, which binds to the beta-receptor with high affinity, and PDGF-AB, which binds with lower affinity. Cells expressing wildtype beta-receptors were able to internalize and degrade the receptor, as well as the ligand, after exposure to PDGF-BB or -AB. Cells expressing the kinase-inactivated mutant receptor also internalized and degraded both receptor and ligand, but with lower efficiency compared with the wildtype receptor cells. The degradation of either form of receptor was inhibited by treatment of the cells with the lysosomotropic drug chloroquine. Exposure of wildtype and K634A receptor expressing cells to PDGF-AB resulted in a twofold slower rate of internalization of this ligand as compared with PDGF-BB, whereas the relative rate of degradation was similar for the two ligands. Our data indicate that tyrosine kinase activity promotes, but is not a prerequisite for, ligand-induced internalization and degradation of the ligand-receptor complex.  相似文献   

6.
The role of specific tyrosine autophosphorylation sites in the human insulin receptor kinase domain (Tyr1158, Tyr1162, and Tyr1163) was analyzed using in vitro mutagenesis to replace tyrosine residues individually or in combination. Each of the three single-Phe, the three possible double-Phe a triple-Phe and a triple-Ser mutant receptors, stably expressed in Chinese hamster ovary cells, were compared with the wild-type receptor in their ability to mediate stimulation of receptor kinase activity, glycogen synthesis, and DNA synthesis by insulin or the human-specific anti-receptor monoclonal antibody 83-14. At a concentration of 0.1 nM insulin which produced approximately half-maximal responses with wild-type receptor, DNA synthesis and glycogen synthesis mediated by the three single-Phe mutants ranged from 52 to 88% and from 32 to 79% of the wild-type receptor, respectively. The corresponding figures for the double-Phe mutants averaged 15 and 6%, whereas the triple-mutants were unresponsive in both assays. The level of biological function approximately paralleled the insulin-stimulated tyrosine kinase activity in the intact cell as estimated by tyrosine phosphorylation of the insulin receptor and its endogenous substrate pp 185/IRS-1. Interestingly, all mutants showed a marked decrease in insulin-stimulated receptor internalization. Anti-receptor antibody stimulated receptor kinase activity and mimicked insulin action in these cells. In general, the impairment of the metabolic response was greater and impairment of the growth response was less when antibody was the stimulus. These experiments show that the level and specific sites of autophosphorylation are critical determinants of receptor function. The data are consistent with a requirement for the receptor tyrosine kinase either as an obligatory step or a modulator, in both metabolic and growth responses, and demonstrate the important role of the level of insulin receptor kinase domain autophosphorylation in regulating insulin sensitivity.  相似文献   

7.
To examine the role of endocytosis in insulin action, hormone responsiveness was studied in transfected Rat 1 fibroblasts stably expressing a noninternalizing insulin receptor. The latter receptor (hIR delta ex16) was engineered by deleting the immediately submembranous 22 amino acids encoded by the 16th exon of the human insulin receptor and has previously been shown not to internalize despite having normal insulin-stimulated tyrosine kinase activity. It is shown in the present study that hIR delta ex16 receptors do mediate insulin action. Insulin dose-response curves both for activation of glycogen synthetase and for mitogenic stimulation demonstrate greater insulin sensitivity in hIR delta ex16 cells compared with untransfected Rat 1 cells. In addition, increases in the absolute levels of glycogen synthetase activity are seen in the hIR delta ex16 cells. Species-specific agonistic antibodies to the insulin receptor also stimulate hIR delta ex16 cells, confirming the activity of the mutant receptor. The non-internalizing receptors are rapidly dephosphorylated after removal of insulin, and the activation of glycogen synthetase decays no more slowly in hIR delta ex16 cells than in cells expressing wild-type receptors. The results demonstrate that receptor endocytosis is not necessary for activation or deactivation of the insulin response.  相似文献   

8.
The effects of 12-O-tetradecanoylphorbol-13-acetate (TPA) and insulin were compared in wild-type human insulin receptors (HIRc cells) and human insulin receptors lacking 43 COOH-terminal amino acid residues (HIR delta CT cells). TPA increased total phosphorylation of the wild-type insulin receptor and inhibited insulin-stimulated autophosphorylation by 32 +/- 10% in HIRc cells. TPA inhibited insulin-stimulated autophosphorylation by 46 +/- 14% in HIR delta CT cells and also caused a 65% decrease in basal phosphorylation. Insulin-stimulated tyrosine kinase activity for poly(Glu4/Tyr1) was inhibited by TPA in HIRc and HIR delta CT cells by 50 and 40%, respectively. TPA decreased insulin-stimulated glucose incorporation into glycogen by 50% in HIRc cells and to near basal levels in HIR delta CT cells; this inhibitory effect of TPA was reversed in both cell lines by staurosporine. In conclusion, 1) TPA-induced inhibition of insulin receptor tyrosine autophosphorylation was linked to concomitant inhibition of the biological effects of insulin in cells expressing either wild-type or COOH-terminal truncated insulin receptors; and 2) the inhibitory effects of TPA were not dependent upon phosphorylation of COOH-terminal residues and furthermore appeared to be independent of phosphorylation of any insulin receptor serine/threonine residues. These findings suggest a novel protein kinase C mechanism that results in altered insulin receptor function without increasing phosphorylation of the receptor.  相似文献   

9.
We examined the effect of insulin treatment on HTC cells transfected with large numbers of either normal insulin receptors (HTC-IR) or insulin receptors defective in tyrosine kinase (HTC-IR/M-1030). In both HTC-IR and HTC-IR/M-1030 cells, 20 h of insulin treatment (1 microM) at 37 degrees C resulted in a 65% decrease in the number of binding sites with a reciprocal 6-fold increase in affinity. In contrast, treatment with 10 nM insulin (20 h, 37 degrees C) also increased receptor affinity but had a smaller effect on the number of binding sites. 125I-Insulin binding to soluble receptors from HTC-IR and HTC-IR/M-1030 cells pretreated with insulin showed results similar to those obtained in intact cells. In both HTC-IR and HTC-IR/M-1030 cells, insulin enhanced insulin receptor degradation. In HTC-IR/M-1030 cells a 1-h incubation with insulin did not change receptor number and had only a small effect on receptor affinity; also there was no effect of insulin after a 20-h incubation at 15 degrees C. Inhibiting protein synthesis by pretreatment with cycloheximide (100 microM) did not block either the decrease in receptor number or the increase in receptor affinity. Both HTC-IR and HTC-IR/M-1030 cells exhibited a very slow rate of insulin and insulin receptor internalization and no differences were seen in this parameter when HTC-IR cells were compared to HTC-IR/M-1030 cells. These studies indicate, therefore, that in cells expressing kinase-defective insulin receptors, insulin down-regulates insulin receptor number via enhanced receptor degradation, and up-regulates receptor affinity. These effects were time- and temperature-dependent, but not dependent on new protein synthesis, and suggest that activation of tyrosine kinase may not be a prerequisite for certain mechanisms whereby insulin regulates its receptor.  相似文献   

10.
The effects of species-specific monoclonal antibodies to the human insulin receptor on ribosomal protein S6 phosphorylation were studied in rodent cell lines transfected with human insulin receptors. First, Swiss mouse 3T3 fibroblasts expressing normal human insulin receptors (3T3/HIR cells) were studied. Three monoclonal antibodies, MA-5, MA-20, and MA-51, activated S6 kinase in these cells but had no effects in untransfected 3T3 cells. Both insulin and MA-5, the most potent antibody, activated S6 kinase in a similar time- and dose-dependent manner. To measure S6 phosphorylation in vivo, 3T3/HIR cells were preincubated with [32P]Pi and treated with insulin and MA-5. Both agents increased S6 phosphorylation, and their tryptic phosphopeptide maps were similar. MA-5 and the other monoclonal antibodies, unlike insulin, failed to stimulate insulin receptor tyrosine kinase activity either in vitro or in vivo. Moreover, unlike insulin, they failed to increase the tyrosine phosphorylation of the endogenous cytoplasmic protein, pp 185. Next, HTC rat hepatoma cells, expressing a human insulin receptor mutant that had three key tyrosine autophosphorylation sites in the beta-subunit changed to phenylalanines (HTC-IR-F3 cells), were studied. In this cell line but not in untransfected HTC cells, monoclonal antibodies activated S6 kinase without stimulating either insulin receptor autophosphorylation or the tyrosine phosphorylation of pp 185. These data indicate, therefore, that monoclonal antibodies can activate S6 kinase and then increase S6 phosphorylation. Moreover, they suggest that activation of receptor tyrosine kinase and subsequent tyrosine phosphorylation of cellular proteins may not be crucial for activation of S6 kinase by the insulin receptor.  相似文献   

11.
We investigated the effects of MA-5, a human-specific monoclonal antibody to the insulin receptor alpha-subunit, on transmembrane signaling in cell lines transfected with and expressing both normal human insulin receptors and receptors mutated in their beta-subunit tyrosine kinase domains. In cell lines expressing normal human insulin receptors, MA-5 stimulated three biological functions: aminoisobutyric acid (AIB) uptake, thymidine incorporation, and S6 kinase activation. Under conditions where these biological functions were stimulated, there was no detectable stimulation of receptor tyrosine kinase. We then combined the use of this monoclonal antibody with cells expressing insulin receptors with mutations in the beta-subunit tyrosine kinase domain; two of ATP binding site mutants V1008 (Gly----Val) and M1030 (Lys----Met) and one triple-tyrosine autophosphorylation site mutant F3 (Tyr----Phe at 1158, 1162, and 1163). In cells expressing V1008 receptors, none of the three biological functions of insulin was stimulated. In cells expressing M1030 receptors, AIB uptake was stimulated to a small, but significant, extent whereas the other two functions were not. In cells expressing F3 receptors, AIB uptake and S6 kinase activation, but not thymidine incorporation, were fully stimulated. The data suggest, therefore, that (1) activation of insulin receptor tyrosine kinase may not be a prerequisite for signaling of all the actions of insulin and (2) there may be multiple signal transduction pathways to account for the biological actions of insulin.  相似文献   

12.
Previous studies from this laboratory demonstrated that the PG19 mouse melanoma cell line does not exhibit a biological response to insulin, whereas melanoma x mouse embryo fibroblast hybrids do respond to insulin. To investigate the molecular basis of the insulin resistance of the PG19 melanoma cells, insulin receptors from the insulin-resistant melanoma cells and insulin-sensitive fibroblast x melanoma hybrid cells were analyzed by the technique of photoaffinity labeling using the photoprobe 125I-NAPA-DP-insulin. Photolabeled insulin receptors from the two cell types have identical molecular weights as determined by SDS gel electrophoresis under reducing and nonreducing conditions, indicating that the receptors on the two cell lines are structurally similar. Insulin receptor internalization studies revealed that the hybrid cells internalize receptors to a high degree at 37 degrees C, whereas the melanoma cells internalize receptors to a very low degree or not at all. The correlation between ability to internalize insulin receptors and sensitivity to insulin action in this system suggests that uptake of the insulin-receptor complex may be required for insulin action in these cells. Insulin receptors from the two cell lines autophosphorylate in a similar insulin-dependent manner both in vitro and in intact cells, indicating that insulin receptors on the melanoma and hybrid cells have functional tyrosine protein kinase activity. Therefore, the block in insulin action in the PG19 melanoma cells appears to reside at a step beyond insulin-stimulated receptor autophosphorylation.  相似文献   

13.
Epidermal growth factor (EGF)-stimulated tyrosine phosphorylation of proteins was examined in cells expressing wild-type (WT-EGFR) EGF receptors or EGF receptors truncated at residue 973 (973-EGFR). A much broader spectrum of tyrosine phosphorylated proteins was found following EGF treatment of 973-EGFR expressing cells compared with cells expressing wild-type receptors. Several additional ras GTPase activating protein-associated tyrosine phosphorylated proteins were found in EGF-treated 973-EGFR cells relative to WT-EGFR cells. Additional tyrosine-phosphorylated proteins were also found to co-immunoprecipitate with phospholipase C gamma 1 (PLC gamma 1) following EGF treatment of cells expressing 973-EGFR relative to cells expressing WT-EGFR. EGF-stimulated tyrosine phosphorylation of PLC gamma 1 was found in cells expressing WT-EGFR, but not in cells expressing 973-EGFR. WT-EGF receptor from EGF-treated cells bound well to bacterially expressed src homology (SH) regions of PLC gamma 1 and to a lesser extent to bacterially expressed GTPase activating protein SH regions. No binding of 973-EGF receptor to SH regions of either protein could be detected. EGF treatment greatly reduced the half-life of WT-EGFR, but had relatively little effect on the half-life of 973-EGFR. EGF induced internalization of 973-EGFR at a slower rate than WT-EGFR and caused the appearance of discrete receptor degradation products for both cell types. The data indicate that truncation of the EGF receptor at residue 973 alters receptor substrate specificity, decreases the rate of receptor internalization, and has an inhibitory effect on receptor degradation.  相似文献   

14.
Mouse B82 cells that support high affinity saturable endocytosis of epidermal growth factor receptors (EGFR) exhibited only low rates of nonsaturable internalization of insulin receptors (InsR). To investigate the defect in endocytosis of InsR in B82 cells, we examined the role of sequence motifs and tyrosine kinase, the two receptor components shown to be required for efficient saturable endocytosis of InsR in Rat 1 cells. Placement of residues encoded by exon 16 of the InsR onto an EGFR truncated to residue 958 restored EGF-induced internalization of this mutant receptor indicating that the sequence codes in exon 16 are recognized by B82 cells. To determine whether the kinase function could be provided in trans, a B82 cell expressing both receptors was established. EGF-activated EGFR kinase was not able to restore insulin-dependent rapid endocytosis to InsR. However, fusion of untransfected Rat1 cells with InsR-expressing B82 cells enabled rapid endocytosis of InsR, indicating that the internalization defect can be complemented. These results indicate that, although internalization codes can function in the context of other receptors, activation of tyrosine kinase receptors requires an additional specific component.  相似文献   

15.
The cDNAs encoding the normal human insulin receptor (HIRc) and a receptor that had lysine residue 1018 replaced by alanine (A/K1018) were used to transfect Rat 1 fibroblasts. Lysine 1018 is a critical residue in the ATP binding site of the tyrosine kinase domain in the receptor beta-subunit. Untransfected Rat 1 cells express 1700 endogenous insulin receptors. Expressed HIRc receptors had levels of insulin-stimulable autophosphorylation in vitro comparable to normal receptors, whereas A/K1018 receptors had less than 1% of that activity. Stimulation by insulin of HIRc receptors in situ in intact cells led to phosphorylation of beta-subunit tyrosine residues and activation of tyrosine kinase activity that could be preserved and assayed in vitro after receptor purification. In contrast, A/K1018 receptors showed no such activation, either of autophosphorylation or of kinase activity toward histone. Cells expressing HIRc receptors display enhanced sensitivity to insulin of 2-deoxyglucose transport and glycogen synthase activity. This increased sensitivity was proportional to insulin receptor number at low but not at high levels of receptor expression. A/K1018 receptors were unable to mediate these biologic effects and actually inhibited insulin's ability to stimulate glucose transport and glycogen synthase through the endogenous Rat 1 receptors. Expressed HIRc receptors mediated insulin internalization and degradation, whereas A/K1018 receptors mediated little, if any. Endocytotic uptake of the expressed A/K1018 insulin receptors was also markedly depressed compared to normal receptors. Unlike HIRc receptors, A/K1018 receptors also fail to undergo down-regulation after long (24 h) exposures to high (170 nM) concentrations of insulin. We conclude the following. 1) Normal human insulin receptors expressed in Rat 1 fibroblasts display active tyrosine-specific kinase, normal intracellular itinerary after endocytosis, and normal coupling to insulin's biologic effects. 2) A receptor mutated to alter the ATP binding site in the tyrosine kinase domain had little if any tyrosine kinase activity. 3) This loss of kinase activity was accompanied by a nearly complete lack of both endocytosis and biologic activity.  相似文献   

16.
Internalization of the human insulin receptor requires the activation by insulin of the intrinsic kinase of the receptor. However, even in the absence of kinase activation, insulin receptors slowly enter the cells. In the present study, we addressed the question of this insulin-independent pathway of internalization. To that end, we traced insulin receptor internalization with a monoclonal antibody (mAb 83-14) directed against the alpha-subunit of the human insulin receptor. Internalization of this antibody was followed in Chinese hamster ovary (CHO) cells transfected with either normal (CHO.HIRC2) or kinase-deficient (CHO.A1018) human insulin receptors. The internalization rate of 125I-mAb 83-14 was comparable in CHO cells expressing kinase-active or kinase-inactive receptors and was similar to that observed for 125I-insulin in CHO.A1018 cells. Moreover, in CHO.HIRC2 cells, the internalization of 125I-mAb 83-14 was identical with that of its 125I-Fab fragments. Thus, mAb 83-14 represents an appropriate tool to study the constitutive internalization of the insulin receptor. Internalization of insulin receptors tagged with 125I-mAb 83-14 was unaffected by cytochalasin B, which excluded a macropinocytotic process. By contrast, internalization was sensitive to hypertonia, which abrogates clathrin-coated pits-mediated endocytosis. The implication of clathrin-coated pits in this internalization process was directly demonstrated by quantitative electron microscopic autoradiography, which showed that 125I-mAb 83-14 present on the nonvillous domain of the cell surface preferentially associate with clathrin-coated pits at all time points.  相似文献   

17.
Biologically active colloid-gold complexes were used to compare ligand-induced microaggregation, redistribution, and internalization of insulin receptors on Rat 1 fibroblasts expressing wild type (HIRc) or tyrosine kinase-defective (HIR A/K1018) human insulin receptors. Insulin-like growth factor I (IGF I) and alpha 2-macroglobulin receptors also were compared. On both cell types, all four unoccupied receptor types occurred predominantly as single receptors. Ligand binding caused receptor microaggregation. Microaggregation of wild type or kinase-defective insulin receptors or IGF I receptors was not different. alpha 2-Macroglobulin receptors formed larger microaggregates. Compared to wild type insulin or IGF I receptors, accumulation of kinase-defective insulin receptor microaggregates in endocytic structures was decreased, and the size of microaggregates in coated pits was significantly smaller. As a result, receptor-mediated internalization of gold-insulin by HIR A/K1018 cells was less than 6% of the cell-associated particles compared to approximately 60% of the particles in HIRc cells. On HIR A/K1018 cells, alpha 2-macroglobulin and IGF I were internalized via coated pits demonstrating that those structures were functional. These results suggest that: 1) ATP binding, receptor autophosphorylation, and activation of receptor kinase activity are not required for receptor microaggregation; 2) receptor microaggregation per se is not sufficient to cause ligand-induced receptor-mediated internalization or the biological effects of insulin; and 3) autophosphorylation of the beta-subunit or activation of the receptor kinase activity is required for the insulin-induced concentration of occupied receptors in coated pits.  相似文献   

18.
We have studied insulin receptor-mediated signaling in Chinese hamster ovary (CHO) cell transfectants that expressed either of two naturally occurring mutant human insulin receptors: Trp1200----Ser1200 and Ala1134----Thr1134. Compared with overexpressed normal human insulin receptors, both mutant receptors displayed normal processing and normal binding affinity; however, neither was capable of detectable insulin-stimulated autophosphorylation or tyrosine kinase activity toward endogenous (pp185) or exogenous substrates. Several biologic actions of insulin were evaluated in transfected cells. Compared with neomycin-only transfected CHO cells (CHO-NEO), cells expressing normal receptors demonstrated increased insulin sensitivity for 2-deoxyglucose uptake, [14C]glucose incorporation into glycogen, [3H]thymidine incorporation into DNA, and specific gene expression (accumulation of glucose transporter GLUT-1 mRNA). Cells expressing either Ser1200 or Thr1134 receptors showed no increase in insulin-stimulated thymidine incorporation or GLUT-1 mRNA accumulation compared with CHO-NEO. Surprisingly, cells expressing Ser1200 receptors showed increased insulin stimulation of 2-deoxyglucose uptake and glucose incorporation into glycogen compared with CHO-NEO, whereas Thr1134 receptors failed to signal these metabolic responses. We conclude that 1) transfected kinase-deficient insulin receptor mutants derived from insulin-resistant patients have distinct defects in the ability to mediate insulin action in vitro; 2) divergence of insulin signaling pathways may occur at the level of the receptor; and 3) normal activation of the receptor tyrosine kinase by insulin is not necessarily required for signaling of certain important biologic actions.  相似文献   

19.
The juxtamembrane region of the insulin receptor (IR) beta-subunit contains an unphosphorylated tyrosyl residue (Tyr960) that is essential for insulin-stimulated tyrosyl phosphorylation of some endogenous substrates and certain biological responses (White, M.F., Livingston, J.N., Backer, J.M., Lauris, V., Dull, T.J., Ullrich, A., and Kahn, C.R. (1988) Cell 54, 641-649). Tyrosyl residues in the juxtamembrane region of some plasma membrane receptors have been shown to be required for their internalization. In addition, a juxtamembrane tyrosine in the context of the sequence NPXY [corrected] is required for the coated pit-mediated internalization of the low density lipoprotein receptor. To examine the role of the juxtamembrane region of the insulin receptor during receptor-mediated endocytosis, we have studied the internalization of insulin by Chinese hamster ovary (CHO) cells expressing two mutant receptors: IRF960, in which Tyr960 has been substituted with phenylalanine, and IR delta 960, in which 12 amino acids (Ala954-Asp965), including the putative consensus sequence NPXY [corrected], were deleted. Although the in vivo autophosphorylation of IRF960 and IR delta 960 was similar to wild type, neither mutant could phosphorylate the endogenous substrate pp185. CHO/IRF960 cells internalized insulin normally whereas the intracellular accumulation of insulin by CHO/IR delta 960 cells was 20-30% of wild-type. However, insulin internalization in the CHO/IR delta 960 cells was consistently more rapid than that occurring in CHO cells expressing kinase-deficient receptors (CHO/IRA1018). The degradation of insulin was equally impaired in CHO/IR delta 960 and CHO/IRA1018 cells. These data show that the juxtamembrane region of the insulin receptor contains residues essential for insulin-stimulated internalization and suggest that the sequence NPXY [corrected] may play a general role in directing the internalization of cell surface receptors.  相似文献   

20.
Desensitization and internalization of G-protein-coupled receptors can reflect receptor phosphorylation-dependent binding of beta-arrestin, which prevents G-protein activation and targets receptors for internalization via clathrin-coated vesicles. These can be pinched off by a dynamin collar, and proteins controlling receptor internalization can also mediate mitogen-activated protein kinase signaling. Gonadotropin-releasing hormone (GnRH) stimulates internalization of its receptors via clathrin-coated vesicles. Mammalian GnRH receptors (GnRH-Rs) are unique in that they lack C-terminal tails and do not rapidly desensitize, whereas non-mammalian GnRH-R have C-terminal tails and, where investigated, do rapidly desensitize and internalize. Using recombinant adenovirus expressing human and Xenopus GnRH-Rs we have explored the relationship between receptor internalization and mitogen-activated protein kinase signaling in HeLa cells with regulated tetracycline-controlled expression of wild-type or a dominant negative mutant (K44A) of dynamin. These receptors were phospholipase C-coupled and had appropriate ligand affinity and specificity. K44A dynamin expression did not alter human GnRH-R internalization but dramatically reduced internalization of Xenopus GnRH-R (and epidermal growth factor (EGF) receptor). Blockade of clathrin-mediated internalization (sucrose) abolished internalization of all three receptors. Both GnRH-Rs also mediated phosphorylation of ERK 2 and for both receptors, this was inhibited by K44A dynamin. The same was true for EGF- and protein kinase C-mediated ERK 2 phosphorylation. ERK 2 phosphorylation was also inhibited by a protein kinase C inhibitor but not affected by an EGF receptor tyrosine kinase inhibitor. We conclude that a) desensitizing and non-desensitizing GnRH-Rs are targeted for clathrin-coated vesicle-mediated internalization by functionally distinct mechanisms, b) GnRH-R signaling to ERK 2 is dynamin-dependent and c) this does not reflect a dependence on dynamin-dependent GnRH-R internalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号