首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
How stable synchrony in neuronal networks is sustained in the presence of conduction delays is an open question. The Dynamic Clamp was used to measure phase resetting curves (PRCs) for entorhinal cortical cells, and then to construct networks of two such neurons. PRCs were in general Type I (all advances or all delays) or weakly type II with a small region at early phases with the opposite type of resetting. We used previously developed theoretical methods based on PRCs under the assumption of pulsatile coupling to predict the delays that synchronize these hybrid circuits. For excitatory coupling, synchrony was predicted and observed only with no delay and for delays greater than half a network period that cause each neuron to receive an input late in its firing cycle and almost immediately fire an action potential. Synchronization for these long delays was surprisingly tight and robust to the noise and heterogeneity inherent in a biological system. In contrast to excitatory coupling, inhibitory coupling led to antiphase for no delay, very short delays and delays close to a network period, but to near-synchrony for a wide range of relatively short delays. PRC-based methods show that conduction delays can stabilize synchrony in several ways, including neutralizing a discontinuity introduced by strong inhibition, favoring synchrony in the case of noisy bistability, and avoiding an initial destabilizing region of a weakly type II PRC. PRCs can identify optimal conduction delays favoring synchronization at a given frequency, and also predict robustness to noise and heterogeneity.  相似文献   

2.
Oscillations of large populations of neurons are thought to be important in the normal functioning of the brain. We have used phase response curve (PRC) methods to characterize the dynamics of single neurons and predict population dynamics. Our past experimental work was limited to special circumstances (e.g., 2-cell networks of periodically firing neurons). Here, we explore the feasibility of extending our methods to predict the synchronization properties of stellate cells (SCs) in the rat entorhinal cortex under broader conditions. In particular, we test the hypothesis that PRCs in SCs scale linearly with changes in synaptic amplitude, and measure how well responses to Poisson process-driven inputs can be predicted in terms of PRCs. Although we see nonlinear responses to excitatory and inhibitory inputs, we find that models based on weak coupling account for scaling and Poisson process-driven inputs reasonably accurately.  相似文献   

3.
Central pattern generators (CPGs) frequently include bursting neurons that serve as pacemakers for rhythm generation. Phase resetting curves (PRCs) can provide insight into mechanisms underlying phase locking in such circuits. PRCs were constructed for a pacemaker bursting complex in the pyloric circuit in the stomatogastric ganglion of the lobster and crab. This complex is comprised of the Anterior Burster (AB) neuron and two Pyloric Dilator (PD) neurons that are all electrically coupled. Artificial excitatory synaptic conductance pulses of different strengths and durations were injected into one of the AB or PD somata using the Dynamic Clamp. Previously, we characterized the inhibitory PRCs by assuming a single slow process that enabled synaptic inputs to trigger switches between an up state in which spiking occurs and a down state in which it does not. Excitation produced five different PRC shapes, which could not be explained with such a simple model. A separate dendritic compartment was required to separate the mechanism that generates the up and down phases of the bursting envelope (1) from synaptic inputs applied at the soma, (2) from axonal spike generation and (3) from a slow process with a slower time scale than burst generation. This study reveals that due to the nonlinear properties and compartmentalization of ionic channels, the response to excitation is more complex than inhibition.  相似文献   

4.
The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies.  相似文献   

5.
Spatiotemporal pattern formation in neuronal networks depends on the interplay between cellular and network synchronization properties. The neuronal phase response curve (PRC) is an experimentally obtainable measure that characterizes the cellular response to small perturbations, and can serve as an indicator of cellular propensity for synchronization. Two broad classes of PRCs have been identified for neurons: Type I, in which small excitatory perturbations induce only advances in firing, and Type II, in which small excitatory perturbations can induce both advances and delays in firing. Interestingly, neuronal PRCs are usually attenuated with increased spiking frequency, and Type II PRCs typically exhibit a greater attenuation of the phase delay region than of the phase advance region. We found that this phenomenon arises from an interplay between the time constants of active ionic currents and the interspike interval. As a result, excitatory networks consisting of neurons with Type I PRCs responded very differently to frequency modulation compared to excitatory networks composed of neurons with Type II PRCs. Specifically, increased frequency induced a sharp decrease in synchrony of networks of Type II neurons, while frequency increases only minimally affected synchrony in networks of Type I neurons. These results are demonstrated in networks in which both types of neurons were modeled generically with the Morris-Lecar model, as well as in networks consisting of Hodgkin-Huxley-based model cortical pyramidal cells in which simulated effects of acetylcholine changed PRC type. These results are robust to different network structures, synaptic strengths and modes of driving neuronal activity, and they indicate that Type I and Type II excitatory networks may display two distinct modes of processing information.  相似文献   

6.
We developed a systematic and consistent mathematical approach to predicting 1:1 phase-locked modes in ring neural networks of spiking neurons based on the open loop spike time resetting curve (STRC) and its almost equivalent counterpart—the phase resetting curve (PRC). The open loop STRCs/PRCs were obtained by injecting into an isolated model neuron a triangular shaped time-dependent stimulus current closely resembling an actual synaptic input. Among other advantages, the STRC eliminates the confusion regarding the undefined phase for stimuli driving the neuron outside of the unperturbed limit cycle. We derived both open loop PRC and STRC-based existence and stability criteria for 1:1 phase-locked modes developed in ring networks of spiking neurons. Our predictions were in good agreement with the closed loop numerical simulations. Intuitive graphical methods for predicting phase-locked modes were also developed both for half-centers and for larger ring networks.  相似文献   

7.
Our goal is to understand how nearly synchronous modes arise in heterogenous networks of neurons. In heterogenous networks, instead of exact synchrony, nearly synchronous modes arise, which include both 1:1 and 2:2 phase-locked modes. Existence and stability criteria for 2:2 phase-locked modes in reciprocally coupled two neuron circuits were derived based on the open loop phase resetting curve (PRC) without the assumption of weak coupling. The PRC for each component neuron was generated using the change in synaptic conductance produced by a presynaptic action potential as the perturbation. Separate derivations were required for modes in which the firing order is preserved and for those in which it alternates. Networks composed of two model neurons coupled by reciprocal inhibition were examined to test the predictions. The parameter regimes in which both types of nearly synchronous modes are exhibited were accurately predicted both qualitatively and quantitatively provided that the synaptic time constant is short with respect to the period and that the effect of second order resetting is considered. In contrast, PRC methods based on weak coupling could not predict 2:2 modes and did not predict the 1:1 modes with the level of accuracy achieved by the strong coupling methods. The strong coupling prediction methods provide insight into what manipulations promote near-synchrony in a two neuron network and may also have predictive value for larger networks, which can also manifest changes in firing order. We also identify a novel route by which synchrony is lost in mildly heterogenous networks.  相似文献   

8.
Gamma oscillations can synchronize with near zero phase lag over multiple cortical regions and between hemispheres, and between two distal sites in hippocampal slices. How synchronization can take place over long distances in a stable manner is considered an open question. The phase resetting curve (PRC) keeps track of how much an input advances or delays the next spike, depending upon where in the cycle it is received. We use PRCs under the assumption of pulsatile coupling to derive existence and stability criteria for 1:1 phase-locking that arises via bidirectional pulse coupling of two limit cycle oscillators with a conduction delay of any duration for any 1:1 firing pattern. The coupling can be strong as long as the effect of one input dissipates before the next input is received. We show the form that the generic synchronous and anti-phase solutions take in a system of two identical, identically pulse-coupled oscillators with identical delays. The stability criterion has a simple form that depends only on the slopes of the PRCs at the phases at which inputs are received and on the number of cycles required to complete the delayed feedback loop. The number of cycles required to complete the delayed feedback loop depends upon both the value of the delay and the firing pattern. We successfully tested the predictions of our methods on networks of model neurons. The criteria can easily be extended to include the effect of an input on the cycle after the one in which it is received.  相似文献   

9.
Correlated neuronal activity is a natural consequence of network connectivity and shared inputs to pairs of neurons, but the task-dependent modulation of correlations in relation to behavior also hints at a functional role. Correlations influence the gain of postsynaptic neurons, the amount of information encoded in the population activity and decoded by readout neurons, and synaptic plasticity. Further, it affects the power and spatial reach of extracellular signals like the local-field potential. A theory of correlated neuronal activity accounting for recurrent connectivity as well as fluctuating external sources is currently lacking. In particular, it is unclear how the recently found mechanism of active decorrelation by negative feedback on the population level affects the network response to externally applied correlated stimuli. Here, we present such an extension of the theory of correlations in stochastic binary networks. We show that (1) for homogeneous external input, the structure of correlations is mainly determined by the local recurrent connectivity, (2) homogeneous external inputs provide an additive, unspecific contribution to the correlations, (3) inhibitory feedback effectively decorrelates neuronal activity, even if neurons receive identical external inputs, and (4) identical synaptic input statistics to excitatory and to inhibitory cells increases intrinsically generated fluctuations and pairwise correlations. We further demonstrate how the accuracy of mean-field predictions can be improved by self-consistently including correlations. As a byproduct, we show that the cancellation of correlations between the summed inputs to pairs of neurons does not originate from the fast tracking of external input, but from the suppression of fluctuations on the population level by the local network. This suppression is a necessary constraint, but not sufficient to determine the structure of correlations; specifically, the structure observed at finite network size differs from the prediction based on perfect tracking, even though perfect tracking implies suppression of population fluctuations.  相似文献   

10.
Canavier et al. (1997) used phase response curves (PRCs) of individual oscillators to characterize the possible modes of phase-locked entrainment of an N-oscillator ring network. We extend this work by developing a mathematical criterion to determine the local stability of such a mode based on the PRCs. Our method does not assume symmetry; neither the oscillators nor their connections need be identical. To use these techniques for predicting modes and determining their stability, one need only determine the PRC of each oscillator in the ring either experimentally or from a computational model. We show that network stability cannot be determined by simply testing the ability of each oscillator to entrain the next. Stability depends on the number of neurons in the ring, the type of mode, and the slope of each PRC at the point of entrainment of the respective neuron. We also describe simple criteria which are either necessary or sufficient for stability and examine the implications of these results. Received: 2 April 1998 / Accepted in revised form: 2 July 1998  相似文献   

11.
A phase resetting curve (PRC) keeps track of the extent to which a perturbation at a given phase advances or delays the next spike, and can be used to predict phase locking in networks of oscillators. The PRC can be estimated by convolving the waveform of the perturbation with the infinitesimal PRC (iPRC) under the assumption of weak coupling. The iPRC is often defined with respect to an infinitesimal current as zi(ϕ), where ϕ is phase, but can also be defined with respect to an infinitesimal conductance change as zg(ϕ). In this paper, we first show that the two approaches are equivalent. Coupling waveforms corresponding to synapses with different time courses sample zg(ϕ) in predictably different ways. We show that for oscillators with Type I excitability, an anomalous region in zg(ϕ) with opposite sign to that seen otherwise is often observed during an action potential. If the duration of the synaptic perturbation is such that it effectively samples this region, PRCs with both advances and delays can be observed despite Type I excitability. We also show that changing the duration of a perturbation so that it preferentially samples regions of stable or unstable slopes in zg(ϕ) can stabilize or destabilize synchrony in a network with the corresponding dynamics.  相似文献   

12.
Canavier  C.C.  Butera  R.J.  Dror  R.O.  Baxter  D.A.  Clark  J.W.  Byrne  J.H. 《Biological cybernetics》1997,77(6):367-380
In order to assess the relative contributions to pattern-generation of the intrinsic properties of individual neurons and of their connectivity, we examined a ring circuit composed of four complex physiologically based oscillators. This circuit produced patterns that correspond to several quadrupedal gaits, including the walk, the bound, and the gallop. An analysis using the phase response curve (PRC) of an uncoupled oscillator accurately predicted all modes exhibited by this circuit and their phasic relationships – with the caveat that in certain parameter ranges, bistability in the individual oscillators added nongait patterns that were not amenable to PRC analysis, but further enriched the pattern-generating repertoire of the circuit. The key insights in the PRC analysis were that in a gait pattern, since all oscillators are entrained at the same frequency, the phase advance or delay caused by the action of each oscillator on its postsynaptic oscillator must be the same, and the sum of the normalized phase differences around the ring must equal to an integer. As suggested by several previous studies, our analysis showed that the capacity to exhibit a large number of patterns is inherent in the ring circuit configuration. In addition, our analysis revealed that the shape of the PRC for the individual oscillators determines which of the theoretically possible modes can be generated using these oscillators as circuit elements. PRCs that have a complex shape enable a circuit to produce a wider variety of patterns, and since complex neurons tend to have complex PRCs, enriching the repertoire of patterns exhibited by a circuit may be the function of some intrinsic neuronal complexity. Our analysis showed that gait transitions, or more generally, pattern transitions, in a ring circuit do not require rewiring the circuit or any changes in the strength of the connections. Instead, transitions can be achieved by using a control parameter, such as stimulus intensity, to sculpt the PRC so that it has the appropriate shape for the desired pattern(s). A transition can then be achieved simply by changing the value of the control parameter so that the first pattern either ceases to exist or loses stability, while a second pattern either comes into existence or gains stability. Our analysis illustrates the predictive value of PRCs in circuit analysis and can be extended to provide a design method for pattern-generating circuits. Received: 20 November 1996 / Accepted: 29 July 1997  相似文献   

13.
A tonic-clonic seizure transitions from high frequency asynchronous activity to low frequency coherent oscillations, yet the mechanism of transition remains unknown. We propose a shift in network synchrony due to changes in cellular response. Here we use phase-response curves (PRC) from Morris-Lecar (M-L) model neurons with synaptic depression and gradually decrease input current to cells within a network simulation. This method effectively decreases firing rates resulting in a shift to greater network synchrony illustrating a possible mechanism of the transition phenomenon. PRCs are measured from the M-L conductance based model cell with a range of input currents within the limit cycle. A large network of 3000 excitatory neurons is simulated with a network topology generated from second-order statistics which allows a range of population synchrony. The population synchrony of the oscillating cells is measured with the Kuramoto order parameter, which reveals a transition from tonic to clonic phase exhibited by our model network. The cellular response shift mechanism for the tonic-clonic seizure transition reproduces the population behavior closely when compared to EEG data.  相似文献   

14.
Similar to mammalian neural progenitors, Drosophila neuroblasts progressively lose competence to make early-born neurons. In neuroblast 7-1 (NB7-1), Kruppel (Kr) specifies the third-born U3 motoneuron and Kr misexpression induces ectopic U3 cells. However, competence to generate U3 cells is limited to early divisions, when the Eve(+) U motoneurons are produced, and competence is lost when NB7-1 transitions to making interneurons. We have found that Polycomb repressor complexes (PRCs) are necessary and sufficient to restrict competence in NB7-1. PRC loss of function extends the ability of Kr to induce U3 fates and PRC gain of function causes precocious loss of competence to make motoneurons. PRCs also restrict competence to make HB9(+) Islet(+) motoneurons in another neuroblast that undergoes a motoneuron-to-interneuron transition, NB3-1. In contrast to the regulation of motoneuron competence, PRC activity does not affect the production of Eve(+) interneurons by NB3-3, HB9(+) Islet(+) interneurons by NB7-3, or Dbx(+) interneurons by multiple neuroblasts. These findings support a model in which PRCs establish motoneuron-specific competence windows in neuroblasts that transition from motoneuron to interneuron production.  相似文献   

15.
16.
The study of several aspects of the collective dynamics of interacting neurons can be highly simplified if one assumes that the statistics of the synaptic input is the same for a large population of similarly behaving neurons (mean field approach). In particular, under such an assumption, it is possible to determine and study all the equilibrium points of the network dynamics when the neuronal response to noisy, in vivo-like, synaptic currents is known. The response function can be computed analytically for simple integrate-and-fire neuron models and it can be measured directly in experiments in vitro. Here we review theoretical and experimental results about the neural response to noisy inputs with stationary statistics. These response functions are important to characterize the collective neural dynamics that are proposed to be the neural substrate of working memory, decision making and other cognitive functions. Applications to the case of time-varying inputs are reviewed in a companion paper (Giugliano et al. in Biol Cybern, 2008). We conclude that modified integrate-and-fire neuron models are good enough to reproduce faithfully many of the relevant dynamical aspects of the neuronal response measured in experiments on real neurons in vitro.  相似文献   

17.
The spatial component of input signals often carries information crucial to a neuron’s function, but models mapping synaptic inputs to the transmembrane potential can be computationally expensive. Existing reduced models of the neuron either merge compartments, thereby sacrificing the spatial specificity of inputs, or apply model reduction techniques that sacrifice the underlying electrophysiology of the model. We use Krylov subspace projection methods to construct reduced models of passive and quasi-active neurons that preserve both the spatial specificity of inputs and the electrophysiological interpretation as an RC and RLC circuit, respectively. Each reduced model accurately computes the potential at the spike initiation zone (SIZ) given a much smaller dimension and simulation time, as we show numerically and theoretically. The structure is preserved through the similarity in the circuit representations, for which we provide circuit diagrams and mathematical expressions for the circuit elements. Furthermore, the transformation from the full to the reduced system is straightforward and depends on intrinsic properties of the dendrite. As each reduced model is accurate and has a clear electrophysiological interpretation, the reduced models can be used not only to simulate morphologically accurate neurons but also to examine computations performed in dendrites.  相似文献   

18.
Cerebellar Purkinje cells display complex intrinsic dynamics. They fire spontaneously, exhibit bistability, and via mutual network interactions are involved in the generation of high frequency oscillations and travelling waves of activity. To probe the dynamical properties of Purkinje cells we measured their phase response curves (PRCs). PRCs quantify the change in spike phase caused by a stimulus as a function of its temporal position within the interspike interval, and are widely used to predict neuronal responses to more complex stimulus patterns. Significant variability in the interspike interval during spontaneous firing can lead to PRCs with a low signal-to-noise ratio, requiring averaging over thousands of trials. We show using electrophysiological experiments and simulations that the PRC calculated in the traditional way by sampling the interspike interval with brief current pulses is biased. We introduce a corrected approach for calculating PRCs which eliminates this bias. Using our new approach, we show that Purkinje cell PRCs change qualitatively depending on the firing frequency of the cell. At high firing rates, Purkinje cells exhibit single-peaked, or monophasic PRCs. Surprisingly, at low firing rates, Purkinje cell PRCs are largely independent of phase, resembling PRCs of ideal non-leaky integrate-and-fire neurons. These results indicate that Purkinje cells can act as perfect integrators at low firing rates, and that the integration mode of Purkinje cells depends on their firing rate.  相似文献   

19.
Do cortical neurons operate as integrators or as coincidence detectors? Despite the importance of this question, no definite answer has been given yet, because each of these two views can find its own experimental support. Here we investigated this question using models of morphologically-reconstructed neocortical pyramidal neurons under in vivo like conditions. In agreement with experiments we find that the cell is capable of operating in a continuum between coincidence detection and temporal integration, depending on the characteristics of the synaptic inputs. Moreover, the presence of synaptic background activity at a level comparable to intracellular measurements in vivo can modulate the operating mode of the cell, and act as a switch between temporal integration and coincidence detection. These results suggest that background activity can be viewed as an important determinant of the integrative mode of pyramidal neurons. Thus, background activity not only sharpens cortical responses but it can also be used to tune an entire network between integration and coincidence detection modes.  相似文献   

20.
We derive a formula that relates the spike-triggered covariance (STC) to the phase resetting curve (PRC) of a neural oscillator. We use this to show how changes in the shape of the PRC alter the sensitivity of the neuron to different stimulus features, which are the eigenvectors of the STC. We compute the PRC and STC for some biophysical models. We compare the STCs and their spectral properties for a two-parameter family of PRCs. Surprisingly, the skew of the PRC has a larger effect on the spectrum and shape of the STC than does the bimodality of the PRC (which plays a large role in synchronization properties). Finally, we relate the STC directly to the spike-triggered average and apply this theory to an olfactory bulb mitral cell recording.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号