首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of regucalcin, which is a regulatory protein in intracellular signaling pathway, in the regulation of cell death was investigated by using the cloned rat hepatoma H4-II-E cells overexpressing regucalcin. The hepatoma cells (wild-type) and stable regucalcin (RC)/pCXN2 transfectants were cultured for 72 h in medium containing 10% fetal bovine serum (FBS) to obtain subconfluent monolayers. The proliferation of the cells was significantly suppressed in transfectants cultured for 72 h, as shown previously (Tsurusaki and Yamaguchi [2003]: J Cell Biochem 90:619-626). After culture for 72 h, cells were further cultured for 24-72 h in medium without FBS containing either vehicle, tumor necrosis factor-alpha (TNF-alpha; 0.1, 1, or 10 ng/ml) or thapsigargin (10(-7)-10(-5) M). The number of wild-type cells was significantly decreased by culture for 42 or 72 h in the presence of TNF-alpha (0.1, 1, or 10 ng/ml) or thapsigargin (10(-7)-10(-5) M). The effect of TNF-alpha (0.1 or 1 ng/ml) or thapsigargin (10(-7) or 10(-6) M) in decreasing the number of hepatoma cells was significantly prevented in transfectants overexpressing regucalcin. The presence of TNF-alpha (10 ng/ml) or thapsigargin (10(-5) M) caused a significant decrease in cell number of transfectants. Ca(2+)/calmodulin-dependent nitric oxide (NO) synthase activity in wild-type cells was significantly increased by culture with TNF-alpha (10 ng/ml) for 48 or 72 h. This increase was significantly prevented in transfectants. Culture with thapsigargin (10(-5) M) caused a significant increase in Ca(2+)/calmodulin-dependent NO synthase activity in wild-type cells or transfectants. TNF-alpha-induced decrease in the number of wild-type cells was significantly prevented by culture with N omega-nitro-L-arginine (10(-4) M), an inhibitor of caspase. Agarose gel electrophoresis showed the presence of low-molecular-weight deoxyribonucleic acid (DNA) fragments of adherent wild-type cells cultured with thapsigargin (10(-6) M), and this DNA fragmentation was not suppressed by culture with caspase inhibitor. Thapsigargin-induced DNA fragmentation was significantly suppressed in transfectants cultured with or without caspase inhibitor. This study demonstrates that overexpression of regucalcin has a suppressive effect on cell death induced by TNF-alpha or thapsigargin.  相似文献   

3.
4.
Apoptosis is a specific mode of programmed cell death (PCD), recognized by characteristic morphological and molecular changes. Here we present evidence for a non-apoptotic type of PCD in human MCF-7 breast carcinoma cells. We used TNF-alpha and tyrphostin AG213 to induce apoptotic and non-apoptotic cell death respectively in vitro. Microscopic and immunohistochemical studies, together with DNA analysis and flow cytometric analysis of p53 and bcl-2 oncogene expression, revealed some novel characteristics of non-apoptotic cell death. We show here for the first time some of the biochemical features of an experimentally induced non-apoptotic PCD and emphasize the distinct biochemical events leading to apoptotic and non-apoptotic PCD.  相似文献   

5.
Early neural cell death is programmed cell death occurring within proliferating and undifferentiated neural progenitors. Little is known about the regulation and role of early neural cell death. In Xenopus embryos, primary neurogenesis is disrupted following the inhibition of early neural cell death, indicating that it is required for normal primary neurogenesis. Here we show that early neural cell death is dependent on primary neurogenesis. Overexpression of XSoxD concomitantly reduced N-Tubulin expression and early neural cell death, as seen by reduced TUNEL staining in stage 15 embryos. Conversely, overexpression of XNgnr1 led to ectopic N-Tubulin expression and TUNEL staining. However, XNeuroD overexpression, which induces ectopic N-Tubulin expression downstream of XNgnr1, had no effect on early neural cell death. E1A12S differentially inhibits the differentiation pathway induced by XNGNR1 protein. E1A12S-mediated inhibition of XNGNR1 neurogenic activity resulted in the reduction of N-Tubulin expression and TUNEL staining. Taken together, our data establish that primary neurogenesis induced by XNGNR1 promotes early neural cell death. This indicates that XNgnr1 positively regulates early neural cell death. We propose that early neural cell death might eliminate cells with abnormally high levels of XNGNR1, which can result in pre-mature neuronal differentiation.  相似文献   

6.
The survival and death rates of inflammatory cells directly control their number and are substantially associated with the degree of inflammation. Microglia, key players in neuroinflammation, often cause excessive reactions implicated in neurological diseases. However, the mechanisms that determine microglial fate under pathological conditions remain to be elucidated. Here, we report that activation by lipopolysaccharide (LPS, a Toll-like receptor 4 ligand), an inflammation inducer, primarily promotes survival of microglia, but as its concentration is increased it induces cell death, resulting in decreased cell number. Moreover, extracellular ATP, which is released upon tissue damage, further enhanced the survival induced by a low LPS concentration and the death induced by a high LPS concentration. The survival-promoting effect of ATP was mimicked by non-hydrolyzable ATP analog, adenosine 5'-O-(3-thiotriphosphate), and also by the P2X(7) receptor agonist, 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate, and was suppressed by the P2X(7) antagonists, Brilliant Blue G and A 438079. On the contrary, the death of LPS-activated microglia was not affected by adenosine 5'-O-(3-thiotriphosphate), but enhanced by adenosine, ATP breakdown product. Thus, extracellular ATP modulates microglial survival and death in different ways involving P2X(7) receptor activation and ATP degradation to adenosine, respectively. Such Toll-like receptor 4/purinergic signaling may provide a fine regulatory system of neuroinflammation through modulating the microglial cell number.  相似文献   

7.
8.
Interferon-gamma (IFN-gamma), as one of interferon family that regulates antiviral, antiproliferative, and immunomodulatory responses, has been implicated for the growth regulation of ovarian cancer cells. However, the molecular mechanisms are not yet fully defined. To analyze detailed mechanisms, the ovarian cancer cell lines (2774, PA-1, OVCAR-3, and SKOV-3) were treated with IFN-gamma. The growth of 2774 was most effectively suppressed than that of other cells in both time-course and dose-dependent experiments. The order of sensitivity in other cells was PA-1 > OVCAR-3 > SKOV-3 (not responded at all). The DNA fragmentation and DAPI staining assays suggested that the IFN-gamma-mediated cytotoxicity could be triggered by apoptosis. The treatment induced IFN regulatory factor-1 (IRF-1) in two IFN-gamma-sensitive cells (2774, PA-1), whereas IRF-1 was not induced in two IFN-gamma-resistant cells (OVCAR-3, SKOV-3). The levels of p53 and p21WAF1 were not strikingly changed in all four cells. Interestingly, the expression of interleukin-converting enzyme (ICE, or caspase-1) was increased by the treatment in a kinetically consistent manner to the induction of IRF-1. However, CD95 (Fas/APO-1) was not changed. Apoptosis was greatly induced, when IRF-1 was transiently expressed in PA-1 without the treatment of IFN-gamma. However, it was repressed when IRF-1 together with IRF-2, an antagonist of IRF-1, were coexpressed. In addition, the effect of IFN-gamma was reduced in the 2774 and PA-1 cells stably expressing either IRF-1 antisense or IRF-2 sense, as shown by the cytotoxicity and FACS analysis. Furthermore, the IFN-gamma-induced apoptosis was greatly reduced, when inhibitors of ICE were treated into PA-1 cells. Taken together, these results suggest that IRF-1 directly mediates the IFN-gamma-induced apoptosis via the activation of caspase-1 gene expression in IFN-gamma-sensitive ovarian cancer cells.  相似文献   

9.
10.
11.
Amyloid deposition is a common feature of Alzheimer's disease and type 2 diabetes related to beta-amyloid peptides (betaA) and human amylin (hA), respectively. Both betaA and hA form aggregates and fibrils and kill cultured cells. To investigate whether betaA and hA display peptide-specific toxicity on cultured islet beta-cells, we examined the effects of (1-40)betaA and (25-35)betaA peptides on hA-mediated cell death and [(125)I-Tyr(37)]hA precipitation. Synthetic hA aggregated in solution and evoked both conformation- and sequence-dependent cell death. While neither (1-40)betaA nor (25-35)betaA was toxic to islet beta-cells, they suppressed hA-evoked cell death in a concentration-dependent and saturable manner. Only (1-40)betaA, but not (25-35)betaA, showed trophic effects on cultured islet beta-cells and inhibited the precipitation of [(125)I]hA caused by hA. These results suggest that (25-35)betaA does not interfere with hA-mediated fibril formation. Suppression of hA-evoked death of cultured pancreatic islet beta-cells by the betaA peptides is likely to occur through a competing interaction at these cells.  相似文献   

12.
13.
14.
Both the Notch-signaling pathway and extracellular signal regulated kinase (ERK) cascade are involved in a wide variety of biological processes, such as proliferation, differentiation, survival, and tumorigenesis. Their dysregulation in recent studies have been shown to be associated with glioma formation. Here, we show that transforming growth factor-alpha (TGF-alpha) stimulated glioma cell line U251 growth and can partly compensate for the inhibitory effect of Notch-signaling inhibitor DAPT. The effect of TGF-alpha on ERK1/2 phosphorylation was prompt and transient and could be inhibited by mitogen-activated/extracellular signal-regulated kinase kinase 1/2 (MEK1/2) specific inhibitor PD98059. Moreover, TGF-alpha was capable of up-regulating Hairy-enhancer of split1 (Hes1) expression which was independent of Notch1 activation, and of introducing Hes1 nuclear import in the presence of ERK1/2 activation. Collectively, our data suggest a potential linkage between ERK activation and the Notch-signaling pathway.  相似文献   

15.
16.
Indoleamine 2,3-dioxygenase (IDO), a tryptophan-catabolizing enzyme, is an intracellular enzyme possessing various immunosuppressive properties. Here, we report the possible use of this enzyme to suppress proliferation of immune cells cocultured with IDO-expressing fibroblasts of an allogenic skin substitute. Fetal skin fibroblasts embedded within bovine collagen were treated with cytokine interferon-gamma (IFN-gamma) to induce expression of IDO mRNA and protein. Expression of IDO mRNA was evaluated by Northern analysis. IDO enzyme activity was evaluated by measurement of kynurenine and tryptophan levels in the IFN-gamma untreated and treated fibroblasts. The results of Northern analysis showed a dose-dependent increase in expression of IDO mRNA in response to various concentrations of IFN-gamma used. The levels of kynurenine and tryptophan measured, as the bioactivity of IDO, were significantly different in the IFN-gamma treated fibroblasts, compared to those of controls (P < 0.001). In a lasting effect experiment, the expression of IDO mRNA was gradually reduced to an undetectable level within 32 h of IFN-gamma removal. The results of Western blot analysis, however, revealed a significantly longer (192 h) lasting effect of IFN-gamma on IDO protein level, relative to that of mRNA expression. To demonstrate immunosuppressive effects of IDO on proliferation of immune cells, IDO-expressing fibroblasts were cocultured with peripheral blood mononuclear cells (PBMC) for a period of 5 days. The results of (3)H-thymidine incorporation showed a significant reduction in proliferation of PBMC when cocultured with IDO-expressing fibroblasts, compared to those cocultured with non-IDO-expressing fibroblasts (P < 0.001). Furthermore, addition of IDO-inhibitor (1-methyl-d-tryptophan) reversed the suppressive effects of IDO on PBMC proliferation in a dose-dependant fashion. To test the viability of immune cells cocultured with IDO-expressing fibroblasts, FACS analysis of the PI stained PBMC was conducted and no significant difference was found between these cells and the controls. In another set of experiments, we showed that migration rate and subsequent proliferation of IDO-expressing fibroblasts are also the same as those of control cells. In conclusion, IDO-expressing allogenic fibroblasts embedded within collagen gel suppress the proliferation of allogenic immune cells, while they still remain viable in this IDO-induced tryptophan-deficient culture environment.  相似文献   

17.
The levels of a (2'-5')An-dependent endonuclease (RNase L) were determined in extracts prepared from murine L cells and Ehrlich ascites tumor (EAT) cells by measuring specific binding of protein to a labeled derivative of (2'-5')An, (2'-5')A3[32P]pCp. RNase L levels were found to depend both on interferon (IFN) treatment and on cell growth conditions. Treatment of murine L cells and EAT cells with 100-2,000 IRU IFN beta or IFN gamma resulted in a similar 2-4-fold increase in the levels of RNase L when cells were present at low density. The levels of RNase L were also shown to increase 2-3-fold as cells approached saturation density. Serum-starved cells also displayed relatively high levels of RNase L. RNase L levels in cells maintained at high cell density did not change appreciably following treatment with IFN beta or IFN gamma. Regulation of RNase L levels by cell growth conditions as well as by IFN beta or IFN gamma treatment suggests that RNase L may play an important role in regulating the levels of cellular mRNAs as well as acting to degrade viral RNAs.  相似文献   

18.
LIGHT is a member of tumor necrosis factor (TNF) superfamily, and previous studies have indicated that in the presence of interferon-gamma (IFN-gamma), LIGHT through LTbetaR signaling can induce cell death with features unlike classic apoptosis. In present study, we investigated the mechanism of LIGHT/IFN-gamma-induced cell death in HT-29 cells, where the cell death was profoundly induced when sub-toxic concentrations of LIGHT and IFN-gamma were co-treated. LIGHT/IFN-gamma-induced cell death was accompanied by DNA fragmentation and slight LDH release. This effect was not affected by caspase, JNK nor cathepsin B inhibitors, but was partially prevented by p38 mitogen-activated protein kinase (MAPK) and poly (ADP-ribose) polymerase (PARP) inhibitors, and abolished by aurintricarboxylic acid (ATA), which is an inhibitor of endonuclease and STATs signaling of IFN-gamma. Immunobloting reveals that LIGHT/IFN-gamma could induce p38 MAPK activity, Bak and Fas expression, but down-regulate Mcl-1. Besides, LIGHT/IFN-gamma could not activate caspase-3 and -9, but decreased mitochondrial membrane potential. Although LIGHT could not affect IFN-gamma-induced STAT1 phosphorylation and transactivation activity, which was required for the sensitization of cell death, survival NF-kappaB signaling of LIGHT was inhibited by IFN-gamma. These data suggest that co-presence of LIGHT and IFN-gamma can induce an integrated interaction in signaling pathways, which lead to mitochondrial dysfunction and mix-type cell death, not involving caspase activation.  相似文献   

19.
Focusing on the final step of osteoclastogenesis, we studied cell fusion from tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells into multinuclear cells. TRAP-positive mononuclear cells before generation of multinuclear cells by cell fusion were differentiated from RAW264.7 cells by treatment with receptor activator of nuclear factor kappa B ligand (RANKL), and then the cells were treated with lipopolysaccharide (LPS), followed by culturing for further 12 h. LPS-induced cell fusion even in the absence of RANKL. Similarly, tumor necrosis factor (TNF)-alpha and peptidoglycan (PGN) induced cell fusion, but M-CSF did not. The cell fusion induced by RANKL, TNF-alpha, and LPS was specifically blocked by osteoprotegerin (OPG), anti-TNF-alpha antibody, and polymyxin B, respectively. LPS- and PGN-induced cell fusion was partly inhibited by anti-TNF-alpha antibody but not by OPG. When TRAP-positive mononuclear cells fused to yield multinuclear cells, phosphorylation of Akt, Src, extracellular signal-regulated kinase (ERK), p38MAPK (p38), and c-Jun NH2-terminal kinase (JNK) was observed. The specific chemical inhibitors LY294002 (PI3K), PP2 (Src), U0126 (MAPK-ERK kinase (MEK)/ERK), and SP600125 (JNK) effectively suppressed cell fusion, although SB203580 (p38) did not. mRNA of nuclear factor of activated T-cells c1 (NFATc1) and dendritic cell-specific transmembrane protein (DC-STAMP) during the cell fusion was quantified, however, there was no obvious difference among the TRAP-positive mononuclear cells treated with or without M-CSF, RANKL, TNF-alpha, LPS, or PGN. Collectively, RANKL, TNF-alpha, LPS, and PGN induced cell fusion of osteoclasts through their own receptors. Subsequent activation of signaling pathways involving PI3K, Src, ERK, and JNK molecules was required for the cell fusion. Although DC-STAMP is considered to be a requisite for cell fusion of osteoclasts, cell fusion-inducing factors other than DC-STAMP might be necessary for the cell fusion.  相似文献   

20.
It has been already known that human diploid fibroblasts are able to produce not only high levels of IFN-beta but also various kinds of cytokines by poly rI: poly rC, and some inflammatory cytokines are induced by IFN-beta gene activation. We also obtained similar results. However, in our system, cytokine productions were extremely enhanced by treating the cells with a low dose of type 1 IFN and the priming effects on cytokine productions were blocked by cycloheximide similar to those on IFN-beta productions. Most of cytokines were produced later than IFN-beta and synthesis patterns of their mRNA showed the same phenomena. We made clear that cytokine productions by poly rI: poly rC are mediated by secreted IFN-beta at a protein level using a monoclonal antibody against human IFN-beta. Further, it was shown that intra-cellular IFN-beta which is not secreted might also participate in cytokine productions. Meanwhile, IL-1beta induced various kinds of cytokines in human fibroblasts and production time courses of these cytokines were similar to those of poly rI: poly rC induced cytokines. Although secreted IFN-beta was not detected in IL-1beta stimulated culture, expression of IFN-beta mRNA was augmented. These results showed that priming effects of type 1 IFN on cytokine productions by poly rI: poly rC might not be the direct action, but successive IFN-beta production might be essential in the production processes of other cytokines. Further, it was suggested that inducible IFN-beta might also take part in IL-1beta-induced cytokine productions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号