首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The spinal motor circuits of the Xenopus embryo have been simulated in a 400-neuron network. To explore the consequences of differing patterns of synaptic connectivity within the network for the generation of the motor rhythm, a system of biologically plausible rules was devised to control synapse formation by three parameters. Each neuron had an intrinsic probability of synapse formation (P soma , specified by a space constant ) that was a monotonically decreasing function of its soma location in the rostro-caudal axis of the simulated network. The neurons had rostral and caudal going axons of specified length (L axon ) associated with a probability of synapse formation (P axon ). The final probability of synapse formation was the product of P soma and P axon . Realistic coordinated activity only occurred when L axon and the probabilities of interconnection were sufficiently high. Increasing the values of the three network parameters reduced the burst duration, cycle period, and rostro-caudal delay and increased the reliability with which the network functioned as measured by the coefficient of variance of these parameters. Whereas both L axon and P axon had powerful and consistent effects on network output, the effects of on burst duration and rostro-caudal delay were more variable and depended on the values of the other two parameters. This network model can reproduce the rostro-caudal coordination of swimming without using coupled oscillator theory. The changes in network connectivity and resulting changes in activity explored by the model mimic the development of the motor pattern for swimming in the real embryo.  相似文献   

2.
Chains of coupled limit-cycle oscillators are considered, in which the coupling is assumed to be weak and only between adjacent oscillators. For such a system the change in frequency of an oscillator due to the coupling can be expressed, up to first order in thecoupling strength, by functions that depend only on the phase difference between the coupled oscillators. In this article a numerical algorithm is developed for the evaluation of these functions (the H-functions) in terms of a single oscillator and the interactions between coupled oscillators. The technique is applied to a connectionist model for the locomotor pattern generator in the lamprey spinal cord.An H-function so derived is compared to a function derived empirically(the C-function) from simulations of the same system. The phase lagsthat develop between adjacent oscillators in a simulated chain are compared with those predicted theoretically, and it is shown that coupling thatis functionally strong is nonetheless weak enough to behave as predicted.  相似文献   

3.
Neuromodulation plays important and stage‐dependent roles in regulating locomotor central pattern (CPG) outputs during vertebrate motor system development. Dopamine, serotonin and nitric oxide are three neuromodulators that potently influence CPG outputs in the development of Xenopus frog tadpole locomotion. However, their roles switch from predominantly inhibitory early in development to mainly excitatory at later stages. In this review, we compare the stage‐dependent switching in neuromodulation in Xenopus with other vertebrate systems, notably the mouse and the zebrafish, and highlight features that appear to be phylogenetically conserved.  相似文献   

4.
Little is known about the role of the hindbrain during development of spinal network activity. We set out to identify the activity patterns of reticulospinal (RS) neurons of the hindbrain in fictively swimming (paralyzed) zebrafish larvae. Simultaneous recordings of RS neurons and spinal motoneurons revealed that these were coactive during spontaneous fictive swim episodes. We characterized four types of RS activity patterns during fictive swimming: (i) a spontaneous pattern of discharges resembling evoked high-frequency spiking during startle responses to touch stimuli, (ii) a rhythmic pattern of excitatory postsynaptic potentials (EPSPs) whose frequency was similar to the motoneuron EPSP frequency during swim episodes, (iii) an arrhythmic pattern consisting of tonic firing throughout swim episodes, and (iv) RS cell activity uncorrelated with motoneuron activity. Despite lesions to the rostral spinal cord that prevented ascending spinal axons from entering the hindbrain (normally starting at approximately 20 h), RS neurons continued to display the aforementioned activity patterns at day 3. However, removal of the caudal portion of the hindbrain prior to the descent of RS axons left the spinal cord network unable to generate the rhythmic oscillations normally elicited by application of N-methyl-d-aspartate (NMDA), but in approximately 40% of cases chronic incubation in NMDA maintained rhythmic activity. We conclude that there is an autonomous embryonic hindbrain network that is necessary for proper development of the spinal central pattern generator, and that the hindbrain network can partially develop independently of ascending input.  相似文献   

5.
《Current biology : CB》2022,32(16):3515-3528.e4
  1. Download : Download high-res image (134KB)
  2. Download : Download full-size image
  相似文献   

6.
In locomotory systems, the central pattern generator and motoneuron output must be modulated in order to achieve variability in locomotory speed, particularly when speed changes are important components of different behavior acts. The swimming system of the pteropod molluscClione limacina is an excellent model system for investigating such modulation. In particular, a system of central serotonergic neurons has been shown to be intimately involved in regulating output of the locomotory pattern generator and motor system ofClione. There are approximately 27 pairs of serotonin-immunoreactive neurons in the central nervous system ofClione, with about 75% of these identified. The majority of these identified immunoreactive neurons are involved in various aspects of locomotory speed modulation. A symmetrical cluster of pedal serotonergic neurons serves to increase wing contractility without affecting wing-beat frequency or motoneuron activity. Two clusters of cerebral cells produce widespread responses that lead to an increase in pattern generator cycle frequency, recruitment of swim motoneurons, activation of the pedal serotonergic neurons and excitation of the heart excitor neuron. A pair of ventral cerebral neurons provides weak excitatory inputs to the swimming system, and strongly inhibits neurons of the competing whole-body withdrawal network. Overall, the serotonergic system inClione is compartmentalized so that each subsystem (usually neuron cluster) can act independently or in concert to produce variability in locomotory speed.  相似文献   

7.
The effect of partial and complete spinal cord transection (Th7–Th8) on locomotor activity evoked in decerebrated cats by electrical epidural stimulation (segment L5, 80–100 μA, 0.5 ms at 5 Hz) has been investigated. Transection of dorsal columns did not substantially influence the locomotion. Disruption of the ventral spinal quadrant resulted in deterioration and instability of the locomotor rhythm. Injury to lateral or medial descending motor systems led to redistribution of the tone in antagonist muscles. Locomotion could be evoked by epidural stimulation within 20 h after complete transection of the spinal cord. The restoration of polysynaptic components in EMG responses correlated with recovery of the stepping function. The data obtained confirm that initiation of locomotion under epidural stimulation is caused by direct action on intraspinal systems responsible for locomotor regulation. With intact or partially injured spinal cord, this effect is under the influence of supraspinal motor systems correcting and stabilizing the evoked locomotor pattern.  相似文献   

8.
在应用磁控机械夹断法复制的大鼠脊髓损伤模型上,动态地观察了脊髓损伤后的感觉及运动机能变化,并进行了电生理学研究。结果表明,0.3A电流未能导致永久性瘫痪。术后2周,后肢的感觉及运动功能逐渐恢复;可记录到体感诱发电位(SEP)。0.4,0.5和0.8A电流均能导致大鼠永久性瘫痪;倾斜板及开阔场地行走分数均显著低于0.3A组;术后4周这些大鼠可产生行走样动作,于损伤部位再次切断脊髓后仍能出现这些动作;0.4A组可记录到早期SEP,再次切断脊髓后SEP消失。结果提示:(1)脊髓不全横断后,由于残留纤维活动,可在相当程度上导致大鼠感觉和运动机能的恢复;(2)脊髓完全横断后,后肢的上行冲动可能经再生的神经纤维向中枢端传导至脑;(3)大鼠脊髓内可能存在行走中枢模式发生器(CPG),适当刺激可激发其活动,并产生行走样运动。  相似文献   

9.
The spinal cord contains specialized groups of cells called pattern generators, which are capable of orchestrating rhythmic firing activity in an isolated preparation. Different patterns of activity could be generated in vitro including right-left alternating bursting and bursting in which both sides are synchronized. The cellular and network mechanisms that enable these behaviors are not fully understood. We have recently shown that Ca2+-activated K+ channels (SK channels) control the initiation and amplitude of synchronized bursting in the spinal cord. It is unclear, however, whether SK channels play a similar role in the alternating rhythmic pattern. In the current study, we used a spinal cord preparation from functionally mature mice capable of weight bearing and walking. The present results extend our previous work and show that SK channel inhibition initiates and modulates the amplitude of alternating bursting. We also show that addition of methoxamine, an α1-adrenergic agonist, to a cocktail of serotonin, dopamine, and NMDA evokes robust and consistent alternating bursting throughout the cord.  相似文献   

10.
Motor activity of rats was studied after experimental complete transection of the spinal cord at lower thoracic level. Treadmill training 1 day after the surgery was shown to lead to the appearance of movements in hindlimbs and restoration of the body weight support function. According to our data, the key moment in initiation of locomotor movements is stimulation of foot. Morphoimmunohistochemical investigation of the lumbar enlargement (study of proliferating cell nuclear protein, synaptophysin, and glial fibrillary acidic protein immunohistochemistry) revealed a rearrangement of motoneurons, interneurons, and the afferent chain in the distal part of the transected spinal cord. In the trained animals, there was observed the normal structure of motoneurons and the appearance of aggregates of the synaptophysin-immunoreactive structures lost after the surgery.  相似文献   

11.
12.
13.
《Cell》2022,185(2):328-344.e26
  1. Download : Download high-res image (146KB)
  2. Download : Download full-size image
  相似文献   

14.
15.
Metamorphosis in the anuran frog, Xenopus laevis, involves profound structural and functional transformations in most of the organism's physiological systems as it encounters a complete alteration in body plan, habitat, mode of respiration and diet. The metamorphic process also involves a transition in locomotory strategy from axial-based undulatory swimming using alternating contractions of left and right trunk muscles, to bilaterally-synchronous kicking of the newly developed hindlimbs in the young adult. At critical stages during this behavioural switch, functional larval and adult locomotor systems co-exist in the same animal, implying a progressive and dynamic reconfiguration of underlying spinal circuitry and neuronal properties as limbs are added and the tail regresses. To elucidate the neurobiological basis of this developmental process, we use electrophysiological, pharmacological and neuroanatomical approaches to study isolated in vitro brain stem/spinal cord preparations at different metamorphic stages. Our data show that the emergence of secondary limb motor circuitry, as it supersedes the primary larval network, spans a developmental period when limb circuitry is present but not functional, functional but co-opted into the axial network, functionally separable from the axial network, and ultimately alone after axial circuitry disappears with tail resorption. Furthermore, recent experiments on spontaneously active in vitro preparations from intermediate metamorphic stage animals have revealed that the biogenic amines serotonin (5-HT) and noradrenaline (NA) exert short-term adaptive control over circuit activity and inter-network coordination: whereas bath-applied 5-HT couples axial and appendicular rhythms into a single unified pattern, NA has an opposite decoupling effect. Moreover, the progressive and region-specific appearance of spinal cord neurons that contain another neuromodulator, nitric oxide (NO), suggests it plays a role in the maturation of limb locomotor circuitry. In summary, during Xenopus metamorphosis the network responsible for limb movements is progressively segregated from an axial precursor, and supra- and intra-spinal modulatory inputs are likely to play crucial roles in both its functional flexibility and maturation.  相似文献   

16.
Developing networks of the chick spinal cord become spontaneously active early in development and remain so until hatching. Experiments using an isolated preparation of the spinal cord have begun to reveal the mechanisms responsible for this activity. Whole-cell and optical recordings have shown that spinal neurons receive a rhythmic, depolarizing synaptic drive and experience rhythmic elevations of intracellular calcium during spontaneous episodes. Activity is expressed throughout the neuraxis and can be produced by different parts of the cord and by the isolated brain stem, suggesting that it does not depend upon the details of network architecture. Two factors appear to be particularly important for the production of endogenous activity. The first is the predominantly excitatory nature of developing synaptic connections, and the second is the presence of prolonged activity-dependent depression of network excitability. The interaction between high excitability and depression results in an equilibrium in which episodes are expressed periodically by the network. The mechanism of the rhythmic bursting within an episode is not understood, but it may be due to a “fast” form of network depression. Spontaneous embryonic activity has been shown to play a role in neuron and muscle development, but is probably not involved in the initial formation of connections between spinal neurons. It may be important in refining the initial connections, but this possibility remains to be explored. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 131–145, 1998
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    17.
    Summary Whole mouse embryos were grown in vitro from Theiler stage 12 (1 to 7 somites) to Theiler stages 15 and 16 (25 to 35 somites). This procedure gives experimental access to precisely staged embryos during the early period of neurogenesis. To follow the further development of neurons in vitro, fragments of spinal primordia were set up from these cultured embryos. In such cultures, the proliferation of precursor cells, the formation of postmitotic cells and, finally, the cytodifferentiation of neurons were observed. A preliminary account of this work was given at the Tissue Culture Association Meeting in 1977, and the Canadian Federation of Biological Societies Meeting in 1977 (1,2). This work was supported by Grant MT 4235 from the Medical Research Council of Canada.  相似文献   

    18.
    Shu J  Chen ZF 《生理学报》1998,50(1):28-36
    我们在神经移植的天空过程中观察到被移植的中枢神经元能从蛛网膜下腔迁入脊髓的大脑皮层。这一新观察为脊髓和脑浅层大范围神经元缺损时的无损伤神经元引入和大范围去神经区域的神经再支配提供了一种颇具吸引力的河能性。实验动物选用Wistar和S.D.大鼠,将含有胚胎中枢单胺或精氨酸血管加压素(AVP)能神经元的细胞悬浮液或组织块移植到被横断的脊髓或未被脊髓和脑的蛛网膜下腔内。动物分别在移植的同时切断脊髓;在移  相似文献   

    19.
    Although the central nervous system is considered a comparatively static tissue with limited cell turnover, cells with stem cell properties have been isolated from most neural tissues. The spinal cord ependymal cells show neural stem cell potential in vitro and in vivo in injured spinal cord. However, very little is known regarding the ependymal niche in the mouse spinal cord. We previously reported that a secreted factor, chick Akhirin, is expressed in the ciliary marginal zone of the eye, where it works as a heterophilic cell‐adhesion molecule. Here, we describe a new crucial function for mouse Akhirin (M‐AKH) in regulating the proliferation and differentiation of progenitors in the mouse spinal cord. During embryonic spinal cord development, M‐AKH is transiently expressed in the central canal ependymal cells, which possess latent neural stem cell properties. Targeted inactivation of the AKH gene in mice causes a reduction in the size of the spinal cord and decreases BrdU incorporation in the spinal cord. Remarkably, the expression patterns of ependymal niche molecules in AKH knockout (AKH?/?) mice are different from those of AKH+/+, both in vitro and in vivo. Furthermore, we provide evidence that AKH expression in the central canal is rapidly upregulated in the injured spinal cord. Taken together, these results indicate that M‐AKH plays a crucial role in mouse spinal cord formation by regulating the ependymal niche in the central canal. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 494–504, 2015  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号