首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 670 毫秒
1.
Adult male unanesthetized rats, reared on a diet enriched in both alpha-linolenic acid (alpha-LNA) and docosahexaenoic acid (DHA), were infused intravenously for 5 min with [1-(14)C]alpha-LNA. Timed arterial samples were collected until the animals were killed at 5 min and the brain was removed after microwaving. Plasma and brain lipid concentrations and radioactivities were measured. Within plasma lipids, > 99% of radioactivity was in the form of unchanged [1-(14)C]alpha-LNA. Eighty-six per cent of brain radioactivity at 5 min was present as beta-oxidation products, whereas the remainder was mainly in 'stable' phospholipid or triglyceride as alpha-LNA or DHA. Equations derived from kinetic modeling demonstrated that unesterified unlabeled alpha-LNA rapidly enters brain from plasma, but that its incorporation into brain phospholipid and triglyceride, as in the form of synthesized DHA, is < or = 0.2% of the amount that enters the brain. Thus, in rats fed a diet containing large amounts of both alpha-LNA and DHA, the alpha-LNA that enters brain from plasma largely undergoes beta-oxidation, and is not an appreciable source of DHA within brain phospholipids.  相似文献   

2.
Radioactivity within individual brain compartments was determined from 5 min to 44 h after intravenous injection of [14C]palmitate into awake Fischer-344 rats, aged 21 days or 3 months. Total radioactivity peaked broadly between 15 min and 1 h after injection, declined rapidly between 1 and 2 h, and then more slowly. In 3-month-old rats, the lipid and protein brain fractions were maximally labeled within 15 min after [14C]palmitate injection, then retained approximately constant label for up to 2 days. Radioactivity in the aqueous brain fraction comprised mainly radioactive glutamate and glutamine, and peaked at 45 min, when it comprised 48% of total brain radioactivity, then decreased to 27% of the total at 4 h, 15% at 20 h, and 10% at 44 h. Percent distribution of radioactivity within the different brain compartments, 4 h after intravenous injection of [14C]palmitate, was similar in 21-day-old and 3-month-old rats, despite higher net brain uptake in the younger animals. The results indicate that about 50% of plasma [14C]palmitate that enters the brain of adult rats is incorporated rapidly into stable protein and lipid compartments. The remaining [14C]palmitate enters the aqueous fraction after beta-oxidation, and is slowly lost. At 4 h after injection, 73% of brain radioactivity is within the stable brain compartments; this fraction increases to 86% by 20 h.  相似文献   

3.
We quantified the rates of incorporation of alpha-linolenic acid (alpha-LNA; 18:3n-3) into "stable" lipids (triacylglycerol, phospholipid, cholesteryl ester) and the rate of conversion of alpha-LNA to docosahexaenoic acid (DHA; 22: 6n-3) in the liver of awake male rats on a high-DHA-containing diet after a 5-min intravenous infusion of [1-(14)C]alpha-LNA. At 5 min, 72.7% of liver radioactivity (excluding unesterified fatty acid radioactivity) was in stable lipids, with the remainder in the aqueous compartment. Using our measured specific activity of liver alpha-LNA-CoA, in the form of the dilution coefficient lambda(alpha-LNA-CoA), we calculated incorporation rates of unesterified alpha-LNA into liver triacylglycerol, phospholipid, and cholesteryl ester as 2,401, 749, and 9.6 nmol/s/g x 10(-4), respectively, corresponding to turnover rates of 3.2, 8.7, and 2.9%/min and half-lives of 8-24 min. A lower limit for the DHA synthesis rate from alpha-LNA equaled 15.8 nmol/s/g x 10(-4) (0.5% of the net in corporation rate). Thus, in rats on a high-DHA-containing diet, rates of beta-oxidation and esterification of alpha-LNA into stable liver lipids are high, whereas its conversion to DHA is comparatively low and insufficient to supply significant DHA to the brain. High incorporation and turnover rates likely reflect a high secretion rate by liver of stable lipids within very low density lipoproteins.  相似文献   

4.
Rats fed a fat-free diet containing no drug, 0.02% or 0.10% halofenate, or 0.25% clofibrate for 14 days were injected intravenously with equivalent amounts of either [2-3H]glycerol or [1(3)-3H]glycerol. Blood samples were collected at times up to 150 min after injection and serum triglycerides were isolated and assayed for radioactivity. Kinetic analysis of the serum appearance and clearance curves of 3H-labeled triglyceride permits estimation of serum total 3H-labeled triglyceride formation and triglyceride fractional turnover rates. The total amounts of 3H-labeled triglyceride formed from [2-3H] or from [1(3)-3H] glycerol in control-fed animals were very similar. Over 95% of the serum 3H-labeled triglyceride formed from either substrate circulated in a rapidly turning-over triglyceride pool (t1/2 = 8 min). Treatment with 0.10% halofenate or 0.25% clofibrate decreased labeling of serum triglycerides by 75-80% without increasing serum 3H-labeled triglyceride fractional turnover rates. Furthermore, both drugs decreased incorporation in vivo of 14C from [U-14C]glycerol into hepatic but not intestinal triglycerides without significantly decreasing incorporation of 14C into total phospholipids of either tissue. From these observations we suggest that, in the intact normal rat, sustained reduction of serum triglyceride levels produced by treatment with halofenate or clofibrate is due to inhibition of hepatic triglyceride formation.  相似文献   

5.
Mouse keratinocytes cultured in a medium containing less than 0.1 mM Ca2+ (low Ca2+) incorporated [1-14C]arachidonic acid (AA) into phospholipids by kinetics including; (i) a rapid labelling of phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer) and both acid-stable and alkenylacyl forms of phosphatidylcholine (PtdCho); and (ii) a slow but long-lasting radiolabel incorporation into both acid-stable and alkenylacyl forms of phosphatidylethanolamine (PtdEtn), partly associated with a net radioactivity loss from acid stable-PtdCho. Under low Ca2+ conditions no radioactivity transfer apparently occurred between PtdIns and other phospholipid classes. When cells were prelabelled for 24 h with [1-14C]AA and reincubated in label-free medium containing 1.2 mM Ca2+ (normal Ca2+), an early and extensive loss of radioactivity from PtdIns was observed, reasonably in connection with Ca2+ stimulation of phosphoinositide turnover. Cell shift to normal Ca2+ did not result in an increased synthesis of labelled eicosanoids, but was consistent with an increase of radioactivity incorporation into diacylglycerol (DAG) and with a complex pattern of [1-14C]AA redistribution, eventually leading to a marked radioactivity incorporation into acid stable-PtdEtn (but not into alkenylacyl-PtdEtn) and to a labelling decrease of acid stable-PtdCho. The possible mechanisms driving AA recycling after cell shift to normal Ca2+ are discussed.  相似文献   

6.
The incorporation of [3H]arachidonate [( 3H]AA) and [14C]eicosapentaenoate [( 14C]EPA) into glycerophospholipids was studied in isolated brain cells from rainbow trout, a teleost fish whose lipids are rich in (n-3) polyunsaturated fatty acids (PUFAs). EPA was incorporated into total lipid to a greater extent than AA, but the incorporation of both PUFAs into total glycerophospholipids was almost identical. The incorporation of both AA and EPA was greatest into phosphatidylethanolamine (PE). However, when expressed per milligram of individual phosphoglycerides, both AA and EPA were preferentially incorporated into phosphatidylinositol (PI), the preference being significantly greater with AA. On the same basis, significantly more EPA than AA was incorporated into phosphatidylcholine (PC). When double-labelled cells were challenged with calcium ionophore A23187, the 3H and 14C released from the cells closely paralleled each other, peaking at 10 min after addition of ionophore. The 12-monohydroxylated derivative was the pre-dominant lipoxygenase product from both AA and EPA with a rank order of 12-hydroxyeicosatetraenoic acid (12-HETE) greater than leukotriene B4 (LTB4) greater than 5-HETE greater than 15-HETE for the AA products and 12-hydroxyeicosapentaenoic acid (12-HEPE) greater than 5-HEPE greater than LTB5 greater than 15 HEPE for EPA products. The 3H/14C (dpm/dpm) ratios in the glycerophospholipids, total released radioactivity, and the lipoxygenase products suggested that PC rather than PI was the likely source of eicosanoid precursors in trout brain cells.  相似文献   

7.
We studied the long-chain conversion of [U-13C]alpha-linolenic acid (ALA) and linoleic acid (LA) and responses of erythrocyte phospholipid composition to variation in the dietary ratios of 18:3n-3 (ALA) and 18:2n-6 (LA) for 12 weeks in 38 moderately hyperlipidemic men. Diets were enriched with either flaxseed oil (FXO; 17 g/day ALA, n=21) or sunflower oil (SO; 17 g/day LA, n=17). The FXO diet induced increases in phospholipid ALA (>3-fold), 20:5n-3 [eicosapentaenoic acid (EPA), >2-fold], and 22:5n-3 [docosapentaenoic acid (DPA), 50%] but no change in 22:6n-3 [docosahexanoic acid (DHA)], LA, or 20:4n-6 [arachidonic acid (AA)]. The increases in EPA and DPA but not DHA were similar to those in subjects given the SO diet enriched with 3 g of EPA plus DHA from fish oil (n=19). The SO diet induced a small increase in LA but no change in AA. Long-chain conversion of [U-13C]ALA and [U-13C]LA, calculated from peak plasma 13C concentrations after simple modeling for tracer dilution in subsets from the FXO (n=6) and SO (n=5) diets, was similar but low for the two tracers (i.e., AA, 0.2%; EPA, 0.3%; and DPA, 0.02%) and varied directly with precursor concentrations and inversely with concentrations of fatty acids of the alternative series. [13C]DHA formation was very low (<0.01%) with no dietary influences.  相似文献   

8.
Abstract: Labeled palmitic acid ([16-14C]palmitate) (0).5 μCi) was injected into rat sciatic nerves in vivo to characterize thc incorporation of this fatty acid into complex peripheral nerve lipids after time lapses of 1 min to 2 weeks. For the first 30 min after intraneural injection, the label was concentrated in nerve diglycerides. Thereafter, the relative diglyccride label declined rapidly, and phospholipid radioactivity rose steadily. After 120 min, phospholipids contained over 70% of the total lipid radioactivity. Among the phospholipids, phosphatidylcholine had the largest percentage of total phospholipid label, and acylation of lysophosphatidylcholine accounted for approximately 75% of this label. With time, there was conversion of [16-14C]palmitate to other long-chain fatty acids by elongation and desaturation. Phosphatidic acid was labeled also, suggesting the operation of the de novo biosynthetic mechanism. However, the specific radioactivity of 1,2-diacylglycerol was much higher than that of phosphatidic acid, suggesting phosphorylation of diglycerides by diglyceride kinase. After nerve section and survival of 2 h to 50 days, the injection of [16-14C]palmitate into the degenerating distal segment revealed an overall decline of phospholipid labeling and a commensurate increase of triglyceride radioactivity. Phosphatidylcholine in degenerating nerve contained a larger percentage of the fatty acid label than that in normal nerve. Almost all of the labeling was due to acylation of lysophosphatidylcholine, implying a much smaller contribution of the de novo pathway. Phosphatidylethanolamine and phosphatidylserine showed a relative loss of radioactivity. The changes were apparent at 1 day, but not at 2 h, suggesting loss of homeostatic control, presumably by interruption of axonal flow. An incidental observation was the stimulation of phosphatidylcholine biosynthesis by acylation of lysophosphatidylcholine in the contralateral unoperated sciatic nerve.  相似文献   

9.
1. A method was devised for the determination of the specific radioactivity of the acetyl moiety of acetylcholine synthesized from various (14)C-labelled substrates. 2. The precursor for the acetyl moiety of acetylcholine was studied in slices of striatum and cerebral cortex from rat and guinea-pig brain. Incorporation of radioactivity into acetylcholine was determined after incubating the slices in the presence of [2-(14)C]acetate, [(14)C]bicarbonate, [1,5-(14)C]citrate, dl-[1- or 5-(14)C]glutamate or [1- or 2-(14)C]pyruvate. 3. After incubation for 1h, acetylcholine was accumulated significantly in both striatum slices (4.1nmol/mg of protein) and cerebral-cortex slices (0.57nmol/mg of protein) from the rat. Final concentrations were about 11 and 5 times respectively the initial values. 4. With slices from rat striatum, rat cerebral cortex and guinea-pig cerebral cortex, the specific radioactivity of acetylcholine derived from [2-(14)C]pyruvate was very high, reaching approx. 30, 20 and 6% respectively of the initial specific radioactivity of added pyruvate in the medium. With the striatum slices this high value was reached after incubation for 15min. Incorporation of radioactivity from [2-(14)C]acetate was only 1.25, 5.3 and 19.7% of that from [2-(14)C]pyruvate in rat striatum, rat cerebral-cortex and guinea-pig cerebral-cortex slices respectively. A small but definite incorporation was found from [5-(14)C]glutamate. No incorporation was found from the other substrates. The findings suggest that pyruvate is the most important precursor for the synthesis of the acetyl moiety of acetylcholine in brain slices. 5. The specific radioactivity of acetylcholine relative to that of citrate when [2-(14)C]pyruvate was used compared with that obtained when [2-(14)C]acetate was used. A marked difference was found in all slices, suggesting metabolic compartmentation of the acetyl-CoA pool.  相似文献   

10.
We have already reported that peroxisomal beta-oxidation has an anabolic function, supplying acetyl-CoA for bile acid biosynthesis [H. Hayashi and A. Miwa, 1989, Arch. Biochem. Biophys. 274, 582-589]. The anabolic significance of peroxisomal beta-oxidation was further investigated in the present study by using clofibrate, a peroxisome proliferator, as an experimental tool. Clofibrate suppressed 3-hydroxymethylglutaryl-CoA reductase activity (the key enzyme of cholesterol synthesis) and enhanced fatty acyl-CoA oxidase activity (the rate-limiting enzyme of beta-oxidation). Rats were fed a chow containing 0.25% clofibrate for 2 weeks, and then a bile duct fistula was implanted. [1-14C]lignoceric acid, which is degraded exclusively by peroxisomal FAOS, was injected into the rats 24 h after the operation. By this time, the secondary bile acids and pooled cholesterol which would normally be secreted into the bile are considered to have been exhausted from the liver. Clofibrate significantly decreased the incorporations of radioactivity into biliary bile acid (40% of the control) and cholesterol (50%), but did not affect biliary lipid contents. [14C]Acetyl-CoA formed by peroxisomal beta-oxidation of [1-14C]lignoceric acid was preferentially utilized for syntheses of long-chain fatty acids and phospholipids rather than synthesis of cholesterol or triglyceride. The radioactivities incorporated into the former two lipids were increased 2-fold over the control by administration of clofibrate, while the incorporation into triglyceride was decreased to approximately half. In particular, the incorporation into phosphatidylethanolamine was increased as much as 3.5-fold over the control. The contents of these lipids in the liver were not affected by clofibrate. The results suggest that peroxisomal beta-oxidation plays an important role in the biosynthesis of functional lipids such as phospholipids (this work), in addition to bile acids and cholesterol (previous report) by supplying acetyl-CoA.  相似文献   

11.
Intracerebral administration of [3H]arachidonic acid ([3H]ArA) into 19-20-day-old rat embryos, resulted in a rapid incorporation of label into brain lipids. One hour after injection, 55.6 +/- 8.2, 18.0 +/- 3.4, and 13.7 +/- 1.3% of the total radioactivity was associated with phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine, respectively. Approximately 10% of radioactivity was found acylated in neutral lipids of which free ArA comprised only 1.5 +/- 0.2% of the total radioactivity. Complete restriction of the maternal-fetal circulation for < or = 40 min did not affect the rate of [3H]ArA incorporation (t1/2 = 2 min) into fetal brain lipids, suggesting an effective acylation mechanism that proceeds irrespective of the impaired blood flow. After a short restriction period (5 min), the radioactivity in diacylglycerol was elevated by 50%. After a longer restriction period (20 min), the radioactivity in the free fatty acid and diacylglycerol fractions increased to values of 130 and 87%, respectively. Polyphosphoinositides prelabeled with either [3H]ArA or 32P were rapidly degraded after 5 min of ischemia. After 20 min, the decrease in phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate radioactivity was 47 and 70%, respectively. Double labeling of phospholipids with [14C]palmitic acid and [3H]ArA indicated a preferential loss of [3H]ArA within the polyphosphoinositide species after 20 min, but not after 5 min of ischemia. The specific activity of [14C]palmitate remained unchanged. The current data suggest phospholipase C-mediated diacylglycerol formation at the beginning of the insult followed by a phospholipase A2-mediated ArA liberation at a later time, both enzymes presumably acting preferentially on polyphosphoinositide species.  相似文献   

12.
1. Suspensions of isolated rat liver parenchymal cells incorporate [(14)C]palmitic acid into glycerides at about 40% of the rate obtained with liver slices. 2. At short time-intervals most of the incorporation is into phosphatidylcholine and this is recovered mainly in the plasma-membrane fraction. 3. At later times (5min to 2h) the [(14)C]palmitic acid is mainly found in triglyceride, but this is not recovered in the plasma-membrane fraction. 4. Addition of lysophosphatidylcholine increases incorporation of palmitic acid into both phosphatidylcholine and triglyceride, with maximum effect at about 0.1mm. 5. In vivo, 1min after injection of [(14)C]palmitic acid, radioactive phosphatidylcholine is concentrated in the plasma-membrane fraction, but the proportion present in this fraction declines rapidly. 6. The phosphatidylcholine of the plasma-membrane fraction has, at 1min after injection, a specific radioactivity 30-fold greater than that of the whole tissue. 7. This phosphatidylcholine reaches its maximum specific radioactivity before the tissue phosphatidic acid or diglyceride. 8. The phosphatidylcholine of the plasma-membrane fraction has a very rapid turnover. 9. It is proposed that the rapid formation of phospholipids in the plasma membrane is by acylation of their lyso-derivatives and the role of this process in fatty acid uptake is discussed.  相似文献   

13.
Abstract: Awake adult male rats were infused intravenously with [3H]arachidonic acid for 5 min, with or without prior administration of an M1 cholinergic agonist, arecoline (15 mg/kg i.p.). Methylatropine was also administered (4 mg/kg s.c.) to control and arecoline-treated animals. At 15 min postinfusion, the animals were killed, brains were removed and frozen, and subcellular fractions were obtained from homogenates of whole brain. Total radioactivity and radioactivity in various lipid classes were determined for each fraction following normalization for exposure by use of a unidirectional incorporation coefficient, k brain. In control animals, incorporation was greatest in synaptosomal and microsomal fractions, accounting for 50 and 30% of total label incorporated into membrane lipids, respectively. Arecoline increased incorporation in these two fractions by up to 400% but did not increase incorporation into the myelin, mitochondrial, or cytosolic fractions. Of the incorporated radioactivity, 50–80% was in phospholipid in microsomal and synaptosomal fractions, indicating that phospholipid is the major lipid affected by cholinergic stimulation. These results demonstrate that plasma [3H]arachidonic acid is preferentially incorporated into phospholipids of synaptosomal and microsomal fractions of rat brain. Cholinergic stimulation increases incorporation into these fractions, likely by activation of phospholipase A2 and/or C in association with acyltransferase activity. Thus, intravenously infused radiolabeled arachidonic acid can be used to examine synapse-mediated changes in brain phospholipid metabolism in vivo.  相似文献   

14.
The uptake and metabolism of linoleic acid by rumen holotrichs (mainly Isotricha prostoma and I. intestinalis) has been examined in in vitro infusion experiments. Maximum absorption and metabolism of [1-14C]linoleate by 2 . 10(6) Isotricha suspended in 100 ml buffer was obtained using an infusion rate of 1.6 mg linoleate/h. After 90 min, 84% of the added substrate was recovered within the cells, mainly as free fatty acid or phospholipid. There was a rapid incorporation of radioactivity into phospholipid, mainly phosphatidylcholine, at the commencement of linoleate infusion but no further incorporation after about 40 min. The presence of bacteria during incubations, in approximately the same Isotricha/bacteria ratio as found in the rumen, reduced the uptake of linoleate and the accumulation of free fatty acid by holotrichs but the incorporation into phospholipid remained similar to that obtained in the absence of bacteria. Very little biohydrogenation of linoleic acid occurred in incubations with holotrichs alone. Bacterial suspensions converted linoleic acid to mainly trans monoene and a small amount of stearic acid, but in incubations containing both bacteria and holotrichs, both stearic acid and trans monoene were major products. Using the latter mixed culture, about 20% of the added [1-14C]linoleic acid was present in holotrich phospholipid of which 62% remained as octadecadienoic acid. The Isotricha population was 3 . 10(3)--2 . 10(4)/ml rumen fluid and it contributed about 23% of the linoleic acid in the rumen of a cow on a hay diet.  相似文献   

15.
1. Lipoproteins in the plasma of mice were characterized by agarose-gel chromatography and polyacrylamide-gel electrophoresis: genetically obese (ob/ob) mice exhibited hyperlipoproteinaemia (compared with lean mice), largely owing to an increase in the concentration of cholesterol in high-density lipoprotein. Plasma concentrations of triglyceride and phospholipid were not markedly increased in genetically obese mice. 2. The formation of glycerolipids in liver and plasma was investigated with (14)C-labelled precursors. The synthesis of hepatic triglyceride and phospholipid from glucose or palmitate was enhanced in ob/ob mice, compared with lean mice. The rate of entry of triglyceride into plasma, calculated from the time-course of incorporation of (14)C from [(14)C]palmitate into plasma triglyceride, was increased in ob/ob mice (0.5mumol of fatty acid/min, compared with 0.2 in lean mice). 3. The removal from plasma of murine lipoprotein triglyceride-[(14)C]fatty acid was increased in ob/ob mice (half-time 2.2min, compared with 7.2min in lean mice). Similar results were obtained with an injected lipid emulsion (Intralipid). 4. From these measurements, estimates of the rates of turnover of plasma triglyceride in mice (fed on a mixed diet, female, 3 months old) are about 1.0mumol of fatty acid/min in ob/ob mice, and 0.25 in lean mice. 5. The major precursor of hepatic and plasma triglyceride in lean and ob/ob mice was calculated to be plasma free fatty acid. 6. These results are discussed, in connexion with the role of the liver in triglyceride metabolism in mice, especially in relation to genetic obesity.  相似文献   

16.
The incorporation of [(14)C]-linoleic acid (LA) into total lipid fractions was higher in LLC-WRC256 cells from the log phase of growth as compared to those of the plateau phase. LA was mainly incorporated into the phospholipid (PL) fraction of cells during the log phase, whereas in the plateau phase it was mostly taken into cholesterol ester. The proportion of radioactivity was higher in phosphatidylserine of cells from the log phase, whereas in the plateau phase it was higher in phosphatidylcholine. This feature of LA incorporation may be an important factor in determining the proliferative capacity of tumour cells.  相似文献   

17.
Characterization and metabolism of ovine foetal lipids   总被引:6,自引:4,他引:2  
1. Total phospholipid concentrations in liver, kidney and brain of the 140-day ovine foetus were only half of those in comparable maternal tissues. 2. Phosphatidylcholine was the predominant phospholipid in all foetal tissues examined. The most striking difference between foetal and maternal tissues in individual phospholipids was in the heart; foetal heart contained more ethanolamine plasmalogen than choline plasmalogen, whereas in adult tissue the concentration of these was reversed. Sphingomyelin content of foetal brain was only one-sixth of that of maternal brain tissue. 3. Oleic acid (18:1) was the predominant acid in the phospholipid extracted from foetal tissues, except in brain where palmitic acid (16:0) was slightly higher. In phospholipids from adult tissues there was a higher proportion of unsaturated fatty acids (linoleic acid, 18:2, and linolenic acid, 18:3) and a correspondingly lower proportion of oleic acid (18:1). The distribution of fatty acids in the neutral lipid fraction of foetal and maternal tissues was very similar; oleic acid (18:1) was generally the principal component. 4. (14)C derived from [U-(14)C]-glucose and [U-(14)C]fructose infused into the foetal circulation in utero was incorporated into the neutral lipids and phospholipids of heart, liver, kidney, brain and adipose tissue. 5. Phospholipid analysis revealed that the specific activity of phosphatidic acid was higher in liver than in other tissues. The specific activity of phosphatidylethanolamine was less than that of phosphatidylcholine in heart, but in other tissues they were about the same. The specific activities of phosphatidylinositol and phosphatidic acid in brain were very similar and were higher than the other components. The specific activity of phosphatidylserine was highest in liver and brown fat. 6. The pattern of incorporation of (14)C derived from [(14)C]glucose and [(14)C]fructose into foetal neutral lipids was similar. Diglyceride accounted for most of the radioactivity in brain, whereas triglyceride had more label in heart, liver, kidney and fat.  相似文献   

18.
Peritoneal macrophages from endotoxin-tolerant rats have been found to exhibit depressed metabolism of arachidonic acid (AA) to prostaglandins and thromboxane in response to endotoxin. The effect of endotoxin tolerance on AA turnover in peritoneal macrophages was investigated by measuring [14C]AA incorporation and release from membrane phospholipids. Endotoxin tolerance did not affect the amount of [14C]AA incorporated into macrophages (30 min-24 h). However, the temporal incorporation of [14C]AA into individual phospholipid pools (15 min-24 h) was altered. In endotoxin-tolerant macrophages, [14C]AA incorporation into phosphatidylcholine (PC) (2, 4, 24 h) and phosphatidylethanolamine (PE) (8 h) was increased, while the incorporation into phosphatidylserine (PS) (2-24 h) was reduced (P less than 0.005) compared to control macrophages. There was no change in [14C]AA incorporation into phosphatidylinositol (PI). Following 2 or 24 h of incorporation of [14C]AA, macrophages were incubated (3 h) with endotoxin (50 micrograms/ml) or A23187 (1 microM), and [14C]AA release was measured. Endotoxin-tolerant macrophages released decreased (P less than 0.05) amounts of [14C]AA in response to both endotoxin and the calcium ionophore A23187 compared to controls. Control macrophages in response to endotoxin released [14C]AA from PC, PI and PE. In contrast, tolerant cells released [14C]AA only from PC (P less than 0.05). A23187 released [14C]AA from all four pools in the control cells, but only from PC and PE in the tolerant cells. These data demonstrate that endotoxin tolerance alters the uptake and release of AA from specific macrophage phospholipid pools. These results suggest that changes in AA turnover and/or storage are associated with endotoxin tolerance.  相似文献   

19.
The incorporation of [1-14C]linoleic and [1-14C]stearic acid and of their delta 6 and delta 9 desaturation products (gamma-linolenic and oleic acids, respectively) into different classes of lipids was studied in liver microsomes of rats in function of the diet (blackcurrant seed oil diet, containing gamma-linolenic acid, versus control diet) and in function of age (3, 6 and 9 months). After delta 6 desaturation, total radioactivity was distributed between phospholipids, especially phosphatidylcholine, and neutral lipids. The desaturation product, gamma-linolenic acid, was totally recovered in the phospholipid fraction. Blackcurrant seed oil, which decreased the rate of delta 6 desaturation in 6- and 9-month-old rats, also decreased the incorporation of radioactivity in total phospholipids, especially in phosphatidylcholine. At 6 months of age, after delta 9 desaturation, the majority of radioactivity was recovered in neutral lipids principally as oleic acid, the desaturation product. The precursor, stearic acid, was highly incorporated into phospholipids, especially in rats on a diet of blackcurrant seed oil.  相似文献   

20.
Isolated hepatocytes from Atlantic salmon (Salmo salar), fed diets containing either 100% fish oil or a vegetable oil blend replacing 75% of the fish oil, were incubated with a range of seven (14)C-labelled fatty acids. The fatty acids were [1-(14)C]16:0, [1-(14)C]18:1n-9, 91-(14)C]18:2n-6, [1-(14)C]18:3n-3, [1-(14)C]20:4n-6, [1-(14)C]20:5n-3, and [1-(14)C]22:6n-3. After 2 h of incubation, the hepatocytes and medium were analysed for acid soluble products, incorporation into lipid classes, and hepatocytes for desaturation and elongation. Uptake into hepatocytes was highest with [1-(14)C]18:2n-6 and [1-(14)C]20:5n-3 and lowest with [1-(14)C]16:0. The highest recovery of radioactivity in the cells was found in triacylglycerols. Of the phospholipids, the highest recovery was found in phosphatidylcholine, with [1-(14)C]16:0 and [1-(14)C]22:6n-3 being the most prominent fatty acids. The rates of beta-oxidation were as follows: 20:4n-6>18:2n-6=16:0>18:1n-9>22:6n-3=18:3n-3=20:5n-3. Of the fatty acids taken up by the hepatocytes, [1-(14)C]16:0 and [1-(14)C]18:1n-9 were subsequently exported the most, with the majority of radioactivity recovered in phospholipids and triacylglycerols, respectively. The major products from desaturation and elongation were generally one cycle of elongation of the fatty acids. Diet had a clear effect on the overall lipid metabolism, with replacing 75% of the fish oil with vegetable oil resulting in decreased uptake of all fatty acids and reduced incorporation of fatty acids into cellular lipids, but increased beta-oxidation activity and higher recovery in products of desaturation and elongation of [1-(14)C]18:2n-6 and [1-(14)C]18:3n-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号