共查询到20条相似文献,搜索用时 9 毫秒
1.
High throughput chromatography strategies for potential use in the formal process characterization of a monoclonal antibody 下载免费PDF全文
Matthew G. Petroff Haiying Bao John P. Welsh Miranda van Beuningen – de Vaan Jennifer M. Pollard David J. Roush Sunitha Kandula Peter Machielsen Nihal Tugcu Thomas O. Linden 《Biotechnology and bioengineering》2016,113(6):1273-1283
2.
Yumiko Masuda Masashi Tsuda Chie Hashikawa-Muto Yusuke Takahashi Koichi Nonaka Kaori Wakamatsu 《Biotechnology progress》2019,35(5):e2858
Viral safety is a critical concern with regard to monoclonal antibody (mAb) products produced in mammalian cells such as Chinese hamster ovary cells. Manufacturers are required to ensure the safety of such products by validating the clearance of viruses in downstream purification steps. Cation exchange (CEX) chromatography is widely used in bind/elute mode as a polishing step in mAb purification. However, bind/elute modes require a large volume of expensive resin. To reduce the production cost, the use of CEX chromatography in overloaded mode has recently been investigated. The viral clearance ability in overloaded mode was evaluated using murine leukemia virus (MLV). Even under high-load conditions such as 2,000 g mAb/L resin, MLV was removed from mAb solutions. This viral clearance ability was not significantly affected by resin type or mAb type. The overloaded mode can also remove other types of viruses such as pseudorabies virus and reovirus Type 3 from mAb solutions. Based on these results, this cost-effective overloaded mode is comparable to the bind-elute mode in terms of viral removal. 相似文献
3.
4.
A comparative study of monoclonal antibodies. 1. phase behavior and protein–protein interactions 下载免费PDF全文
Rachael A. Lewus Nicholas E. Levy Abraham M. Lenhoff Stanley I. Sandler 《Biotechnology progress》2015,31(1):268-276
Protein phase behavior is involved in numerous aspects of downstream processing, either by design as in crystallization or precipitation processes, or as an undesired effect, such as aggregation. This work explores the phase behavior of eight monoclonal antibodies (mAbs) that exhibit liquid–liquid separation, aggregation, gelation, and crystallization. The phase behavior has been studied systematically as a function of a number of factors, including solution composition and pH, in order to explore the degree of variability among different antibodies. Comparisons of the locations of phase boundaries show consistent trends as a function of solution composition; however, changing the solution pH has different effects on each of the antibodies studied. Furthermore, the types of dense phases formed varied among the antibodies. Protein–protein interactions, as reflected by values of the osmotic second virial coefficient, are used to correlate the phase behavior. The primary findings are that values of the osmotic second virial coefficient are useful for correlating phase boundary locations, though there is appreciable variability among the antibodies in the apparent strengths of the intrinsic protein–protein attraction manifested. However, the osmotic second virial coefficient does not provide a clear basis to predict the type of dense phase likely to result under a given set of solution conditions. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:268–276, 2015 相似文献
5.
6.
ShuYing Jing Ce Shi Hui Yi Leong JunJie Yuan Dong Gao HaiBin Wang ShanJing Yao DongQiang Lin 《Engineering in Life Science》2021,21(6):382
Downstream processing of mAb charge variants is difficult owing to their similar molecular structures and surface charge properties. This study aimed to apply a novel twin‐column continuous chromatography (called N‐rich mode) to separate and enrich acidic variants of an IgG1 mAb. Besides, a comparison study with traditional scaled‐up batch‐mode cation exchange (CEX) chromatography was conducted. For the N‐rich process, two 3.93 mL columns were used, and the buffer system, flow rate and elution gradient slope were optimized. The results showed that 1.33 mg acidic variants with nearly 100% purity could be attained after a 22‐cycle accumulation. The yield was 86.21% with the productivity of 7.82 mg/L/h. On the other hand, for the batch CEX process, 4.15 mL column was first used to optimize the separation conditions, and then a scaled‐up column of 88.20 mL was used to separate 1.19 mg acidic variants with the purity of nearly 100%. The yield was 59.18% with the productivity of 7.78 mg/L/h. By comparing between the N‐rich and scaled‐up CEX processes, the results indicated that the N‐rich method displays a remarkable advantage on the product yield, i.e. 1.46‐fold increment without the loss of productivity and purity. Generally, twin‐column N‐rich continuous chromatography displays a high potential to enrich minor compounds with a higher yield, more flexibility and lower resin cost. 相似文献
7.
Protein phase behavior characterization is a multivariate problem due to the high amount of influencing parameters and the diversity of the proteins. Single influences on the protein are not understood and fundamental knowledge remains to be obtained. For this purpose, a systematic screening method was developed to characterize the influence of fluid phase conditions on the phase behavior of proteins in three‐dimensional phase diagrams. This approach was applied to three monoclonal antibodies to investigate influences of pH, protein and salt concentrations, with five different salts being tested. Although differences exist between the antibodies, this extensive study confirmed the general applicability of the Hofmeister series over the broad parameter range analyzed. The influence of the different salts on the aggregation (crystallization and precipitation) probability was described qualitatively using this Hofmeister series, with a differentiation between crystallization and precipitation being impossible, however. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1103–1113, 2014 相似文献
8.
The large scale production of monoclonal antibodies presents a challenge to design efficient and cost effective downstream purification processes. We explored a two stage resin screening approach to identify the best candidates to be utilized for the platform purification of monoclonal antibodies. The study focused on commercially available affinity resins including Protein A, mimetic and mixed-mode interaction resins as well as ion exchangers used in polishing steps. An initial screening using pure proteins was followed by a final screening where selected resins were utilized for the purification of MAbs in complex mixtures. Initial screenings aimed to measure the theoretical upper limit for dynamic binding capacity (DBC) at 1% breakthrough and productivity. We confirmed that DBC of affinity, mimetic and mixed-mode resins was a strong function of the linear velocity used for loading. Productivities >27 g/(L-h), were obtained for rProtein A FF, Mabselect and Prosep rA Ultra at 2 min residence time. For the cation exchangers, we identified UNOsphere S and Fractogel SO(3) as the best candidates for our purification based on DBC. For anion exchangers operated in flowthrough mode, Q Sepharose XL and UNOsphere Q were selected from the initial screening based on DBC and resolution of IgG from BSA. Finally, a three step purification scheme was implemented using the selected affinity and ion exchangers for the purification of IgG from complex feedstocks. We found that Mabselect followed by UNOsphere Q and UNOsphere S provided the best purification scheme for our applications based on productivity. 相似文献
9.
Anupa Anupa Vikrant Bansode Nikhil Kateja Anurag S. Rathore 《Biotechnology progress》2024,40(1):e3395
Charge heterogeneity of monoclonal antibodies is considered a critical quality attribute and hence needs to be monitored and controlled by the manufacturer. Typically, this is accomplished via separation of charge variants on cation exchange chromatography (CEX) using a pH or conductivity based linear gradient elution. Although an effective approach, this is challenging particularly during continuous processing as creation of linear gradient during continuous processing adds to process complexity and can lead to deviations in product quality upon slightest changes in gradient formation. Moreover, the long length of elution gradient along with the required peak fractionation makes process integration difficult. In this study, we propose a novel approach for separation of charge variants during continuous CEX chromatography by utilizing a combination of displacement mode chromatography and salt-based step elution. It has been demonstrated that while the displacement mode of chromatography enables control of acidic variants ≤26% in the CEX eluate, salt-based step gradient elution manages basic charge variant ≤25% in the CEX eluate. The proposed approach has been successfully demonstrated using feed materials with varying compositions. On comparing the designed strategy with 2-column concurrent (CC) chromatography, the resin specific productivity increased by 95% and resin utilization increased by 183% with recovery of main species >99%. Further, in order to showcase the amenability of the designed CEX method in continuous operation, the method was examined in our in-house continuous mAb platform. 相似文献
10.
Protein phase behavior is implicated in numerous aspects of downstream processing either by design, as in crystallization or precipitation processes, or as an undesired effect, such as aggregation. An improved understanding of protein phase behavior is, therefore, important for developing rational design strategies for important process steps. This work explores the phase behavior of a monoclonal antibody (mAb), IDEC-152, which exhibits liquid-liquid separation, aggregation, gelation, and crystallization. A systematic study of numerous factors, including the effects of solution composition and pH, has been conducted to explore the phase behavior of this antibody. Phenomena observed include a significant dependence of the cloud point on the cation in sulfate salts and nonmonotonic trends in pH dependence. Additionally, conditions for crystallization of this mAb are reported for the first time. Protein-protein interactions, as determined from the osmotic second virial coefficient, are used to interpret the phase behavior. 相似文献
11.
Egor Trilisky Ronald Gillespie Timothy D. Osslund Suresh Vunnum 《Biotechnology progress》2011,27(4):1054-1067
Crystallization holds the potential to be used for protein purification and low‐viscosity drug substance and drug product formulations. Twenty‐two different proteins (20 monoclonal antibodies and two Fc‐fusions) were examined to determine the breadth of applicability of crystallization to these therapeutic proteins. Vapor diffusion technique and an evaporative screening method were used to identify crystallization conditions using around a 100 initial conditions based on reagents that are generally regarded as safe (GRAS). Of 16 IgG2s examined, at least four formed diffraction‐quality crystals and four others formed crystal‐like particles. At least three of the IgG2s that crystallized well were also crystallized under the same set of operating conditions using inexpensive GRAS reagents. The crystals were formed to high‐yields in a few hours and were dissolved quickly without impacting product quality. Although only a fraction of the proteins examined crystallized, all exhibited liquid‐liquid phase separation (LLPS), which could be used for their concentration or possibly purification. One of the Fc‐fusions, for example, was concentrated by LLPS to a self‐buffering solution at 150 g/L. Crystallization and LLPS in the salting‐in region were shown to be feasible. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011 相似文献
12.
Pilot scale recovery of monoclonal antibodies by expanded bed ion exchange adsorption 总被引:2,自引:0,他引:2
The aim of the investigations was to estimate the scale up properties of an efficient chromatographic first capture step for the recovery of murine IgG1 from undiluted and unclarified hybridoma cell culture broth using an ion exchange matrix in expanded bed mode. The tested new sulfopropyl-based ion exchange matrix (StreamlineTM SP XL, Amersham Pharmacia Biotech) stands out due to its enhanced capacity compared to its precursor (StreamlineTM SP). Defining the working pH in preliminary electrophoretic analyses (titration curve, SDS-PAGE) and small-scaled chromatographic binding studies showed, that the optimal value for the IgG purification was pH 4.6, where a co-chromatography of the medium supplement albumin (500 mg l-1, pI = 4.8) could not be avoided. Further scouting experiments dealt with the dynamic capacity of the matrix, which was evaluated by frontal adsorption analysis. In packed bed mode no break-through of the target protein was achieved even after 6.5 mg IgG per ml matrix were applied. These results could not be reproduced in expanded bed mode with cell-free supernatant, where the dynamic capacity was found to be only 1.5 mg IgG/ml SP XL. Processing cell-containing broth resulted in an additional decrease of the value down to 0.5 mg ml-1, presumably caused by the remarkable biomass adsorption to the matrix. The search for the reasons led to the examination of the hydrodynamic conditions. Buffer experiments with a tracer substance (acetone) pointed out, that the flow in expanded bed was significantly more influenced by back-mixing effects and channel formations than in packed bed. These effects could be compensated with an enhanced viscosity of the liquid phase, which was achieved by the addition of glucose. As a result of the improved hydrodynamic conditions in the expanded bed, the dynamic capacity could be increased from 0.5 to more than 4.5 mg IgG/ml matrix for the processing of cell culture broth with 400 mM glucose. Finally, the scale up from a StreamlineTM 25 to a StreamlineTM 200 column was performed under conditions, which proved to be optimal: 100 L of unclarified hybridoma broth were concentrated with a binding rate of 95% in less than 3.5 hours. Loading the column no break-through of the target protein was achieved. However, the eluate still contained debris and cells, which points out the major disadvantage of the method: the biomass attachment to the matrix. 相似文献
13.
Evaluation of differences between dual salt‐pH gradient elution and mono gradient elution using a thermodynamic model: Simultaneous separation of six monoclonal antibody charge and size variants on preparative‐scale ion exchange chromatographic resin 下载免费PDF全文
The efficiencies of mono gradient elution and dual salt‐pH gradient elution for separation of six mAb charge and size variants on a preparative‐scale ion exchange chromatographic resin are compared in this study. Results showed that opposite dual salt‐pH gradient elution with increasing pH gradient and simultaneously decreasing salt gradient is best suited for the separation of these mAb charge and size variants on Eshmuno® CPX. Besides giving high binding capacity, this type of opposite dual salt‐pH gradient also provides better resolved mAb variant peaks and lower conductivity in the elution pools compared to single pH or salt gradients. To have a mechanistic understanding of the differences in mAb variants retention behaviors of mono pH gradient, parallel dual salt‐pH gradient, and opposite dual salt‐pH gradient, a linear gradient elution model was used. After determining the model parameters using the linear gradient elution model, 2D plots were used to show the pH and salt dependencies of the reciprocals of distribution coefficient, equilibrium constant, and effective ionic capacity of the mAb variants in these gradient elution systems. Comparison of the 2D plots indicated that the advantage of opposite dual salt‐pH gradient system with increasing pH gradient and simultaneously decreasing salt gradient is the noncontinuous increased acceleration of protein migration. Furthermore, the fitted model parameters can be used for the prediction and optimization of mAb variants separation in dual salt‐pH gradient and step elution. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:973–986, 2018 相似文献
14.
15.
Santosh V. Thakkar Neha Sahni Sangeeta B. Joshi Bruce A. Kerwin Feng He David B. Volkin C. Russell Middaugh 《Protein science : a publication of the Protein Society》2013,22(10):1295-1305
Aggregation of monoclonal antibodies is often a multi‐step process involving structural alterations in monomeric proteins and subsequent formation of soluble or insoluble oligomers. The role of local conformational stability and dynamics of native and/or partially altered structures in determining the aggregation propensity of monoclonal antibodies, however, is not well understood. Here, we investigate the role of conformational stability and dynamics of regions with distinct solvent exposure in determining the aggregation propensity of an IgG1 and IgG2 monoclonal antibody. The temperatures employed span the pre‐unfolding range (10–40°C) and the onset temperatures (Tonset) for exposure of apolar residues (~50°C), alterations in secondary structures (~60°C) and initiation of visible aggregate formation (~60°C). Solvent‐exposed regions were found to precede solvent‐shielded regions in an initiation of aggregation for both proteins. Such a process was observed upon alterations in overall tertiary structure while retaining the secondary structures in both the proteins. In addition, a greater dynamic nature of solvent‐shielded regions in potential intermediates of IgG1 and the improved conformational stability increased its resistance to aggregation when compared to IgG2. These results suggest that local conformational stability and fluctuations of partially altered structures can influence the aggregation propensity of immunoglobulins. 相似文献
16.
17.
Simon Welner Nicole H. Trier Gunnar Houen Paul R. Hansen 《Journal of peptide science》2013,19(2):95-101
Autoantibodies against centromere protein ‐F have been reported to be associated with various types of cancer with poor prognosis. The characterization of these autoantibody specificities is important in both diagnostics and basic research. In this study, we mapped the epitope (NELSRIRSEKA) of two monoclonal centromere protein F antibodies. The epitope was localized by screening of overlapping peptides followed by a fast and efficient estimation of the minimal peptide length required for antibody recognition, based on the screening of terminally truncated resin‐bound peptide analogs. The epitope was determined through competitive inhibition assays of systematically truncated free peptides. In addition, the importance of the involved amino acid side chains of the identified epitope was determined through competitive inhibition assays using alanine‐substituted analogs. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
18.
Enzymatic hydrolysis of cellulose often involves cellulases produced by Trichoderma reesei, of which cellobiohydrolase1 (CBH1) is the most abundant (about 60% of total cellulases) and plays an important role in the hydrolysis of crystalline cellulose. A method for separating sufficient quantities from the bulk cellulase cocktail is highly desirable for many studies, such as those that aim to characterize binding and hydrolysis kinetics of CBH1. In this work, CBH1 was separated from other Spezyme CP cellulases by ion-exchange chromatography using an efficient modification of a smaller scale process. The ion-exchange column was connected to a vacuum manifold system to provide a steady flow through parallel columns and thus achieve scale-up for enzyme separation. With five 5-mL columns running in parallel, about 55 mg of CBH1 was separated from 145 mg of Spezyme CP in a single separation. Step elution was used to replace the continuous gradient used at smaller scale. The purified CBH1 was collected in the fraction eluted with a buffer containing 0.33 M salt and showed comparable purity and activity as the enzyme purified by a fast protein liquid chromatography system. The stability of separated CBH1 was studied for up to 2 days and good thermal stability was observed. Separated CBH1 also showed both high adsorption to bacterial microcrystalline cellulose with ~4 μmol/g maximum adsorption and a K(a) of 5.55 ± 2.34 μM(-1) , and good hydrolytic activity based on atomic force microscopy observations that show a reduction in fiber height. 相似文献
19.
Timothy Iskra Glen R. Bolton Jonathan L. Coffman Ranga Godavarti 《Biotechnology and bioengineering》2013,110(4):1142-1152
Most mAb platform purification processes consist of an affinity capture step followed by one or two polishing steps. An understanding of the performance linkages between the unit operations can lead to robust manufacturing processes. In this study, a weak‐partitioning anion‐exchange chromatography polishing step used in a mAb purification process was characterized through high‐throughput screening (HTS) experiments, small‐scale experiments including a cycling study performed on qualified scale‐down models, and large‐scale manufacturing runs. When material from a Protein A column that had been cycled <10× was loaded on the AEX resin, early breakthrough of impurities and premature loss of capacity was observed. As the cycle number on the Protein A resin increased, the capacity of the subsequent AEX step increased. Different control strategies were considered for preventing impurity breakthrough and improving AEX resin lifetimes. Depth filtration of the Protein A peak pool significantly improved the AEX resin capacity, robustness, and lifetime. Further, the turbidity of the Protein A pool has the potential for use as an in‐process control parameter for monitoring the performance of the AEX step. Biotechnol. Bioeng. 2013; 110: 1142–1152. © 2012 Wiley Periodicals, Inc. 相似文献
20.
Qun Du Melissa Damschroder Timothy M. Pabst Alan K. Hunter William K. Wang 《MABS-AUSTIN》2019,11(4):789-802
We report a case study in which liquid-liquid phase separation (LLPS) negatively impacted the downstream manufacturability of a therapeutic mAb. Process parameter optimization partially mitigated the LLPS, but limitations remained for large-scale manufacturing. Electrostatic interaction driven self-associations and the resulting formation of high-order complexes are established critical properties that led to LLPS. Through chain swapping substitutions with a well-behaved antibody and subsequent study of their solution behaviors, we found the self-association interactions between the light chains (LCs) of this mAb are responsible for the LLPS behavior. With the aid of in silico homology modeling and charged-patch analysis, seven charged residues in the LC complementarity-determining regions (CDRs) were selected for mutagenesis, then evaluated for self-association and LLPS properties. Two charged residues in the light chain (K30 and D50) were identified as the most significant to the LLPS behaviors and to the antigen-binding affinity. Four adjacent charged residues in the light chain (E49, K52, R53, and R92) also contributed to self-association, and thus to LLPS. Molecular engineering substitution of these charged residues with a neutral or oppositely-charged residue disrupted the electrostatic interactions. A double-mutation in CDR2 and CDR3 resulted in a variant that retained antigen-binding affinity and eliminated LLPS. This study demonstrates the critical nature of surface charged resides on LLPS, and highlights the applied power of in silico protein design when applied to improving physiochemical characteristics of therapeutic antibodies. Our study indicates that in silico design and effective protein engineering may be useful in the development of mAbs that encounter similar LLPS issues. 相似文献