首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Breast epithelial cells sense the stiffness of the extracellular matrix through Rho-mediated contractility. In turn, matrix stiffness regulates RhoA activity. However, the upstream signaling mechanisms are poorly defined. Here we demonstrate that the Rho exchange factor GEF-H1 mediates RhoA activation in response to extracellular matrix stiffness. We demonstrate the novel finding that microtubule stability is diminished by a stiff three-dimensional (3D) extracellular matrix, which leads to the activation of GEF-H1. Surprisingly, activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway did not contribute to stiffness-induced GEF-H1 activation. Loss of GEF-H1 decreases cell contraction of and invasion through 3D matrices. These data support a model in which matrix stiffness regulates RhoA through microtubule destabilization and the subsequent release and activation of GEF-H1.  相似文献   

2.
The Vav family of proteins have the potential to act as both signalling adapters and GEFs for Rho GTPases. They have therefore been proposed as regulators of the cytoskeleton in various cell types. We have used macrophages from mice deficient in all three Vav isoforms to determine how their function affects cell morphology and migration. Macrophages lacking Vav proteins adopt an elongated morphology and have enhanced migratory persistence in culture. To investigate the pathways through which Vav proteins exert their effects we analysed the responses of macrophages to the chemoattractant CSF-1 and to adhesion. We found that morphological and signalling responses of macrophages to CSF-1 did not require Vav proteins. In contrast, adhesion-induced cell spreading, RhoA and Rac1 activation and cell signalling were all dependent on Vav proteins. We propose that Vav proteins affect macrophage morphology and motile behaviour by coupling adhesion receptors to Rac1 and RhoA activity and regulating adhesion signalling events such as paxillin and ERK1/2 phosphorylation by acting as adapters.  相似文献   

3.
The exocyst complex plays a critical role in targeting and tethering vesicles to specific sites of the plasma membrane. These events are crucial for polarized delivery of membrane components to the cell surface, which is critical for cell motility and division. Though Rho GTPases are involved in regulating actin dynamics and membrane trafficking, their role in exocyst-mediated vesicle targeting is not very clear. Herein, we present evidence that depletion of GEF-H1, a guanine nucleotide exchange factor for Rho proteins, affects vesicle trafficking. Interestingly, we found that GEF-H1 directly binds to exocyst component Sec5 in a Ral GTPase-dependent manner. This interaction promotes RhoA activation, which then regulates exocyst assembly/localization and exocytosis. Taken together, our work defines a mechanism for RhoA activation in response to RalA-Sec5 signaling and involvement of GEF-H1/RhoA pathway in the regulation of vesicle trafficking.  相似文献   

4.
Plexins are widely expressed transmembrane proteins that, in the nervous system, mediate repulsive signals of semaphorins. However, the molecular nature of plexin-mediated signal transduction remains poorly understood. Here, we demonstrate that plexin-B family members associate through their C termini with the Rho guanine nucleotide exchange factors PDZ-RhoGEF and LARG. Activation of plexin-B1 by semaphorin 4D regulates PDZ-RhoGEF/LARG activity leading to RhoA activation. In addition, a dominant-negative form of PDZ-RhoGEF blocks semaphorin 4D-induced growth cone collapse in primary hippocampal neurons. Our study indicates that the interaction of mammalian plexin-B family members with the multidomain proteins PDZ-RhoGEF and LARG represents an essential molecular link between plexin-B and localized, Rho-mediated downstream signaling events which underly various plexin-mediated cellular phenomena including axonal growth cone collapse.  相似文献   

5.
The mechanisms that regulate the formation of multinucleated muscle fibers from mononucleated myoblasts are not well understood. We show here that extracellular matrix (ECM) receptors of the beta1 integrin family regulate myoblast fusion. beta1-deficient myoblasts adhere to each other, but plasma membrane breakdown is defective. The integrin-associated tetraspanin CD9 that regulates cell fusion is no longer expressed at the cell surface of beta1-deficient myoblasts, suggesting that beta1 integrins regulate the formation of a protein complex important for fusion. Subsequent to fusion, beta1 integrins are required for the assembly of sarcomeres. Other ECM receptors such as the dystrophin glycoprotein complex are still expressed but cannot compensate for the loss of beta1 integrins, providing evidence that different ECM receptors have nonredundant functions in skeletal muscle fibers.  相似文献   

6.
Plexins represent a novel family of transmembrane receptors that transduce attractive and repulsive signals mediated by the axon-guiding molecules semaphorins. Emerging evidence implicates Rho GTPases in these biological events. However, Plexins lack any known catalytic activity in their conserved cytoplasmic tails, and how they transduce signals from semaphorins to Rho is still unknown. Here we show that Plexin B2 associates directly with two members of a recently identified family of Dbl homology/pleckstrin homology containing guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and Leukemia-associated Rho GEF (LARG). This physical interaction is mediated by their PDZ domains and a PDZ-binding motif found only in Plexins of the B family. In addition, we show that ligand-induced dimerization of Plexin B is sufficient to stimulate endogenous RhoA potently and to induce the reorganization of the cytoskeleton. Moreover, overexpression of the PDZ domain of PDZ-RhoGEF but not its regulator of G protein signaling domain prevents cell rounding and neurite retraction of differentiated PC12 cells induced by activation of endogenous Plexin B1 by semaphorin 4D. The association of Plexins with LARG and PDZ-RhoGEF thus provides a direct molecular mechanism by which semaphorins acting on Plexin B can control Rho, thereby regulating the actin-cytoskeleton during axonal guidance and cell migration.  相似文献   

7.
The activity of Rho GTPases is carefully timed to control epithelial proliferation and differentiation. RhoA is downregulated when epithelial cells reach confluence, resulting in inhibition of signaling pathways that stimulate proliferation. Here we show that GEF-H1/Lfc, a guanine nucleotide exchange factor for RhoA, directly interacts with cingulin, a junctional adaptor. Cingulin binding inhibits RhoA activation and signaling, suggesting that the increase in cingulin expression in confluent cells causes downregulation of RhoA by inhibiting GEF-H1/Lfc. In agreement, RNA interference of GEF-H1 or transfection of GEF-H1 binding cingulin mutants inhibit G1/S phase transition of MDCK cells, and depletion of cingulin by regulated RNA interference results in irregular monolayers and RhoA activation. These results indicate that forming epithelial tight junctions contribute to the downregulation of RhoA in epithelia by inactivating GEF-H1 in a cingulin-dependent manner, providing a molecular mechanism whereby tight junction formation is linked to inhibition of RhoA signaling.  相似文献   

8.
Fukuhara S  Chikumi H  Gutkind JS 《FEBS letters》2000,485(2-3):183-188
A putative guanine nucleotide exchange factor (GEF), termed leukemia-associated RhoGEF (LARG), was recently identified upon fusion to the coding sequence of the MLL gene in acute myeloid leukemia. Although the function of LARG is still unknown, it exhibits a number of structural domains suggestive of a role in signal transduction, including a PDZ domain, a LH/RGS domain, and a Dbl homology/pleckstrin homology domain. Here, we show that LARG can activate Rho in vivo. Furthermore, we present evidence that LARG is an integral component of a novel biochemical route whereby G protein-coupled receptors (GPCRs) and heterotrimeric G proteins of the G alpha(12) family stimulate Rho-dependent signaling pathways.  相似文献   

9.
GEF-H1 is a guanine nucleotide exchange factor for Rho whose activity is regulated through a cycle of microtubule binding and release. Here we identify a region in the carboxyl terminus of GEF-H1 that is important for suppression of its guanine nucleotide exchange activity by microtubules. This portion of the protein includes a coiled-coil motif, a proline-rich motif that may interact with Src homology 3 domain-containing proteins, and a potential binding site for 14-3-3 proteins. We identify GEF-H1 as a binding target and substrate for p21-activated kinase 1 (PAK1), an effector of Rac and Cdc42 GTPases, using an affinity-based screen and localize a PAK1 phosphorylation site to the inhibitory carboxyl-terminal region of GEF-H1. We show that phosphorylation of GEF-H1 at Ser(885) by PAK1 induces 14-3-3 binding to the exchange factor and relocation of 14-3-3 to microtubules. Phosphorylation of GEF-H1 by PAK may be involved in regulation of GEF-H1 activity and may serve to coordinate Rho-, Rac-, and Cdc42-mediated signaling pathways.  相似文献   

10.
In keratinocytes, the beta1 integrins mediate adhesion to the extracellular matrix and also regulate the initiation of terminal differentiation. To explore the relationship between these functions, we stably infected primary human epidermal keratinocytes and an undifferentiated squamous cell carcinoma line, SCC4, with retroviruses encoding wild-type and mutant chick beta1 integrin subunits. We examined the ability of adhesion-blocking chick beta1-specific antibodies to inhibit suspension-induced terminal differentiation of primary human keratinocytes and the ability of the chick beta1 subunit to promote spontaneous differentiation of SCC4. A D154A point mutant clustered in focal adhesions but was inactive in the differentiation assays, showing that differentiation regulation required a functional ligand-binding domain. The signal transduced by beta1 integrins in normal keratinocytes was "do not differentiate" (transduced by ligand-occupied receptors) as opposed to "do differentiate" (transduced by unoccupied receptors), and the signal depended on the absolute number, rather than on the proportion, of occupied receptors. Single and double point mutations in cyto-2 and -3, the NPXY motifs, prevented focal adhesion targeting without inhibiting differentiation control. However, deletions in the proximal part of the cytoplasmic domain, affecting cyto-1, abolished the differentiation-regulatory ability of the beta1 subunit. We conclude that distinct signaling pathways are involved in beta1 integrin-mediated adhesion and differentiation control in keratinocytes.  相似文献   

11.
The human T-cell lymphotrophic virus, type 1 Tax protein can interact via its C terminus with various proteins including a PDZ domain. In this work, one of them, TIP-1, is characterized as a cytoplasmic 14-kDa protein mainly corresponding to one PDZ domain. A two-hybrid screen performed with TIP-1 as bait showed that it interacts with the human homologue of rhotekin that was previously identified in mice as a Rho effector. Both human and mouse rhotekins exhibit at their C termini the sequence QSPV-COOH that matches the X(S/T)XV-COOH consensus known for proteins recognizing PDZ domains. Mutation of the serine and valine residues to alanine impairs interaction of rhotekin with TIP-1. Transient expression experiments with a reporter construct including the c-Fos serum response element (SRE) showed that coexpression of TIP-1 with the constitutively active RhoA.V14 mutant and human rhotekin caused a strong activation of the SRE. A negative mutant of Rho, RhoA.N19, was unable to cooperate with TIP-1 and rhotekin. The positive effect of TIP-1 was also lost when the C terminus of rhotekin was mutated. These data show that the complex of active Rho with its effector rhotekin bound to TIP-1 produces in the cytoplasm a signal that triggers strong activation of the SRE.  相似文献   

12.
β1 integrins play a controversial role during chondrogenesis. Since the maturation of chondrocytes relies on a signaling switch from cell-cell to cell-matrix interactions, we hypothesized that β1 integrins play a different role at the earlier (mainly cell-cell interaction) from the later stage (mainly cell-matrix interaction) of chondrogenesis. Our data showed: in plain medium, sox9, collagen X, and collagen II gene expressions of ASCs were induced by β1-integrin blockage at day 14. In chondrogenic medium, however, sox 9, sox6, and collagen II gene expression were induced at day 4 but inhibited at day 14. In addition, both β1-integrin blockage and TGF-β1 down-regulated Rock-1 and -2 gene expression and produced the round cells. We concluded that β1 integrins play a more important role at the later stages than earlier stages of chondrogenesis, and that the onset of chondrogenesis promoted by β1-integrin blockage might be through inhibiting Rock signaling.  相似文献   

13.
Integrin-extracellular matrix interactions play important roles in the coordinated integration of external and internal cues that are essential for proper development. To study the role of beta1 integrin in the mammary gland, Itgbeta1(flox/flox) mice were crossed with WAPiCre transgenic mice, which led to specific ablation of beta1 integrin in luminal alveolar epithelial cells. In the beta1 integrin mutant mammary gland, individual alveoli were disorganized resulting from alterations in cell-basement membrane associations. Activity of focal adhesion kinase (FAK) was also decreased in mutant mammary glands. Luminal cell proliferation was strongly inhibited in beta1 integrin mutant glands, which correlated with a specific increase of p21 Cip1 expression. In a p21 Cip1 null background, there was a partial rescue of BrdU incorporation, providing in vivo evidence linking p21 Cip1 to the proliferative defect observed in beta1 integrin mutant glands. A connection between p21 Cip1 and beta1 integrin as well as FAK was also established in primary mammary cells. These results point to the essential role of beta1 integrin signaling in mammary epithelial cell proliferation.  相似文献   

14.
Cytokinesis in normal cell division requires RhoA-regulated actomyosin contraction of the cleavage furrow; this process is aborted in megakaryocyte endomitosis, leading to polyploidy. In this issue of Developmental Cell, Gao et al. (2012) trace the basis of endomitosis to sequential downregulation of guanine nucleotide exchange factors GEF-H1 and ECT2.  相似文献   

15.
Glycosylation is one of the most common post-translational modifications, and approximately 50% of all proteins are presumed to be glycosylated in eukaryotes. Branched N-glycans, such as bisecting GlcNAc, beta-1,6-GlcNAc and core fucose (alpha-1,6-fucose), are enzymatic products of N-acetylglucosaminyltransferase III, N-acetylglucosaminyltransferase V and alpha-1,6-fucosyltransferase, respectively. These branched structures are highly associated with various biological functions of cell adhesion molecules, including cell adhesion and cancer metastasis. E-cadherin and integrins, bearing N-glycans, are representative adhesion molecules. Typically, both are glycosylated by N-acetylglucosaminyltransferase III, which inhibits cell migration. In contrast, integrins glycosylated by N-acetylglucosaminyltransferase V promote cell migration. Core fucosylation is essential for integrin-mediated cell migration and signal transduction. Collectively, N-glycans on adhesion molecules, especially those on E-cadherin and integrins, play key roles in cell-cell and cell-extracellular matrix interactions, thereby affecting cancer metastasis.  相似文献   

16.
To identify novel regulators of nonmuscle myosin II (NMII) we performed an image-based RNA interference screen using stable Drosophila melanogaster S2 cells expressing the enhanced green fluorescent protein (EGFP)-tagged regulatory light chain (RLC) of NMII and mCherry-Actin. We identified the Rab-specific GTPase-activating protein (GAP) RN-tre as necessary for the assembly of NMII RLC into contractile actin networks. Depletion of RN-tre led to a punctate NMII phenotype, similar to what is observed following depletion of proteins in the Rho1 pathway. Depletion of RN-tre also led to a decrease in active Rho1 and a decrease in phosphomyosin-positive cells by immunostaining, while expression of constitutively active Rho or Rho-kinase (Rok) rescues the punctate phenotype. Functionally, RN-tre depletion led to an increase in actin retrograde flow rate and cellular contractility in S2 and S2R+ cells, respectively. Regulation of NMII by RN-tre is only partially dependent on its GAP activity as overexpression of constitutively active Rabs inactivated by RN-tre failed to alter NMII RLC localization, while a GAP-dead version of RN-tre partially restored phosphomyosin staining. Collectively, our results suggest that RN-tre plays an important regulatory role in NMII RLC distribution, phosphorylation, and function, likely through Rho1 signaling and putatively serving as a link between the secretion machinery and actomyosin contractility.  相似文献   

17.
Rho GTPases, which control polarized cell growth through cytoskeletal reorganization, have recently been implicated in the control of endo- and exocytosis. We now report that both Rho1p and Cdc42p have a direct role in mediating the docking stage of homotypic vacuole fusion. Vacuoles prepared from strains with temperature-sensitive alleles of either Rho1p or Cdc42p are thermolabile for fusion. RhoGDI (Rdi1p), which extracts Rho1p and Cdc42p from the vacuole membrane, blocks vacuole fusion. The Rho GTPases can not fulfill their function as long as priming and Ypt7p-dependent tethering are inhibited. However, reactions that are reversibly blocked after docking by the calcium chelator BAPTA have passed the point of sensitivity to Rdi1p. Extraction and removal of Ypt7p, Rho1p and Cdc42p from docked vacuoles (by Gdi1p, Gyp7p and Rdi1p) does not impede subsequent membrane fusion, which is still sensitive to GTPgammaS. Thus, multiple GTPases act in a defined sequence to regulate the docking steps of vacuole fusion.  相似文献   

18.
Atherosclerotic plaques develop in regions of the vasculature associated with chronic inflammation due to disturbed flow patterns. Endothelial phenotype modulation by flow requires the integration of numerous mechanotransduction pathways, but how this is achieved is not well understood. We show here that, in response to flow, the adaptor protein Shc is activated and associates with cell-cell and cell-matrix adhesions. Shc activation requires the tyrosine kinases vascular endothelial growth factor receptor 2 and Src. Shc activation and its vascular endothelial cadherin (VE-cadherin) association are matrix independent. In contrast, Shc binding to integrins requires VE-cadherin but occurs only on specific matrices. Silencing Shc results in reduction in both matrix-independent and matrix-dependent signals. Furthermore, Shc regulates flow-induced inflammatory signaling by activating nuclear factor kappaB-dependent signals that lead to atherogenesis. In vivo, Shc is activated in atherosclerosis-prone regions of arteries, and its activation correlates with areas of atherosclerosis. Our results support a model in which Shc orchestrates signals from cell-cell and cell-matrix adhesions to elicit flow-induced inflammatory signaling.  相似文献   

19.
DNA damage response is a fundamental mechanism to maintain genome stability. The ATR-WEE1 kinase module plays a central role in response to replication stress. Although the ATR-WEE1 pathway has been well studied in yeasts and animals, how ATR-WEE1 functions in plants remains unclear. Through a genetic screen for suppressors of the Arabidopsis atr mutant, we found that loss of function of PRL1, a core subunit of the evolutionarily conserved MAC complex involved in alternative splicing, suppresses the hypersensitivity of atr and wee1 to replication stress. Biochemical studies revealed that WEE1 directly interacts with and phosphorylates PRL1 at Serine 145, which promotes PRL1 ubiquitination and subsequent degradation. In line with the genetic and biochemical data, replication stress induces intron retention of cell cycle genes including CYCD1;1 and CYCD3;1, which is abolished in wee1 but restored in wee1 prl1. Remarkably, co-expressing the coding sequences of CYCD1;1 and CYCD3;1 partially restores the root length and HU response in wee1 prl1. These data suggested that the ATR-WEE1 module inhibits the MAC complex to regulate replication stress responses. Our study discovered PRL1 or the MAC complex as a key downstream regulator of the ATR-WEE1 module and revealed a novel cell cycle control mechanism.  相似文献   

20.
Mice that lack all beta1-class integrins in neurons and glia die prematurely after birth with severe brain malformations. Cortical hemispheres and cerebellar folia fuse, and cortical laminae are perturbed. These defects result from disorganization of the cortical marginal zone, where beta1-class integrins regulate glial endfeet anchorage, meningeal basement membrane remodeling, and formation of the Cajal-Retzius cell layer. Surprisingly, beta1-class integrins are not essential for neuron-glia interactions and neuronal migration during corticogenesis. The phenotype of the beta1-deficient mice resembles pathological changes observed in human cortical dysplasias, suggesting that defective integrin-mediated signal transduction contributes to the development of some of these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号