首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mg2+-ATP produces a large decrease in near-IR light scattering when added to suspensions of rod outer segments (ROS) when the plasma membranes have been disrupted by a gentle dialysis procedure. When this process is studied by light microscopy with video-enhanced image contrast, the Mg2+-ATP-dependent signal is seen to be associated with the formation of filaments which extend only from those ROS lacking plasma membranes. Both the IR light scattering signal and filament growth are inhibited by vanadate and DCCD but not by colchicine, colcemid or cytochalasins.  相似文献   

2.
Cholesterol-rich membranes or detergent-resistant membranes (DRMs) have recently been isolated from bovine rod outer segments and were shown to contain several signaling proteins such as, for example, transducin and its effector, cGMP-phosphodiesterase PDE6. Here we report the presence of rhodopsin kinase and recoverin in DRMs that were isolated in either light or dark conditions at high and low Ca2+ concentrations. Inhibition of rhodopsin kinase activity by recoverin was more effective in DRMs than in the initial rod outer segment membranes. Furthermore, the Ca2+ sensitivity of rhodopsin kinase inhibition in DRMs was shifted to lower free Ca2+ concentration in comparison with the initial rod outer segment membranes (IC50=0.76 microm in DRMs and 1.91 microm in rod outer segments). We relate this effect to the high cholesterol content of DRMs because manipulating the cholesterol content of rod outer segment membranes by methyl-beta-cyclodextrin yielded a similar shift of the Ca2+-dependent dose-response curve of rhodopsin kinase inhibition. Furthermore, a high cholesterol content in the membranes also increased the ratio of the membrane-bound form of recoverin to its cytoplasmic free form. These data suggest that the Ca2+-dependent feedback loop that involves recoverin is spatially heterogeneous in the rod cell.  相似文献   

3.
Attempts to optimize the recovery of light-stimulated phosphodiesterase activity following reassociation of the hypotonically extractable proteins derived from retinal rod segments with hypotonically stripped disc membranes lead to the following observations: the best reassociations were obtained by mixing proteins and stripped disc membranes under hypotonic conditions and slowly increasing the salt concentration; the binding of G-protein and phosphodiesterase to stripped disc membrane occurs in less than 5 minutes and the recovery of light-stimulated phosphodiesterase activation in response to subsaturating stimulus levels requires 2-3 h to plateau. Stripped disc membranes and proteins were reassociated in 'isotonic' buffers containing KCl/NaCl, KCl/NaCl plus Mg2+, or KCl/NaCl plus Ca2+. Large fractional rhodopsin bleaches produced nearly identical light-stimulated phosphodiesterase activities in each of these samples and in the control rod outer segment membranes. Rod outer segment membranes and reassociated stripped disc membrane samples containing divalent cations showed similar phosphodiesterase activities in response to low fractional rhodopsin bleaches (e.g. less than or equal to 0.1%), however, samples devoid of divalent cations during reassociation required rhodopsin bleaches up to 10-fold larger to elicit comparable phosphodiesterase activities. These results suggest that not all phosphodiesterase and/or G-protein molecules bound to the disc membrane surface are equivalent with regard to their efficiency of activation by bleached rhodopsin and that divalent cations can modulate the distribution of G-protein and/or phosphodiesterase between these populations.  相似文献   

4.
The role of Mg2+ in the GTP hydrolytic cycle was investigated by using purified subunits (G alpha and G beta, gamma) of the GTP-binding protein isolated from Bufo marinus rod outer segments (ROS). Mg2+ markedly stimulated the rate of GTP and guanosine-5'-O-(3-thiotriphosphate) (GTP gamma-s) binding to G alpha. This effect was especially striking in the presence of very small quantities of illuminated ROS disc membranes. GTP hydrolysis could occur in the absence of Mg2+, and Mg2+ increased the rate of GTP hydrolysis only about 50%. These data indicate that Mg2+ plays a fundamental role in amplification of the photon signal by markedly stimulating the rate of formation of GTP X G alpha complexes by very small amounts of illuminated rhodopsin while producing only a modest increase in the rate of GTP hydrolysis. Following hydrolysis of GTP, GDP X G alpha could reassociate with illuminated or unilluminated ROS disc membranes in the presence or absence of Mg2+. In the absence of guanine nucleotides, release of GDP from G alpha bound to illuminated disc membranes was detected in the presence or absence of Mg2+. Moreover, Mg2+ did not affect the rate of GDP release from membrane-bound G alpha. Illumination of B. marinus crude ROS disc membrane preparations markedly reduced pertussis toxin-mediated ADP-ribosylation of a 39,000 Mr (G alpha) protein in the presence but not in the absence, of Mg2+. Moreover, extensive dialysis of illuminated (but not unilluminated) crude ROS disc membranes against a Mg2+-containing buffer caused a marked reduction in the subsequent ADP-ribosylation of G alpha, even when Mg2+ was not present during the ADP-ribosylation step. This reduction was reversed by the addition of GDP or a GDP analogue (but not GMP or hydrolysis-resistant GTP analogues) during the ADP-ribosylation step. Dialysis of crude ROS disc membrane preparations (illuminated or unilluminated) against a Mg2+ -free buffer did not reduce the subsequent ADP-ribosylation of G alpha. These data indicate that Mg2+, in the presence of photolysed rhodopsin, can stimulate the release of GDP from crude preparations of ROS disc membranes. Four lines of evidence suggest that G alpha and G beta, gamma have Mg2+-binding site(s). When stored at 4 degrees C, in the absence of glycerol, G beta, gamma was more stable in the absence than in the presence of Mg2+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Ultrastructural localization of rhodopsin in the vertebrate retina   总被引:11,自引:9,他引:2       下载免费PDF全文
Early work by Dewey and collaborators has shown the distribution of rhodopsin in the frog retina. We have repeated these experiments on cow and mouse eyes using antibodies specific to rhodopsin alone. Bovine rhodopsin in emulphogene was purified on an hydroxyapatite column. The purity of this reagent was established by spectrophotometric criteria, by sodium dodecyl sulfate (SDS) gel electrophoresis, and by isoelectric focusing. This rhodopsin was used as an immunoadsorbent to isolate specific antibodies from the antisera of rabbits immunized with bovine rod outer segments solubilized in 2% digitonin. The antibody so prepared was shown by immunoelectrophoresis to be in the IgG class and did not cross-react with lipid extracts of bovine rod outer segments. Papain-digested univalent antibodies (Fab) coupled with peroxidase were used to label rhodopsin in formaldehyde-fixed bovine and murine retinas. In addition to the disk membranes, the plasma membrane of the outer segment, the connecting cilium, and part of the rod inner segment membrane were labeled. We observed staining on both sides of the rod outer segment plasma membrane and the disk membrane. Discrepancies were observed between results of immunolabeling experiments and observations of membrane particles seen in freeze-cleaved specimens. Our experiments indicate that the distribution of membrane particles in freeze cleaving experiments reflects the distribution of membrane proteins. Immunolabeling, on the other hand, can introduce several different types of artifact, unless controlled with extreme care.  相似文献   

6.
Ca2+ sequestration and release from disks of rod outer segments may play a critical role in visual transduction. An ATP-dependent Ca2+ uptake activity has been identified in association with purified disks of bovine rod outer segments. A crude preparation of osmotically active disks was obtained from rod outer segments by hypoosmotic shock and subsequent flotation on a 5% Ficoll 400 solution. These "crude" disks were further purified by separation into two distinct components by centrifugation in a linear Ficoll gradient. Disks comprised the major component; at least 60% of the protein was rhodopsin. This fraction also contained a Ca2+ uptake activity stimulated approximately 4-fold by ATP. The initial rate was approximately 0.21 nmol of Ca2+ (mg of protein)-1 min-1. Most of the ATP-dependent accumulation of 45Ca2+ was released by the calcium ionophore A23187. The uptake activity was sensitive to vanadate (Ki approximately 20 microM) and insensitive to the mitochondrial Ca2+ uptake inhibitor ruthenium red (10 microM). The ATP-dependent Ca2+ uptake exhibited Michaelis-Menten activation kinetics with respect to [Ca2+] (Km approximately 6 microM). The osmotic properties of the sealed disk membranes were exploited to determine whether the association of Ca2+ transport activity with the disks was merely coincidental. The sedimentation properties of these disks, upon centrifugation on a second Ficoll linear density gradient, varied with the osmolarity of the gradient solution. In several separate gradient solutions of differing osmotic and ionic strengths, the Ca2+ uptake activity always comigrated with the disks. These results indicate that the ATP-dependent Ca2+ uptake activity was physically associated with sealed native disk membranes. The characteristics of the Ca2+ uptake activity suggest that it may play a major role in the regulation of cytosolic Ca2+ levels in rod cells in vivo.  相似文献   

7.
Bovine retinas, isolated rod outer segments and emulphogene extracts of rod outer segments have been shown to contain appreciable amounts of Zn2+, Ca2+ and Mg2+ when isolated in the absence of added metal ions. Chromatography of emulphogene extracted rod outer segments in Sephadex G-25 showed virtually all the Ca2+, Zn2+ and protein to elute with the void volume. Levels of Zn2+ but not Ca2+ were light sensitive. The Zn2+ contents of protein fractions were about 60% higher when samples were bleached. Under optimal conditions protein fractions contained 1.4 – 1.8 g atoms Zn2+/mole rhodopsin for dark adapted samples and 2.1 to 3.2 g atoms Zn2+/mole of rhodopsin for bleached samples.  相似文献   

8.
Synaptic plasma membranes isolated from rat brain exhibited a Ca2+ transport process that was strictly dependent on the presence of Mg2+ and activated by ATP hydrolysis. The characteristics of this ATP-activated transport process included a high affinity for Ca2+ and ATP with the Kact for these two substrates being 0.7 and 5 microM, respectively, and a lower affinity for Mg2+, Kact = 54 microM. The estimated constants for ATP-activated Ca2+ transport into synaptic membrane vesicles and the dependence of such transport on Mg2+ were indicative that such transport was related to the previously described high affinity (Ca2+ + Mg2+)-ATPase in synaptic membranes. An ATP- and Mg2+-dependent Ca2+ transport process with very similar kinetic characteristics was present also in a general microsomal membrane fraction obtained from brain tissue. The synaptic and microsomal membrane ATP-activated transport processes exhibited differences in their sensitivity to vanadate inhibition. Interaction with vanadate was fairly complex and best analyzed by a two-component model. Thus, the estimated Ki values for vanadate were 0.2 and 6.6 microM for the synaptic membranes and 0.7 and 13.8 microM for the microsomes. Since the microsomal membranes contain a substantial population of intraneuronal endoplasmic reticulum vesicles, the effects of vanadate on Ca2+ transport into intraneuronal membrane organelles, other than mitochondria, was determined in saponin-permeabilized synaptosomes. The estimated Ki values for vanadate inhibition of Ca2+ transport activity were 0.7 and 13 microM. The accumulation of Ca2+ into synaptic plasma membrane vesicles was readily reversed by activation of the Na+-Ca2+ exchange carrier, whereas the Ca2+ associated with intrasynaptosomal organelles was not affected by changes in [Na+]. Thus, there are at least two ATP-dependent Ca2+ transporting processes localized on two distinct neuronal membranes, one on the plasma membrane and the second on intraneuronal membranes.  相似文献   

9.
Rhodopsin is extracted from rod outer segments of retinas with dodecyldimethylamine oxide (DDAO), a non-ionie detergent. The rhodopsin-DDAO complex is characterized by binding experiments, gel filtration, sedimentation, densimetry; its homogeneity, chemical composition, weight and partial specific volume are determined. The complex turns out to be a reasonably monodisperse association of one rhodopsin and 156 DDAO molecules. The rhodopsin-DDAO complex and the detergent micelles are studied by small-angle X-ray scattering techniques using a water/sucrose solvent of variable density. The experiments are performed on an absolute scale; mainly the value and curvature of the scattering curves at zero angle are exploited. The structure of the complex and of the micelles is shown to be independent of sucrose. Under these conditions the final result of the X-ray scattering study of each type of particle is the numerical value of a set of five parameters: molecular weight, volume and radius of gyration of the volume occupied by the particles, average electron density and second moment of the electron density fluctuations inside the particles. It is also shown that in the complex the centres of gravity of rhodopsin and of the detergent moiety are very near to each other. The analysis of these parameters leads to the determination of the size and shape of the detergent micelles and to an estimate of the size and shape of the volumes occupied by protein and by detergent in the complex. We find rhodopsin to be a very elongated molecule (maximum diameter ~95 Å) which spans a flat detergent micelle. These results suggest that in the rod outer segment discs the rhodopsin molecules span the membranes, that the rhodopsin molecules of the two opposite membranes of each disc come near to each other and that a high fraction of the intra-disc space is occupied by rhodopsin.  相似文献   

10.
High affinity Ca2+-stimulated Mg2+-dependent ATPase activity of nerve ending particles (synaptosomes) from rat brain tissue appears to be associated primarily with isolated synaptic plasma membranes. The synaptic membrane (Ca2+ + Mg2+)-ATPase activity was found to exhibit strict dependence on Mg2+ for the presence of the activity, a high affinity for Ca2+ (K0.5 = 0.23 microM), and relatively high affinities for both Mg2+ and ATP (K0.5 = 6.0 microM for Mg2+ and KM = 18.9 microM for ATP). These kinetic constants were determined in incubation media that were buffered with the divalent cation chelator trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid. The enzyme activity was not inhibited by ouabain or oligomycin but was sensitive to low concentrations of vanadate. The microsomal membrane subfraction was the other brain subcellular fraction with a high affinity (Ca2+ + Mg2+)-ATPase activity which approximated that of the synaptic plasma membranes. The two membrane-related high affinity (Ca2+ + Mg2+)-ATPase activities could be distinguished on the basis of their differential sensitivity to vanadate at concentrations below 10 microM. Only the synaptic plasma membrane (Ca2+ + Mg2+)-ATPase was inhibited by 0.25-10 microM vanadate. The studies described here indicate the possible involvement of both the microsomal and the neuronal plasma membrane (Ca2+ + Mg2+)-ATPase in high affinity Ca2+ transport across membranes of brain neurons. In addition, they suggest a means by which the relative contributions of each transport system might be evaluated based on their differential sensitivity to inhibition by vanadate.  相似文献   

11.
Resting rat light gastric membranes prepared through 2H2O and Percoll gradient centrifugations were enriched not only with (H+-K+)-ATPase and K+ transport activity (Im, W. B., Blakeman, D. P., and Davis, J. P. (1985) J. Biol. Chem. 260, 9452-9460), but also with a K+-independent, ATP-dependent H+-pumping activity. This intravesicular acidification has been ascribed to an oligomycin-insensitive H+-ATPase which differed from (H+-K+)-ATPase in several respects. The H+-ATPase is electrogenic, apparently of lower capacity, required a lower optimal ATP concentration (4 microM for the H+-ATPase and 500 microM for (H+-K+)-ATPase), of lower sensitivity to vanadate and sulfhydryl agents such as p-chloromercuribenzoate and N-ethylmaleimide, and insensitive to SCH 28,080, a known competitive inhibitor of (H+-K+)-ATPase with respect to K+. Operation of the H+-ATPase, however, appeared to interfere with the K+ transport activity in the light gastric membranes, probably through development of intravesicular positive membrane potential; for example, micromolar levels of Mg2+-ATP fully inhibited K+ uptake and stimulated K+ efflux as measured with 86Rb+. Involvement of (H+-K+)-ATPase in the K+ transport is not likely, since the inhibitory effect of Mg2+-ATP continued even after removal of the nucleotide with an ATP-scavenging system. Moreover, nigericin, an electroneutral H+/K+ exchanger, could bypass the inhibitory effect of Mg2+-ATP and equilibrate the membrane vesicles with 86Rb+ while valinomycin, an electrogenic K+ ionophore, could not. Finally, the H+-ATPase could possibly be involved in the acid secretory process, since its H+-pumping activity was removed from the light gastric membrane fraction upon carbachol treatment, along with the K+ transport and (H+-K+)-ATPase activities. We have speculated that the H+-ATPase is responsible for maintaining the K+-permeable intracellular membrane vesicles acidic and K+ free during the resting state of acid secretion and may contribute to basal acid secretion.  相似文献   

12.
Inhibition of red cell Ca2+-ATPase by vanadate   总被引:3,自引:0,他引:3  
1. The Mg2+- plus Ca2+-dependent ATPase (Ca2+-ATPase) in human red cell membranes is susceptible to inhibition by low concentrations of vanadate. 2. Several natural activators of Ca2+-ATPase (Mg2+, K+, Na+ and calmodulin) modify inhibition by increasing the apparent affinity of the enzyme for vanadate. 3. Among the ligands tests, K+, in combination with Mg2+, had the most pronounced effect on inhibition by vanadate. 4. Under conditions optimal for inhibition of Ca2+-ATPase, the K 1/2 for vanadate was 1.5 microM and inhibition was nearly complete at saturating vanadate concentrations. 5. There are similarities between the kinetics of inhibition of red cell Ca2+-ATPase and (Na+ + K+)-ATPase prepared from a variety of sources; however, (Na+ + K+)-ATPase is approx. 3 times more sensitive to inhibition by vanadate.  相似文献   

13.
Purification of a putative K+-ATPase from Streptococcus faecalis   总被引:9,自引:0,他引:9  
We have purified a novel membrane ATPase from Streptococcus faecalis by the following procedure: extraction of membranes with Triton X-100 followed by fractionation of the extract by successive DEAE-cellulose chromatography, hydroxylapatite chromatography and Cm-Sepharose chromatography. The overall yield was 5%. The purified ATPase appears to consist of a single polypeptide component of Mr = 78,000. The Triton-solubilized purified enzyme has a specific activity of approximately 50 mumol of ATP hydrolyzed per min per mg, is dependent on phospholipids for activity, and is strongly inhibited by vanadate (I50 = 3 microM). Maximal ATPase activity is displayed at pH 7.3. Mg2+-ATP, for which the enzyme has a Km of 60 microM, is the best substrate. The ATPase forms an acylphosphate intermediate that can also be detected in native membranes as the major acylphosphate component. The purified ATPase, when reconstituted into soybean phospholipid vesicles, exhibits coupling, e.g. the ATPase activity can be stimulated at least 8-fold by valinomycin in the presence of potassium. Based on these observations we conclude that the enzyme we have purified is an ion-motive ATPase, most likely a K+-ATPase.  相似文献   

14.
Using polyacrylamide gel electrophoresis in the presence of Na-SDS, the oligomerization of membrane proteins of the retinal rod outer segments of the frog and the wall-eyed pollock and of rabbit skeletal muscle sarcoplasmic reticulum was studied. It was shown that under storage of the retinal rod outer segments the rhodopsin oligomerization is inhibited by the lipid peroxidation inhibitor--ionol. Similar oligomerization was observed under induction of lipid peroxidation in the membranes; the accumulation of the lipid peroxidation product--malonic dialdehyde--was accompanied by disappearance of the rhodopsin monomeric form in the outer segments. The cross-linking agent--glutaric dialdehyde--also causes oligomerization of the rhodopsins. Similar aggregation is also characteristic of the major protein of the sarcoplasmic reticulum fragments, i. e. Ca2+-dependent ATP-ase. Thus, one of the main changes in the protein content of biomembranes under lipid peroxidation is the oligomerization of integral proteins due to their interaction with bifunctional reagents, i. e. lipid peroxidation products.  相似文献   

15.
P Fatt 《FEBS letters》1982,149(2):159-166
A model is described having the following features: Light induces Ca2+ release from vertebrate rod outer segments discs via pores composed of multimeric rhodopsin. Cytoplasmic Ca2+ reversibly blocks Na+ channels of the surface membrane, with the time course of development and amplitude of the response to light being influenced by restrictions on intradiscal Ca2+ diffusion. The falling phase of response reflects a decline in cytoplasmic [Ca2+] due to a Ca2+-binding protein controlled by cyclic GMP so that its binding capacity is increased by the reduction in cytoplasmic [cyclic GMP] which follows rhodopsin bleaching.  相似文献   

16.
Preincubation of plasma membranes from bream brain with 10-8-10-4 M gamma-aminobutyric acid (GABA) or muscimol increased the anion-sensitive Mg2+-ATPase activity. The activating effect of neurotransmitters on the Mg2+-ATPase is enhanced with increasing preincubation time of the membranes with the ligands, decreases with increasing Mg2+-ATP concentration in the incubation medium, and is inhibited in the presence of the GABAa-receptor antagonist, bicuculline (90 microgr;M). The anions Cl-, Br-, and I- stimulate the basal Mg2+-ATPase activity, and an effect of 10-4 M GABA in the presence of anions was not found. It is supposed that GABAergic chemicals modify the anion-sensitive Mg2+-ATPase in a receptor-dependent way.  相似文献   

17.
The microelectrophoretic mobility of corn root plasma membranes and the inhibition of the Mg+2-ATPase by vanadate were investigated under different ionic conditions. The Mg2+-ATPase was uncompetitively inhibited and a 10-fold variation of the apparent inhibition constant was observed, depending on the addition of K+ and Mg2+. The determination of the zeta potential indicated that a 5-fold decrease of the apparent inhibition constant was due to aspecific electrostatic interactions of the vanadate anion and the negative charge of the membrane. The screening and masking effects of 6 mM free Mg2+ totally abolished electrostatic interactions and allowed the direct determination of the intrinsic vanadate inhibition constant (KIi). On the other hand, a specific, non-electrostatic, effect of K+ caused a 2-fold decrease of the inhibition constant in addition to the electrostatic effect. Finally, the electrostatic analysis indicates that the Mg2+-ATPase is inhibited by the monomeric bivalent anion HVO4(2-).  相似文献   

18.
The Ca2+- and Mg2+-stimulated ATPase activities present in low ionic strength extracts of erythrocyte membranes have been separated from each other. The Ca2+-ATPase appears to be associated with particulate meterial which could be sedimented by high-speed centrifugation. The pellet obtained was composed mainly of components 1, 2, 4.5, 5 and 7. A soluble protein from the band 3 region, known to be responsible for the Mg2+-ATPase activity, was not detected in this pellet.  相似文献   

19.
Cyclic nucleotide dependent protein kinase has been extracted wiht Tris or Lubrol PX from purified rod outer segments (ROS) of bovine retina. The activity of the enzyme is unaffected by light but is stimulated by either cyclic guanosine 3',5'-monophosphate (cGMP) or cyclic adenosine 3',5'-monophosphate (cAMP). Most of the solubilized enzyme elutes from DEAE-cellulose with about 0.18 M NaCl (type II protein kinase). An endogenous 30,000 molecular weight protein of the soluble fraction of ROS as well as exogenous histone are phosphorylated by the protein kinase in a cyclic nucleotide dependent manner. The Tris-extracted enzyme can be reassociated in the presence of Mg2+ with ROS membranes that are depleted of protein kinase activity. The reassociated protein kinase is insensitive to exogenous cyclic nucleotides, and it catalyzes the phosphorylation of the membrane protein, bleached rhodopsin. While the soluble and membrane-associated protein kinases may be interchangeable, they appear to be modulated by different biological signals; soluble protein kinase activity is increased by cyclic nucleotides whereas membrane-bound activity is enhanced when rhodopsin is bleached by light.  相似文献   

20.
Vanadate is able to promote the binding of ouabain to (Na+ +K+)-ATPase and it is shown that vanadate is trapped in the enzyme-ouabain complex. Also ouabain-bound enzyme, the formation of which was facilitated by (Mg2+ +Na+ +ATP) or (Mg2+ +Pi), is accessible to vanadate when washed free of competing ligands used for the promotion of ouabain binding. For vanadate binding to (Na+ +K+)-ATPase and to enzyme-ouabain complexes a divalent cation (Mg2+ or Mn2+) is indispensable, indicating that the cation does not remain attached to the ouabain-bound enzyme. K+ further increases vanadate binding in the absence of ouabain, but seems to have no additional role in case of vanadate binding to enzyme-ouabain complexes. Mn2+ is more efficient than Mg2+ in promoting binding of vanadate and ouabain to (Na+ +K+)-ATPase. That K+ in combination with Mn2+, in analogy with the effect in combination with Mg2+, increases the equilibrium binding level of vanadate and decreases that of ouabain does not seem to favour the hypothesis of selection of a special E2-subconformation by Mn2+. The vanadate-trapped enzyme-ouabain complex was examined for simultaneous nucleotide binding which could demonstrate a two-substrate mechanism per functional unit of the enzyme. The acceleration by (Na+ +ATP) of ouabain release from the (Mg2+ +Pi)-facilitated enzyme-ouabain complex does not, as anticipated, support such a mechanism. On the other hand, the deceleration of vanadate release as well as of ouabain release from a (Mg2+ +vanadate)-promoted complex could be consistent with a two-substrate mechanism working out-of-phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号