共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
DNA double-strand break repair and restoration of viability in X-irradiated diploid yeast cells homozygous for rad50, rad51, rad52, rad55 mutations were studies under conditions of keeping the cells in non-nutrient medium, after irradiation. All the cells were synchronized at the G1 stage of the cell cycle. In contrast to the wild-type yeast, this group of mutants are unable to repair DNA double-strand breaks and do not enhance viability, when kept in non-nutrient medium after irradiation. 相似文献
3.
4.
We have studied the recombinational repair of a double-strand break (DSB) in a plasmid-borneade2::HO-site by an intactade2 allele following the induction of a galactose-inducibleGAL-HO gene. IfGAL-HO expression is not attenuated by the presence of a low level of glucose in the galactose medium, deleterious effects are observed. Our comparison of the effects of severalrad mutations on the relative efficiencies of DSB repair at both theade2::HO-site and at the chromosomalMAT locus indicate that the two processes share common functions. Not surprisingly, most of the recombination-defective mutants found using our assay are alleles of genes in theRAD52 epistasis group. The recombination and repair deficiencies vary among the different mutant groups and also among mutants within a group. In general, there is a correlation between the extents of the recombination and repair defects. Our screen also turned up a novelrfa1 allele with a pronounced deficiency in DSB repair and recombination and asrs2 mutation which causes only a mild defect. 相似文献
5.
We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes. 相似文献
6.
7.
Summary Disruption/deletion mutations in genes of the RAD52 epistasis group of Saccharomyces cerevisiae were examined for their effects on recombination between single-and double-stranded circular DNA substrates and chromosomal genes in a transformation assay. In rad50 mutants there was a small reduction in recombination with single-stranded DNA at the leu2-3, 112 allele; in addition there was an almost complete elimination of recombination at trpl-1 for both single- and double-stranded DNA. Reintroduction of a wild-type RAD50 gene on a replicating plasmid carrying CEN4 restored recombinational competence at trpl-1, indicating that rad50 is defective in gene replacement of this allele. In rad52 mutants a reduction of 30%-50% in recombination involving either single- or double-stranded circular DNA was observed in each experiment when compared to the wild type. This reduction of recombination in rad52 mutants was similar for recombination at the ura352 mutant locus where only integration events have been observed, and at the trpl-1 mutant locus, where recombination occurs predominantly by gene replacement. Neither the rad54 nor the rad57 mutations had a significant effect on recombination with single- or double-stranded DNA substrates. 相似文献
8.
The purpose of this study was to examine the effect of extremely low frequency (ELF) magnetic fields on the induction of genetic damage. In general, mutational studies involving ELF magnetic fields have proven negative. However, studies examining sister-chromatid exchange and chromosome aberrations have yielded conflicting results. In this study, we have examined whether 60-Hz magnetic fields are capable of inducing mutation or mitotic recombination in the yeast Saccharomyces cerevisiae. In addition we determined whether magnetic fields were capable of altering the genetic response of S. cerevisiae to UV (254 nm). We measured the frequencies of induced mutation, gene conversion and reciprocal mitotic crossing-over for exposures to magnetic fields alone (1 mT) or in combination with various UV exposures (2-50 J/m2). These experiments were performed using a repair-proficient strain (RAD+), as well as a strain of yeast (rad3) which is incapable of excising UV-induced thymine dimers. Magnetic field exposures did not induce mutation, gene conversion or reciprocal mitotic crossing-over in either of these strains, nor did the fields influence the frequencies of UV-induced genetic events. 相似文献
9.
The Rad54 protein is an important component of the recombinational DNA repair pathway in vegetative Saccharomyces cerevisiae cells. Unlike those in other members of the RAD52 group, the meiotic defect in rad54 is rather mild, reducing spore viability only to 26%–65%. A consistently greater requirement for Rad54p during meiosis was
observed in hybrid strains, suggesting that Rad54p has a certain role in interhomolog interactions. Such a role is probably
minor as no recombination defects were found in the surviving gametes in three genetic intervals on chromosome V. Also, the
spore viability pattern in tetrads did not reflect an increase in nondisjunction at meiosis I indicative of a meiotic recombination
defect. We suggest that the meiotic defect of rad54 cells lies in the failure to repair meiosis-specific double-strand breaks outside the context of the highly differentiated
pathway leading to interhomolog joint molecules and meiotic crossovers that ensure accurate segregation at meiosis I.
Received: 15 November 1999; in revised form: 11 January 2000 / Accepted: 11 January 2000 相似文献
10.
Recombination plays a central role in the repair of broken chromosomes in all eukaryotes. We carried out a systematic study of mitotic recombination. Using several assays, we established the chronological sequence of events necessary to repair a single double-strand break. Once a chromosome is broken, yeast cells become immediately committed to recombinational repair. Recombination is completed within an hour and exhibits two kinetic gaps. By using this kinetic framework we also characterized the role played by several proteins in the recombinational process. In the absence of Rad52, the broken chromosome ends, both 5' and 3', are rapidly degraded. This is not due to the inability to recombine, since the 3' single-stranded DNA ends are stable in a strain lacking donor sequences. Rad57 is required for two consecutive strand exchange reactions. Surprisingly, we found that the Srs2 helicase also plays an early positive role in the recombination process. 相似文献
11.
12.
13.
14.
15.
Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. 总被引:9,自引:5,他引:9 下载免费PDF全文
An ectopic recombination system using ura3 heteroalleles varying in size from 80 to 960 bp has been used to examine the effect of substrate length on spontaneous mitotic recombination. The ura3 heteroalleles were positioned either on nonhomologous chromosomes (heterochromosomal repeats) or as direct or inverted repeats on the same chromosome (intrachromosomal repeats). While the intrachromosomal events occur at rates at least 2 orders of magnitude greater than the corresponding heterochromosomal events, the recombination rate for each type of repeat considered separately exhibits a linear dependence on substrate length. The linear relationships allow estimation of the corresponding minimal efficient processing segments, which are approximately 250 bp regardless of the relative positions of the repeats in the yeast genome. An examination of the distribution of recombination events into simple gene conversion versus crossover events indicates that reciprocal exchange is more sensitive to substrate size than is gene conversion. 相似文献
16.
17.
Diploid Saccharomyes cerevisae strains lacking the RAD52 gene required for homologous recombination have a very high rate of chromosome loss. Two of four isolates subcultured ~20 times (~500 cell divisions) became haploid. These strains were capable of mating with wild-type haploids to produce diploid progeny capable of undergoing meiosis to produce four viable spores. 相似文献
18.
I V Fedorova 《Genetika》1978,14(11):1884-1891
The method of repeated irradiation allowed to study kinetics of excision of mono-adducts induced by 8-methoxypsoralen (8-MOP) plus light (lambda=365 nm) in DNA of UV-sensitive mutants rad4 and rad15 and X-ray sensitive mutants rad54, xrs2, xrs4. The survival of the mutant rad4 was not practically increased after incubation in complete liquid medium for 3 hours at 28 degrees C before the repeated irradiation. These data suggest that the mutant rad4 is characterized by nearly complete absence of the mono-adduct excision. The survival of mutants rad15 and rad54 in the same environment was increased less effectively than the survival of the control radioresistant strain, but the mutants xrs2 and xrs4 did not differ from the control strain. Possible causes of differences in survival between radiosensitive strains are discussed. The increased sensitivity of the excision defective strain (rad4) and of the postreplicative recombination defective strains (xrs2, xrs4, rad54) to the lethal effect of 8-MOP plus light (lambda=365 nm) suggests that two systems of reparation take part in the removal of photoproducts induced by 8-MOP in DNA of yeast cells. 相似文献
19.
Frequencies of coincident genetic events were measured in strain D7 of Saccharomyces cerevisiae. This diploid strain permits the detection of mitotic gene conversion involving the trp5-12 and trp5-27 alleles, mitotic crossing-over and gene conversion leading to the expression of the ade2-40 and ade2-119 alleles as red and pink colonies, and reversion of the ilv1-92 allele. The three genes are on different chromosomes, and one might expect that coincident (simultaneous) genetic alterations at two loci would occur at frequencies predicted by those of the single alterations acting as independent events. Contrary to this expectation, we observed that ade2 recombinants induced by bleomycin, beta-propiolactone, and ultraviolet radiation occur more frequently among trp5 convertants than among total colonies. This excess among trp5 recombinants indicates that double recombinants are more common than expected for independent events. No similar enrichment was found among Ilv(+) revertants. The possibility of an artifact in which haploid yeasts that mimic mitotic recombinants are generated by a low frequency of cryptic meiosis has been excluded. Several hypotheses that can explain the elevated incidence of coincident mitotic recombination have been evaluated, but the cause remains uncertain. Most evidence suggests that the excess is ascribable to a subset of the population being in a recombination-prone state. 相似文献
20.
In wild-type diploid cells, heteroallelic recombination between his4A and his4C alleles leads mostly to His+ gene conversions that have a parental configuration of flanking markers, but approximately 22% of recombinants have associated reciprocal crossovers. In rad52 strains, gene conversion is reduced 75-fold and the majority of His+ recombinants are crossover associated, with the largest class being half-crossovers in which the other participating chromatid is lost. We report that UV irradiating rad52 cells results in an increase in overall recombination frequency, comparable to increases induced in wild-type (WT) cells, and surprisingly results in a pattern of recombination products quite similar to RAD52 cells: gene conversion without exchange is favored, and the number of 2n - 1 events is markedly reduced. Both spontaneous and UV-induced RAD52-independent recombination depends strongly on Rad50, whereas rad50 has no effect in cells restored to RAD52. The high level of noncrossover gene conversion outcomes in UV-induced rad52 cells depends on Rad51, but not on Rad59. Those outcomes also rely on the UV-inducible kinase Dun1 and Dun1's target, the repressor Crt1, whereas gene conversion events arising spontaneously depend on Rad59 and Crt1. Thus, there are at least two Rad52-independent recombination pathways in budding yeast. 相似文献