首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The purpose of the present study was to investigate the effect of stretch-shortening-cycle-induced muscle damage on the time course of mechanical behaviour in the drop jump. Ten healthy male subjects performed submaximal stretch-shortening cycle (SSC) exercise on a special sledge apparatus. Exhaustion occurred on average within 3 min. A drop jump (DJ) test from a 50-cm height was performed before and immediately after the sledge exercise as well as 2 h, 2 days and 4 days later. The fatigue exercise showed relatively high blood lactate concentration [12.5 (SD 2.6) mmol x l(-1)] and an increase of serum creatine kinase (CK) activity delayed by 2 days [540 (SD 407) U x l(-1)]. The initial decline in the jump performance (before - immediately after) was related negatively to the early recovery in performance (immediately after 2 h) (P < 0.05). The early recovery of the knee joint moment at the end of stretch showed a negative correlation to the delayed decrease in DJ performance (2 h 2 days) (P < 0.01). Thus, the DJ performance showed an initial decline followed by an early recovery and a secondary decline. Both the initial decline and early recovery in the knee joint moment at the end of stretch were related to the corresponding initial (after 2 h) (P < 0.05) and secondary increases (2 h - 2 days) (P < 0.01) in CK. It is suggested that the early recovery as well as the initial decline in the knee joint function could depend on the degree of muscle damage. Delayed decrease in initial stiffness (2 h - 2 days) was negatively related to the corresponding changes in the knee joint angle at touch down in DJ (P < 0.001). These interactions would imply that the decrease in the stiffness regulation and the modulation of the prelanding motor control might be attributable to secondary muscle damage during 2 days after the SSC exercise. Therefore, it may be suggested that the changes in the DJ performance after the exhausting SSC exercise accompany the progress of muscle damage observed by the corresponding increase in serum CK concentration and the corresponding deterioration of stiffness regulation and motor control in DJ.  相似文献   

2.
The purpose of this study was to investigate changing biomechanical properties with increasing drop jump height. Sixteen physically active college students participated in this study and performed drop jumps from heights of 20, 30, 40, 50, and 60 cm (DJ20-DJ60). Kinematic and kinetic data were collected using 11 Eagle cameras and 2 force platforms. Data pertaining to the dominant leg for each of 3 trials for each drop height were recorded and analyzed. Statistical comparisons of vertical ground reaction force (vGRF), impulse, moment, power, work, and stiffness were made between different drop jump heights. The peak vGRF of the dominant leg exceeded 3 times the body weight during DJ50 and DJ60; these values were significantly greater than those for DJ20, DJ30, and DJ40 (all p < 0.004). The height jumped during DJ60 was significantly less than that during DJ20 and DJ30 (both p = 0.010). Both the landing impulse and total impulse during the contact phase were significantly different between each drop height (all p < 0.036) and significantly increased with drop height. There were no significant differences in the takeoff impulse. Peak and mean power absorption and negative work at the knee and ankle joints during DJ40, DJ50, and DJ60 were significantly greater than those during DJ20 and DJ30 (all p < 0.049). Leg, knee, and ankle stiffness during DJ60 were significantly less than during DJ20, DJ30, and DJ40 (all p < 0.037). The results demonstrated that drop jumps from heights >40 cm offered no advantages in terms of mechanical efficiency (SSC power output) and stiffness. Drop jumps from heights in excess of 60 cm are not recommended because of the lack of biomechanical efficiency and the potentially increased risk of injury.  相似文献   

3.
The aim of this study was to investigate a possible relation between power performance of the Wingate test (WT) and isometric leg strength (ILS) and explosive leg strength (ELS) characteristics in young men and women with different physical fitness levels. A total of 166 subjects, including 98 young men and 68 young women, were included in the study. The subjects were divided into a regular exercise group and a sedentary group. The physical and body mass index characteristics of the subjects were not different, and they had not taken part in the directed jumping. When the regular exercise and sedentary groups were considered together with men, women, and total population groups, no significant correlation existed between WT anaerobic fatigue index and ILS and ELS (p > 0.05), but significant positive correlations existed among peak power, peak power per weight, mean power, mean power per weight, and WT power, which were recorded in 5-second intervals (p < 0.001). Although the 5-second WT parameters were significantly correlated with ILS and ELS for the first 15-second period, this correlation was more pronounced for the last 15 seconds for all groups (p < 0.01). As a result, this study indicated that regular physical activity has a positive significant relation on WT power, ILS, and ELS in both sedentary men and women and those engaged in regular sports activities.  相似文献   

4.
Differences in muscle dynamics between the preferred and nonpreferred jumping legs of subjects in maximal, explosive exercise were examined. Eight subjects performed nonfatiguing bouts of single-legged drop jumps and rebound jumps on a force sledge apparatus. Measures of flight time, reactive strength index, peak vertical force, and vertical leg-spring stiffness were obtained for 3 drop jumps and 3 rebound jumps on both legs. Subjects utilized a stiffer leg spring and a more explosive jumping action in the nonpreferred leg when performing a cyclical rebound jumping task in comparison to a single drop jump task (observed through differences in vertical leg-spring stiffness, peak vertical force, and reactive strength index, p < 0.05). The preferred leg performed equally well in both tasks. Between-leg analysis showed no differences in dependent variables between the preferred and the nonpreferred leg in the rebound jumping protocol. However, the drop jump protocol showed significant performance differences, with flight time and reactive strength index greater in the preferred leg than the nonpreferred leg (p < 0.05). We hypothesize that, throughout the lifespan, both legs are equally trained in cyclical rebound jumping tasks through running. However, because a preferred leg must be selected when performing any one-off, single-legged jump, imbalances in this specific task develop over time with consistent selection of a preferred jumping leg. The data demonstrate that the rebound jump protocol is representative of the symmetrical mechanics of forward running and that leg-spring stiffness is modulated depending on the demands of the specific task involved. Strength and conditioning practitioners should give careful consideration to appropriate jump protocol selection and should exercise caution when comparing laboratory results to data gathered in field testing.  相似文献   

5.
This experiment examined the effect of eccentric contraction-induced muscle damage on the stretch-shortening cycle and vertical leg spring stiffness during jumping activities. Ten moderately active male and female adult volunteers participated in this study (aged 23 +/- 2.3 years). Temporary muscle damage to the knee extensors was administered by a bout of eccentric contractions on an isokinetic dynamometer. Measurements were obtained of maximum voluntary force and of take-off velocities for single-leg countermovement jumps (CMJs), squat jumps (SJs), and drop jumps (DJs), performed on a specially constructed sledge and force plate apparatus. These measurements were obtained before and after the damage intervention, and the undamaged leg was used as a control. The results indicated that eccentric muscle damage significantly affected stretch-shortening cycle performance by causing relatively greater reductions in SJ performance than CMJ or DJ. The muscle damage intervention also significantly increased leg-spring stiffness, which indicates that the changes in leg stiffness may be an important adaptation resulting from eccentric exercise.  相似文献   

6.
It has been suggested that during repeated long-term stretch-shortening cycle (SSC) exercise the decreased neuromuscular function may result partly from alterations in stiffness regulation. Therefore, interaction between the short latency stretch-reflex component (M1) and muscle stiffness and their influences on muscle performance were investigated before and after long lasting SSC exercise. The test protocol included various jumps on a sledge ergometer. The interpretation of the sensitivity of the reflex was based on the measurements of the patellar reflexes and the M1 reflex components. The peak muscle stiffness was measured indirectly and calculated as a coefficient of the changes in the Achilles tendon force and the muscle length. The fatigue protocol induced a marked impairment of the neuromuscular function in maximal SSC jumps. This was demonstrated by a 14.1%–17.7% (n.s. –P < 0.001) reduction in the mean eccentric forces and a 17.3%–31.8% (n.s. –P < 0.05) reduction in the corresponding M1 area under the electromyograms. Both of these methods of assessing the short latency reflex response showed a clear deterioration in the sensitivity of the reflex after fatigue (P < 0.05–0.001). This was also the case for the eccentric peak stiffness of the soleus muscle which declined immediately after fatigue by 5.4% to 7.1% (n.s. –P < 0.05) depending on the jump condition. The results observed would suggest that the modulation of neural input to the muscle was at least partly of reflex origin from the contracting muscle, and furthermore, that the reduced muscle stiffness which accompanied the decreased reflex sensitivity could have been partly responsible for the weakened muscle performance due to impaired utilization of elastic energy. Accepted: 28 April 1998  相似文献   

7.
ABSTRACT: Lloyd, RS, Oliver, JL, Hughes, MG, and Williams, CA. The effects of 4-weeks of plyometric training on reactive strength index and leg stiffness in male youths. J Strength Cond Res 26(10): 2812-2819, 2012-Although previous pediatric research has reported performance improvements in muscular power, agility, speed, and rate-of-force development after exposure to plyometric training, the effects on reactive strength index (RSI) and leg stiffness remain unclear. One hundred and twenty-nine boys from 3 different age groups (9, 12, and 15 years) participated and were divided into either an experimental (EXP) or control (CON) group within their respective age groups. The EXP groups followed a twice-weekly, 4-week plyometric training program, whereas the CON groups participated in their normal physical education lessons. Preintervention and postintervention measures were collected for RSI (during maximal hopping) and leg stiffness (during submaximal hopping). Both 12- and 15-year-old EXP groups made significant improvements in both absolute and relative leg stiffness (p < 0.05). The 9-year-old EXP group and CON groups for all ages did not make significant changes in leg stiffness. The 12-year-old EXP cohort also made significant improvements in RSI (p < 0.05). Both 15- and 9-year-old EXP cohorts, and CON groups for all ages, failed to show any significant improvements in RSI. The study concludes that improvements in RSI and leg stiffness after a 4-week plyometric training program are age dependent during childhood.  相似文献   

8.
The purpose of this investigation was to determine the concurrent validity of a commonly used electronic switch mat (ESM), or jump mat, compared with force plate (FP) data. The efficiency of collection and accuracy of data are paramount to athlete and player field testing for the strength and conditioning coach who often has access only to a jump mat. Ten subjects from 5 different sporting backgrounds completed 3 squat jumps (SJs), 3 countermovement jumps (CMJs), and 3 drop jumps (DJs). The jumps were performed on an AMTI FP operating at 1,000 Hz with an ESM positioned on top of the platform. All the subjects were experienced with the protocols involved with jump testing. The resulting absolute errors between FP and ESM data were 0.01, 0.02, and 0.01 m for CMJ, SJ, and DJ heights, respectively. However, the coefficient of variation for the DJ contact time (CT) was 57.25%, CMJ (r = 0.996), and SJ (r = 0.958) heights correlated very strongly with force platform data, and DJ data were not as strong (r = 0.683). Confidence interval tests revealed bias toward CMJ and SJ (p < 0.05). The jump mat can accurately calculate the CMJ height, SJ height, and reactive strength index for all the 3 jump protocols. However, the faster CTs and rapid movements involved in a DJ may limit its reliability when giving measures of CT, flight time, and height jumped for DJs. Strength and conditioning coaches can use such a jump mat device with the confidence that it is accurately producing valid measurements of their athlete's performance for CMJ and SJ slow SSC protocols.  相似文献   

9.
ABSTRACT: McCarthy, JP, Wood, DS, Bolding, MS, Roy, JLP, and Hunter, GR. Potentiation of concentric force and acceleration only occurs early during the stretch-shortening cycle. J Strength Cond Res 26(9): 2345-2355, 2012-The purpose of this study was to determine where stretch-shortening cycle (SSC) potentiation of force, power, velocity, and acceleration occurs across the concentric phase of ballistic leg presses. Second, we examined the influence of late eccentric phase force and length of the amortization phase on potentiated concentric phase performance variables. Twenty-one male runners (age: 31.9 ± 4.7 years) performed SSC and concentric-only (CO) ballistic leg press throws. Potentiations of concentric actions were calculated as the difference between SSC and CO contractions. An analysis splitting the concentric range of motion (ROM) into 6 equal time intervals determined force and acceleration were potentiated (p < 0.05) only during the first one-sixth time interval of concentric motion, whereas velocity and power were potentiated (p < 0.05) at all time intervals over the entire concentric motion with the exception of power over the last one-sixth time interval. A more precise analysis examining 20-millisecond time intervals across the first 200 milliseconds of concentric motion determined force was potentiated only over the first 140 milliseconds and acceleration only over the first 160 milliseconds. Eccentric force measured during the last 100 milliseconds of eccentric motion was related to potentiated force during the initial 200 milliseconds of concentric motion (r = 0.44, p < 0.05) and potentiated mean power across the full concentric ROM (r = 0.62, p < 0.01). Results indicate that in contrast to power and velocity, potentiation of force and acceleration occurs only early during the concentric phase of SSC ballistic leg presses. Correlational findings imply late eccentric phase force is important for generating force and power during the concentric phase of the SSC and thus training focusing on enhancing late phase eccentric force appears important for developing explosive force and power during SSC movements.  相似文献   

10.
Complex training research has indicated that 3-4 minutes may be an optimum intracomplex rest interval. The purpose of this study was to determine if a heavy resistive exercise causes performance enhancement of a slow stretch-shortening cycle exercise and if there is an optimal rest interval. Eighteen subjects performed countermovement jumps (CMJs) before and after a 5 repetition maximum back squat lifting protocol. This procedure was repeated 4 times over 2 days using rest intervals of 30 seconds and 2, 4, and 6 minutes. Flight time and peak ground reaction force (GRF) were the dependent variables. All jumps were performed on a specially constructed sledge and force platform apparatus. Repeated measures analysis of variance found a significant reduction in flight time at the 30-second and 6-minute interval (p < 0.05). No significant difference was found between men and women. Only the men showed an enhancement in jump performance after the 4-minute interval. The improvement window was different for each subject, and an analysis of the greatest increase and decrease in flight time and peak GRF was conducted, showing a significant decrease for men and women and a significant increase in flight time for men and peak ground reaction force for women. The results suggest that complex training can benefit or inhibit CMJ performance depending on the rest interval. The individual determination of the intracomplex rest interval may be necessary in the practical setting.  相似文献   

11.
The purpose of this study was to compare the acute effects of general, specific and combined warm-up (WU) on explosive performance. Healthy male (n = 10) subjects participated in six WU protocols in a crossover randomized study design. Protocols were: passive rest (PR; 15 min of passive rest), running (Run; 5 min of running at 70% of maximum heart rate), stretching (STR; 5 min of static stretching exercise), jumping [Jump; 5 min of jumping exercises – 3x8 countermovement jumps (CMJ) and 3x8 drop jumps from 60 cm (DJ60)], and combined (COM; protocols Run+STR+Jump combined). Immediately before and after each WU, subjects were assessed for explosive concentric-only (i.e. squat jump – SJ), slow stretch-shortening cycle (i.e. CMJ), fast stretch-shortening cycle (i.e. DJ60) and contact time (CT) muscle performance. PR significantly reduced SJ performance (p =0.007). Run increased SJ (p =0.0001) and CMJ (p =0.002). STR increased CMJ (p =0.048). Specific WU (i.e. Jump) increased SJ (p =0.001), CMJ (p =0.028) and DJ60 (p =0.006) performance. COM increased CMJ performance (p =0.006). Jump was superior in SJ performance vs. PR (p =0.001). Jump reduced (p =0.03) CT in DJ60. In conclusion, general, specific and combined WU increase slow stretch-shortening cycle (SSC) muscle performance, but only specific WU increases fast SSC muscle performance. Therefore, to increase fast SSC performance, specific fast SSC muscle actions must be included during the WU.  相似文献   

12.
The aim of the current study was to investigate potential age-related differences in neural regulation strategies during maximal and sub-maximal hopping. Thirty-two boys from three different age groups (9-, 12- and 15-years), completed trials of both maximal and sub maximal hopping, and based on contact and flight times, measures of reactive strength index (RSI = jump height/contact time) and leg stiffness (peak ground reaction force/peak displacement of centre of mass) were collected respectively. During all trials, surface electromyograms (EMG) were recorded from four different muscle sites of the dominant lower limb, during 100 ms pre-ground contact, and then four subsequent stretch reflex phases: background muscle activity (0-30 ms), short-latency stretch reflex (31-60 ms), intermediate15 latency stretch reflex 61-90 ms and long-latency stretch reflex (91-120 ms). Reactive strength index and leg stiffness were measured during the hopping trials. During maximal hopping, both 12- and 15-year olds produced significantly greater RSI (P < 0.02) than 9-year olds, with 15-year olds utilising significantly greater soleus muscle activity during the 100 ms prior to ground contact than the younger age groups (P < 0.01). During sub-maximal hopping, 15-year olds produced significantly greater absolute leg stiffness than both 12- and 9-year olds (P < 0.01), with 9-year olds producing significantly less soleus muscle activity during the 31-60 ms time phase. For all age groups, sub-maximal hopping was associated with significantly greater background muscle activity and short-latency stretch reflex activity in the soleus and vastus lateralis, when compared to maximal hopping (P < 0.001). Results suggest that as children mature, they become more reliant on supra-spinal feed forward input and short latency stretch reflexes to regulate greater levels of leg stiffness and RSI when hopping.  相似文献   

13.
AimSledge jump systems (SJS) are often employed to examine the underlying mechanical and neuromuscular mechanisms of the stretch-shortening cycle (SSC) as they allow the systematic variation of impact velocity and energy. However, in existing SJS the jumps are not very comparable to natural jumps because of the long contact times (~200%), which prevent the storage of kinetic energy. The aim of the present study was to evaluate if an ultra-light sledge, built in a way that joint movement is barely restricted, allows jumps that are comparable to natural jumps.MethodsGround reaction forces, kinematic and electromyographic (EMG) data of 21 healthy subjects were compared between normal hoppings (NH) on the ground and hoppings in a custom-built SJS (sledge hoppings, SH).ResultsNormalized to NH, the ground contact times for the SH were prolonged (+22%), while the peak forces (?21%) and the preactivity of the soleus and gastrocnemius medialis muscles were reduced (?20% and ?22%, respectively). No significant changes were observed for the iEMG of the short latency response of those muscles (+1% and +8%) and the ranges of motion in the ankle, knee and hip joint (differences of 1, 1 and 2 degrees). The reduced peak forces were associated with a reduced leg stiffness (?21%).ConclusionThe new system allows reactive jumps that are rather comparable to natural jumps. Therefore, the new SJS seems to be an adequate system in order to examine the SSC under controlled and almost natural conditions.  相似文献   

14.
Effects of normal strength exercise on leukocyte accumulation were examined in 10 well-trained male subjects (27.2 +/- 2.7 yr). The workout, consisting of five maximal sets of three repetitions of leg press exercise and five maximal sets of six repetitions of knee extension exercise, was performed with the dominant leg, and the other leg served as control. Repeated maximal isokinetic knee extensions at 60 degrees /s were performed to evaluate neuromuscular fatigue and recovery after the workout. Accumulation of leukocytes was assessed with 99mTc-labeled cells, and repeated images of the thighs were taken 1-24 h after the workout. Maximal force-generating capacity in the exercised leg was reduced by 17 +/- 2% (P < 0.01) after the workout. The course of recovery followed a biphasic pattern characterized by halted recovery 10-23 h after exercise. The presence of leukocytes was approximately 10% higher in the exercised than in the control thigh 10 h after exercise (P < 0.05). This difference increased to approximately 15% at 20 h after exercise (P < 0.05). The retarded recovery of maximal force-generating capacity 10-20 h after exercise, together with a significant infiltration of leukocytes in exercised muscle during the same time interval, shows a temporal relation between leukocyte infiltration and impaired recovery.  相似文献   

15.
Although it is suggested that periods of naturally occurring accelerated adaptation may exist for various physical parameters, it would appear that no such evidence exists for stretch-shortening cycle (SSC) development. Two hundred and fifty male youths aged 7-17 years were tested for squat (SJ) and countermovement jump (CMJ) height, reactive strength index (RSI), and leg stiffness, with analyses of variance used to establish any significant between-group differences. Additionally, to ascertain the existence of periods of accelerated adaptation, inferences were made about the magnitudes of change between consecutive chronological age groups in relation to the smallest worthwhile change. The largest mean differences (±90% confidence limits) occurred between age groups 10 and 11 (G10-G11) for squat jump (SJ) height (21.61 ± 12.08-31.94%), CMJ height (20.80 ± 11.1-44.1%), and RSI (26.51 ± 11.07-44.10%); and between G12 and G13 for SJ (15.31 ± 7.47-23.73%) and CMJ (16.09 ± 7.50-25.38%) height. Negative mean differences occurred between G11 and G12 for SJ height (-1.32 ± -9.30 to 7.37%), CMJ jump height (-7.68 ± -15.15 to 0.45%) and RSI (-11.48 ± -22.21 to 0.74%); and between G10 and G11 for leg stiffness (-8.87 ± -18.85 to 2.34%). It would appear almost certain that windows of accelerated adaptation may exist for SJ and CMJ height and RSI in male youths; however, leg stiffness results would suggest that fast-SSC function may follow a different developmental trend.  相似文献   

16.
Functional performance of lower limb muscles and contractile properties of chemically skinned single muscle fibers were evaluated before and after 8 wk of maximal effort stretch-shortening cycle (SSC) exercise training. Muscle biopsies were obtained from the vastus lateralis of eight men before and after the training period. Fibers were evaluated regarding their mechanical properties and subsequently classified according to their myosin heavy chain content (SDS-PAGE). After training, maximal leg extensor muscle force and vertical jump performance were improved 12% (P<0.01) and 13% (P<0.001), respectively. Single-fiber cross-sectional area increased 23% in type I (P<0.01), 22% in type IIa (P<0.001), and 30% in type IIa/IIx fibers (P<0.001). Peak force increased 19% in type I (P<0.01), 15% in type IIa (P<0.001), and 16% in type IIa/IIx fibers (P<0.001). When peak force was normalized with cross-sectional area, no changes were found for any fiber type. Maximal shortening velocity was increased 18, 29, and 22% in type I, IIa, and hybrid IIa/IIx fibers, respectively (P<0.001). Peak power was enhanced in all fiber types, and normalized peak power improved 9% in type IIa fibers (P<0.05). Fiber tension on passive stretch increased in IIa/IIx fibers only (P<0.05). In conclusion, short-term SSC exercise training enhanced single-fiber contraction performance via force and contraction velocity in type I, IIa, and IIa/IIx fibers. These results suggest that SSC exercises are an effective training approach to improve fiber force, contraction velocity, and therefore power.  相似文献   

17.
The acute effects of maximal voluntary isometric contractions (MVICs) in the squat position on subsequent measures of power output over 3 consecutive sets were investigated. Sixteen trained men experienced with back squats participated in the study. A 7-second MVIC was performed 4 minutes before the execution of 5 maximal countermovement jumps (CMJs) and was repeated for 3 consecutive sets (protocol 1). The results were compared to power output performance in a similar protocol (protocol 2) that excluded the 7-second MVICs. No significant differences occurred in any of the power output measurements between protocol 1 and protocol 2, nor did significance occur linearly across the 4 sets of CMJ, with the exception of a decrease in peak power in protocol 2 (p < or = 0.05). Using both mean and maximal values only one significant correlation between either relative strength and performance enhancement or absolute strength and performance enhancement was present at p < or = 0.01. At p < or = 0.05, significant correlations were found between absolute strength and mean peak power (PP), mean peak acceleration (PA), mean peak force (PF), max PP, max PA, max PF, and max peak velocity. These data indicate that the execution of an MVIC performed before a power exercise was inadequate to acutely enhance power output over any of 3 consecutive trials.  相似文献   

18.
Neuromuscular fatigue after maximal stretch-shortening cycle exercise   总被引:5,自引:0,他引:5  
Strojnik, V., and P. V. Komi. Neuromuscular fatigueafter maximal stretch-shortening cycle exercise. J. Appl. Physiol. 84(1): 344-350, 1998.To examinesome possible sites of fatigue during short-lasting maximally intensivestretch-shortening cycle exercise, drop jumps on an inclined sledgeapparatus were analyzed. Twelve healthy volunteers performed jumpsuntil they were unable to maintain jumping height >90% of theirmaximum. After the workout, the increases in the blood lactateconcentration and serum creatine kinase activation were statisticallysignificant (P < 0.001 and P < 0.05, respectively) but rathersmall in physiological terms. The major changes after the workout wereas follows: the single twitch was characterized by smaller peak torque(P < 0.05) and shorter time to peak(P < 0.05) and half-relaxation time(P < 0.01). The double-twitch torqueremained at the same level (P > 0.05), but with a steeper maximal slope of torque rise(P < 0.05); during 20- and 100-Hzstimulation the torque declined (both P < 0.01) and the maximal voluntarytorque changed nonsignificantly but with a smaller maximal slope oftorque rise (P < 0.01) and a higheractivation level (P < 0.05),accompanied by an increased electromyogram amplitude. These findingsindicate that the muscle response after the short-lasting consecutivemaximum jumps on the sledge apparatus may involve two distinctmechanisms acting in opposite directions:1) The contractile mechanism seemsto be potentiated through a shorterCa2+ transient and fastercross-bridge cycling, as implied by twitch changes.2) High-frequency action potentialpropagation shows an impairment, which is suggested as the possibledominant reason for fatigue in exercise of this type.

  相似文献   

19.
Stretch-shortening cycle: a powerful model to study normal and fatigued muscle   总被引:11,自引:0,他引:11  
Komi PV 《Journal of biomechanics》2000,33(10):1197-1206
Stretch-shortening cycle (SSC) in human skeletal muscle gives unique possibilities to study normal and fatigued muscle function. The in vivo force measurement systems, buckle transducer technique and optic fiber technique, have revealed that, as compared to a pure concentric action, a non-fatiguing SSC exercise demonstrates considerable performance enhancement with increased force at a given shortening velocity. Characteristic to this phenomenon is very low EMG-activity in the concentric phase of the cycle, but a very pronounced contribution of the short-latency stretch-reflex component. This reflex contributes significantly to force generation during the transition (stretch-shortening) phase in SSC action such as hopping and running. The amplitude of the stretch reflex component - and the subsequent force enhancement - may vary according to the increased stretch-load but also to the level of fatigue. While moderate SSC fatigue may result in slight potentiation, the exhaustive SSC fatigue can dramatically reduce the same reflex contribution. SSC fatigue is a useful model to study the processes of reversible muscle damage and how they interact with muscle mechanics, joint and muscle stiffness. All these parameters and their reduction during SSC fatigue changes stiffness regulation through direct influences on muscle spindle (disfacilitation), and by activating III and IV afferent nerve endings (proprioseptic inhibition). The resulting reduced stretch reflex sensitivity and muscle stiffness deteriorate the force potentiation mechanisms. Recovery of these processes is long lasting and follows the bimodal trend of recovery. Direct mechanical disturbances in the sarcomere structural proteins, such as titin, may also occur as a result of an exhaustive SSC exercise bout.  相似文献   

20.
The purpose of this study was to evaluate which measure of a drop jump (DJ) has the highest correlation with sprinting speed over 60 m. For use of comparison, maximal leg strengths in a front squat, countermovement jump, and squat jump were also assessed. The subjects in the study were all high-caliber female university rugby players. Subjects did DJs from 0.12, 0.24, 0.36, 0.48, 0.60, 0.72, and 0.84 m. Jump height and reactive strength index (RSI) were calculated at each drop height. Pearson correlations were used to analyze the relationship between the strength and jumping measures with sprinting speed. The DJ height from 0.84 m had the highest negative correlation with 0- to 10-m split (r = -0.66), the 10- to 30-m split (r = -0.86) and 30- to 60-m split (r = -0.86). The use of RSI is questioned as a measurement of DJ performance. It is suggested that maximal height achieved in a DJ is the most important DJ measure. If it is desired to measure ground contact time, then it may be more useful to use a second test where the jump height for the athlete is set by having the athlete jump onto a box or touch a target overhead set at a standard height and measure the ground contact time with a switch mat or force plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号