首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Keratin filaments in simple epithelial cells are heteropolymers of keratin 8 (K8) and keratin 18 (K18), which can be stained by the monoclonal antibody (MAb) LE61. This antibody has been widely used to study keratin expression in normal and neoplastic tissues. In this study we have found that MAb LE61 does not react with individual keratin polypeptides either derived from natural sources or expressed as recombinant proteins inEscherichia coli.However, when K8 or K18 bound to nitrocellulose were incubated with complementary keratin they became reactive with this antibody. A mixture of K8 and K18 in solution also reacted strongly with the MAb LE61 in ELISA. These observations suggest that the antibody recognizes a discontinuous epitope on the keratin complex. The antibody also reacted with complexes of K8 and K18 with other keratins. To locate the epitope of this antibody we have expressed K8 and K18 fragments, deleted from the amino- and carboxyl-termini, as fusion proteins with glutathioneS-transferase. These fragments were able to form a heterotypic complex with the complementary keratin. Binding of the MAb LE61 to these complexes mapped the two halves of the epitope on K8, between residues 353 and 367, and on K18, between residues 357 and 385. The two halves of the epitope appear to be in close association in the heterotypic complex since deletions from the amino-terminus did not influence the antibody binding. The highly conserved nature of this epitope in both type I and type II keratins could explain the MAb LE61 reactivity with complexes of K8 or K18 with other keratins.  相似文献   

2.
The intermediate filament network in simple glandular epithelial cells predominantly consists of heterotypic complexes of cytokeratin 8 (K8) and cytokeratin 18 (K18). In contrast to other cytokeratins, K8 and K18 are persistently expressed during malignant transformation, but changes in cell morphology are accompanied by alterations in the intermediate filament network. To study molecular changes, K8 and K18 were purified from surgically removed colon cancer and normal epithelia tissues. Western blotting and amino acid sequencing revealed the presence of abundant K8 and K18 fragments, truncated at the N terminus, from cancerous, but not normal, epithelial cells. The fragmentation pattern indicates proteolysis mediated by several enzymes, including trypsin-like enzymes. The cancer-associated forms of K8 and K18 are specifically recognized by the human antibody, COU-1, cloned from the B cells of a cancer patient. We demonstrate that COU-1 recognizes a unique conformational epitope presented only by a complex between K8 and K18. The epitope is revealed after proteolytic removal of the head domain of either K8 or K18. A large panel of recombinant K8 and K18 fragments, deleted N- or C-terminally, allowed for the localization of the COU-1 epitope to the N-terminal part of the rod domains. Using surface plasmon resonance, the affinity of COU-1 for this epitope was determined to be 10(9) x m(-1), i.e. more than 2 orders of magnitude higher than for intact heterotypic K8/K18 complexes. The cellular distribution of truncated K8/K18 heterotypic complexes in viable adenocarcinomas cells was probed using COU-1 showing small fibrillar structures distinct from those of intact K8/K18 complexes. Previously we demonstrated the binding and subsequent internalization of recombinant Fab COU-1 to live cancer cells. We have thus characterized a cancer neoepitope recognized by the humoral immune system. The results have biological as well as clinical implications.  相似文献   

3.
A novel type of monoclonal murine antibody (Ks18.18) directed against an epitope depending on human cytokeratin (CK) 18, a member of the acidic (type I) CK subfamily, is described. We show by SDS-PAGE immunoblots and dot-blot assays that this antibody is unreactive with both the denatured and the renatured individual polypeptides but binds strongly to heterotypic coiled-coil complexes of CK 18 with several members of the complementary basic (type II) CK subfamily, notably with CK 8; i.e., its most frequent natural partner. We also show that specific interactions between complementary CK polypeptides take place during the incubation steps of immunoblotting procedures as polypeptides, or fragments thereof, that detach from the substrate can bind to complementary polypeptides attached to the substratum, which may result in false assignments of antibody reactivities. The conformation-specific, CK 18-dependent epitope of Ks18.18 was detected in intermediate filaments (IFs) of cultured cells, simple epithelia, and many carcinomas and, surprisingly, also in the basal cells of some stratified epithelia. Ks18.18 also reacts with altered CK configurations as present in the spheroidal bodies of mitotic cells and in the Mallory bodies of hepatocytes intoxicated with certain drugs, thus indicating that the heterotypic CK complexes are maintained in these structures. We have also used antibody Ks18.18 to demonstrate the existence of heterotypic CK 8 and 18 complexes in a distinct soluble form among supernatant proteins from cell homogenates which is indistinguishable from the heterotypic tetramer obtained after experimental disintegration of IFs. The potential value of such IF conformation-specific antibodies in cell biological research and pathology is discussed.  相似文献   

4.
Various polyclonal and monoclonal antibodies to keratins were used to stain different human muscle tissues by paired immunofluorescence and the unlabelled antibody peroxidase-anti-peroxidase method. In the myocardium, distinct coloration of the intercalated discs was produced by two polyclonal reagents to human epidermal keratins but not by two monoclonal antibodies to cytokeratins from pig renal tubular cells. In the myometrium--mainly in the middle layer of the uterine wall--cytoplasmic coloration of a varying fraction of the smooth muscle bundles was produced, especially by one of the polyclonal and by both monoclonal reagents. The staining was often confined to the perinuclear region. The keratin-positive myometrial cells usually coexpressed vimentin and actin in various proportions. These findings indicated that intermediate filaments of the keratin type, or antigenically similar elements, are not restricted to cells of epithelial origin. Other types of muscle cells did not react with keratin antibodies, but keratin-positive macrophages were occasionally found in tongue musculature and in inflamed epicardium. Altogether, our observations emphasize that keratin reactivity cannot be considered specific for epithelial (or mesothelial) cells without reservation.  相似文献   

5.
Actively proliferating human retinal pigment epithelial (RPE) cells grown in tissue culture possess keratin-containing intermediate filaments that react with a combination of AE1 and AE3 anti-keratin monoclonal antibodies. Antibody reactivity is lost, however, from RPE cells as the cell population ceases to proliferate when it approaches confluence and attains morphological characteristics more similar to those in vivo. In contrast, clone 8.13 anti-keratin antibody stains all cells in the culture at all stages of the growth cycle and cell densities. These findings were reflected in vivo using retinal pigment epithelium taken directly from the eye. Normal non-proliferating RPE cells bound 8.13 antibody to cytoskeletal structures, as judged by indirect immunofluorescence, but did not bind AE1/AE3 antibodies. However, proliferating dedifferentiated RPE cells from the vitreous humor of patients with proliferative vitreoretinopathy possess filaments that bind both AE1/AE3 and 8.13 antibodies. Thus it appears that structures detected by AE1/AE3 antibodies only occur in actively growing RPE cells in vitro and in vivo. Keratins produced by RPE cells were identified using Western blotting. Species with molecular masses of 54 (keratin 7), 52 (keratin 8), 42 (keratin 18), and 40 (keratin 19) kiloDaltons were the most abundant in proliferating cultured cells, but cells isolated directly from the eye were found to lack keratin 7 and 19. Keratin 19 was, however, observed in proliferating RPE cells from some patients with proliferative vitreoretinopathy. The latter findings explain the differential staining observed with AE1/AE3 antibodies in cells in culture and isolated directly from the eye since these antibodies interact primarily with keratin 19 which is absent from non-proliferating RPE cells. In contrast to the presence of keratin-containing intermediate filaments in human RPE cells in vivo, there are apparently no detectable vimentin-containing cytoskeletal structures. However, all RPE cells cultured in vitro develop filaments composed of vimentin which persist in cells that have reached confluence.  相似文献   

6.
《The Journal of cell biology》1995,131(5):1291-1301
Phosphorylation of keratin polypeptides 8 and 18 (K8/18) and other intermediate filament proteins results in their reorganization in vitro and in vivo. In order to study functional aspects of human K18 phosphorylation, we generated and purified a polyclonal antibody (termed 3055) that specifically recognizes a major phosphorylation site (ser52) of human K18 but not dephosphorylated K18 or a ser52-->ala K18 mutant. Pulse-chase experiments followed by immunoprecipitation and peptide mapping of in vivo 32PO4-labeled K8/18 indicated that the overall phosphorylation turnover rate is faster for K18 versus K8, and that ser52 of K18 is a highly dynamic phosphorylation site. Isoelectric focusing of 32PO4 labeled K18 followed by immunoblotting with 3055 showed that the major phosphorylated K18 species contain ser52 phosphorylation but that some K18 molecules exist that are preferentially phosphorylated on K18 sites other than ser52. Immunoblotting of total cell lysates obtained from cells at different stages of the cell cycle showed that ser52 phosphorylation increases three to fourfold during the S and G2/M phases of the cell cycle. Immunofluorescence staining of cells at different stages of mitosis, using 3055 or other antibodies that recognize the total keratin pool, resulted in preferential binding of the 3055 antibody to the reorganized keratin fraction. Staining of human tissues or tissues from transgenic mice that express human K18 showed that the phospho-ser52 K18 species are located preferentially in the basolateral and apical domains in the liver and pancreas, respectively, but no preferential localization was noted in other simple epithelial organs examined. Our results support a model whereby phosphorylated intermediate filaments are localized in specific cellular domains depending on the tissue type and site(s) of phosphorylation. In addition, ser52 of human K18 is a highly dynamic phosphorylation site that undergoes modulation during the S and G2/M phases of the cell cycle in association with filament reorganization.  相似文献   

7.
Summary Various polyclonal and monoclonal antibodies to keratins were used to stain different human muscle tissues by paired immunofluorescence and the unlabelled antibody peroxidase-anti-peroxidase method. In the myocardium, distinct coloration of the intercalated discs was produced by two polyclonal reagents to human epidermal keratins but not by two monoclonal antibodies to cytokeratins from pig renal tubular cells. In the myometrium — mainly in the middle layer of the uterine wall — cytoplasmic coloration of a varying fraction of the smooth muscle bundles was produced, especially by one of the polyclonal and by both monoclonal reagents. The staining was often confined to the perinuclear region. The keratin-positive myometrial cells usually coexpressed vimentin and actin in various proportions. These findings indicated that intermediate filaments of the keratin type, or antigenically similar elements, are not restricted to cells of epithelial origin. Other types of muscle cells did not react with keratin antibodies, but keratin-positive macrophages were occasionally found in tongue musculature and in inflamed epicardium. Altogether, our observations emphasize that keratin reactivity cannot be considered specific for epithelial (or mesothelial) cells without reservation.Supported by the Norwegian Cancer Society, Jahre's Fund, and the Norwegian Research Council for Science and the Humanities  相似文献   

8.
Certain cultured epithelial cells contain separate vimentin and keratin-type intermediate filament networks. The intracellular injection of monoclonal antibodies directed against either vimentin or keratin filaments into PtK2 cultured epithelial cells specifically disrupted the organization of both filament types. Neither antibody had any effect when injected into cells which, while containing vimentin or keratin filaments, lacked the specific filament type which that antibody recognized. These experiments suggest that keratin and vimentin filament networks are associated in some way with one another.  相似文献   

9.
Monoclonal antibodies specific for vimentin (V9), keratin 7 (CK 7) and keratin 18 (CK5) have been microinjected into three human epithelial cell lines: HeLa, MCF-7 and RT-4. The effect of the injection on other keratin polypeptides and vimentin filaments has been observed by double label immunofluorescence and in some instances by immunoelectron microscopy using gold labels of different sizes. Microinjection of V9 into HeLa cells causes the vimentin to collapse into a perinuclear cap leaving the keratin filaments unaffected. Injection of CK5 does not affect the vimentin filaments but disrupts the keratin filaments revealing keratin aggregates similar to those seen in some epithelial cell lines during mitosis. The keratin aggregates obtained after microinjection in HeLa contain the keratins 8 and 18 and probably also other keratins, as no residual keratin filaments are observed with a keratin polyclonal antibody of broad specificity. Aggregates in mitotic HeLa cells contain at least the keratins 7, 8, and 18. In MCF-7 cells keratins 8, 18, and 19 are observed in the aggregates seen 3 h after microinjection which, however, show a different morphology from those seen in HeLa cells. In MCF-7 cells a new keratin filament is built within 6 h after the injection which is composed mainly of keratin 8 and 19. The antibody-complexed keratin 18 remains in spherical aggregates of different size. The results suggest that in HeLa cells vimentin and keratin form independent networks, and that individual 10 nm filaments in epithelial cell lines can contain more than two keratins.  相似文献   

10.
We report on application of the highly sensitive and specific immunogold labeling method for ultrastructural investigation of keratin intermediate filament antigens in human epidermal cell suspensions. Triton X-100 pretreated cells proved accessible to the colloidal gold conjugate, thus enabling keratin filament bundles to be labeled. Anti-keratin KL1 and KL2 monoclonal antibodies were raised in mice after immunization with either human stratum corneum-isolated keratins or keratins extracted from human epidermal cells suspensions, respectively. Immunoelectron microscopy confirmed immunofluorescence and immunoperoxidase results of epidermal keratinocyte staining, and revealed two different antibody reactivity patterns: KL2 reacted with keratin filaments in keratinocytes of all epidermal layers, whereas antigen to KL1 was detected only on keratin of the suprabasal layers, not on the basal keratinocyte tonofilaments. The monoclonal antibody-recognized epitopes were specific for the keratin filaments. Vimentin-rich cells (melanocytes) were not stained in the same epidermal cell suspensions. Additionally, two distinct ultrastructural patterns of keratin filament epitope labeling were observed. KL1 and KL2 monoclonal antibodies react with two different antigenic determinants, depending on the stage of keratinocyte differentiation, and may therefore be used for immunohistochemical studies of various keratin-containing cells in normal and pathologic conditions.  相似文献   

11.
K T Trevor 《The New biologist》1990,2(11):1004-1014
The murine keratins Endo B and Endo A, which are homologs of the human keratins K18 and K8, constitute the intermediate filaments (IFs) that are found in all simple epithelia of the adult and in the first epithelial derivatives of the early embryo. The cellular role of simple epithelial keratins in development and differentiation was investigated by inducing filament collapse in HR9 endoderm and F9 embryonal carcinoma cells in which mutant Endo B protein was constitutively expressed. By immunolocalization techniques a perturbation of the keratin network was revealed as well as concomitant disruption of vimentin IFs and displacement of surface desmosomal proteins, demonstrating an intimate structural association of Endo B/A filaments with these cellular components. In aggregates of differentiating F9 cells displaying altered Endo A/B IFs, the formation of a compact, polarized visceral endoderm layer was significantly compromised. These results indicate that an intact keratin network influences the three-dimensional formation of cell-cell or cell-substratum contacts in embryonic visceral endoderm.  相似文献   

12.
It has only recently been recognized that intermediate filaments (IFs) and their assembly intermediates are highly motile cytoskeletal components with cell-type- and isotype-specific characteristics. To elucidate the cell-type-independent contribution of actin filaments and microtubules to these motile properties, fluorescent epithelial IF keratin polypeptides were introduced into non-epithelial, adrenal cortex-derived SW13 cells. Time-lapse fluorescence microscopy of stably transfected SW13 cell lines synthesizing fluorescent human keratin 8 and 18 chimeras HK8-CFP and HK18-YFP revealed extended filament networks that are entirely composed of transgene products and exhibit the same dynamic features as keratin systems in epithelial cells. Detailed analyses identified two distinct types of keratin motility: (I) Slow (approximately 0.23 microm/min), inward-directed, continuous transport of keratin filament precursor particles from the plasma membrane towards the cell interior, which is most pronounced in lamellipodia. (II) Fast (approximately 17 microm/min), bidirectional and intermittent transport of keratin particles in axonal-type cell processes. Disruption of actin filaments inhibited type I motility while type II motility remained. Conversely, microtubule disruption inhibited transport mode II while mode I continued. Combining the two treatments resulted in a complete block of keratin motility. We therefore conclude that keratin motility relies both on intact actin filaments and microtubules and is not dependent on epithelium-specific cellular factors.  相似文献   

13.
本文根据不同上皮细胞的角蛋白丝性质和多肽组成的差异,建立了四种不同上皮细胞系(株)间交叉污染的检测方法:1.SDS-PAGE法;2.免疫印迹法;3.AE1单抗免疫荧光染色法;4.角蛋白丝结构转化法。结果表明:方法1—3比较有用。我们认为,要获得较满意的检测结果,需要根据不同上皮细胞的特点,选择不同的方法配合使用。  相似文献   

14.
Three monoclonal antibodies (AE1, AE2, and AE3) were prepared against human epidermal keratins and used to study keratin expression during normal epidermal differentiation. Immunofluorescence staining data suggested that the antibodies were specific for keratin-type intermediate filaments. The reactivity of these antibodies to individual human epidermal keratin polypeptides (65-67, 58, 56, and 50 kdaltons) was determined by the immunoblot technique. AE1 reacted with 56 and 50 kdalton keratins, AE2 with 65-67 and 56-kdalton keratins, and AE3 with 65-67 and 58 kdalton keratins. Thus all major epidermal keratins were recognized by at least one of the monoclonal antibodies. Moreover, common antigenic determinants were present in subsets of epidermal keratins. To correlate the expression of specific keratins with different stages of in vivo epidermal differentiation, the antibodies were used for immunohistochemical staining of frozen skin sections. AE1 reacted with epidermal basal cells, AE2 with cells above the basal layer, and AE3 with the entire epidermis. The observation that AE1 and AE2 antibodies (which recognized a common 56 kdalton keratin) stained mutually exclusive parts of the epidermis suggested that certain keratin antigens must be masked in situ. This was shown to be the case by direct analysis of keratins extracted from serial, horizontal skin sections using the immunoblot technique. The results from these immunohistochemical and biochemical approaches suggested that: (a) the 65- to 67-kdalton keratins were present only in cells above the basal layer, (b) the 58-kdalton keratin was detected throughout the entire epidermis including the basal layer, (c) the 56- kdalton keratin was absent in the basal layer and first appeared probably in the upper spinous layer, and (d) the 50-kdalton keratin was the only other major keratin detected in the basal layer and was normally eliminated during s. corneum formation. The 56 and 65-67- kdalton keratins, which are characteristic of epidermal cells undergoing terminal differentiation, may be regarded as molecular markers for keratinization.  相似文献   

15.
The mechanical properties of epithelial cells are modulated by structural changes in keratin intermediate filament networks. To investigate the relationship between network architecture and viscoelasticity, we assembled keratin filaments from recombinant keratin proteins 8 (K8) and 18 (K18) in the presence of divalent ions (Mg2+). We probed the viscoelastic modulus of the network by tracking the movement of microspheres embedded in the network during assembly, and studied the network architecture using scanning electron microscopy. Addition of Mg2+ at physiological concentrations (<1 mM) resulted in networks whose structure was similar to that of keratin networks in epithelial cells. Moreover, the elastic moduli of networks assembled in vitro were found to be within the same magnitude as those measured in keratin networks of detergent-extracted epithelial cells. These findings suggest that Mg2+-induced filament cross-linking represents a valid model for studying the cytoskeletal mechanics of keratin networks.  相似文献   

16.
We have previously described a rat monoclonal antibody, RS-11, which recognizes a tumor-associated antigen common to several species. In the present study, we have cloned and characterized the antigen recognized by RS-11. We screened a phage expression library prepared from HeLa cDNA and identified a clone that reacts with RS-11. DNA sequence analysis revealed that this clone contains sequences of keratin 18 (nucleotides 568-1196). We constructed several glutathione S-transferase fusion proteins and synthetic peptides based on this DNA sequence analysis and examined their reactivity with RS-11 to accurately map the RS-11 epitope. We determined that the epitope resides within a region of seven amino acids on the alpha-helix 2B domain of keratin 18 in which two amino acids (Leu(366) and Lys(370)) are completely conserved among intermediate filaments as well as other keratin members that are immunoreactive with RS-11. These two residues are sequentially discontinuous but spatially adjacent. The RS-11 epitope is constitutively present in human primary cultured hepatocytes; however, its immunoreactivity with RS-11 is up-regulated by malignant transformation or stimulation with either epidermal growth factor or transforming growth factor alpha.  相似文献   

17.
Summary The cytokeratin distribution in the developing rat enamel organ from day 15 of gestation through to 11 days post partum was examined immunohistochemically using a panel of monoclonal antibodies. A temporo-spatial programme of keratin expression was observed during odontogenesis and positive reactivity of the enamel organ was seen with the pan keratin antibodies CK1 (clone LP34 — reacts with a number of keratins including 6 and 18) and AE1-3 (reacts with most acidic and basic keratins). No reactivity was observed in the enamel organ with the other antibodies examined (Ks 8.12 [reacts with keratins 13 and 16], Ks 8.60 [reacts with keratins 10 and 11) and MCA157 [reacts with rat liver antigen]), although these antibodies did stain other epithelial tissues. This study supports the view that the epithelial cells of the enamel organ synthesize a tissuspecific subset of keratins which are related to the differentiation of the cells.  相似文献   

18.
Hepatitis A virus is an hepatotrophic human picornavirus which demonstrates little antigenic variability. To topologically map immunogenic sites on hepatitis A virus which elicit neutralizing antibodies, eight neutralizing monoclonal antibodies were evaluated in competition immunoassays employing radiolabeled monoclonal antibodies and HM-175 virus. Whereas two antibodies (K3-4C8 and K3-2F2) bound to intimately overlapping epitopes, the epitope bound by a third antibody (B5-B3) was distinctly different as evidenced by a lack of competition between antibodies for binding to the virus. The other five antibodies variably blocked the binding of both K3-4C8-K3-2F2 and B5-B3, suggesting that these epitopes are closely spaced and perhaps part of a single neutralization immunogenic site. Several combinations of monoclonal antibodies blocked the binding of polyclonal human convalescent antibody by greater than 96%, indicating that the neutralization epitopes bound by these antibodies are immunodominant in humans. Spontaneously arising HM-175 mutants were selected for resistance to monoclonal antibody-mediated neutralization. Fourteen clonally isolated mutants demonstrated substantial resistance to multiple monoclonal antibodies, including K3-4C8-K3-2F2 and B5-B3. In addition, 13 mutants demonstrated a 10-fold or greater reduction in neutraliztion mediated by polyclonal human antibody. Neutralization resistance was associated with reduced antibody binding. These results suggest that hepatitis A virus may differ from poliovirus in possessing a single, dominant neutralization immunogenic site and therefore may be a better candidate for synthetic peptide or antiidiotype vaccine development.  相似文献   

19.
We have deleted cDNA sequences encoding portions of the carboxy-terminal end of a human type I epidermal keratin K14, and examined the molecular consequences of forcing the expression of these mutants in simple epithelial and squamous cell carcinoma lines. To follow the expression of our mutant products in transfected cells, we have tagged the 3' end of the K14 coding sequence with a sequence encoding an antigenic domain of the neuropeptide substance P. Using DNA transfection and immunohistochemistry (with an antibody against substance P), we have identified a collection of mutants that have a wide range of morphological effects on the endogenous keratin filament networks of transfected cells. Mutants that are missing most of the nonhelical carboxy-terminal domain of K14 incorporate into the endogenous keratin filaments without any visible perturbations on the network. In contrast, mutants that are missing as few as 10 of the 310 amino acids of the central alpha-helical domain of the polypeptide cause gross alterations in the keratin network. In some cases, the entire cytoskeletal network of keratins was disrupted, leaving no evidence of 8-nm filaments. These results reveal the existence of a dynamic exchange between newly synthesized subunits and preexisting keratin filaments.  相似文献   

20.
The organization of intermediate filaments in cultured epithelial cells was rapidly and radically affected by intracellularly injected monoclonal antikeratin filament antibodies. Different antibodies had different effects, ranging from an apparent splaying apart of keratin filament bundles to the complete disruption of the keratin filament network. Antibodies were detectable within cells for more than four days after injection. The antibody-induced disruption of keratin filament organization had no light-microscopically discernible effect on microfilament or microtubule organization, cellular morphology, mitosis, the integrity of epithelial sheets, mitotic rate, or cellular reintegration after mitosis. Cell-to-cell adhesion junctions survived keratin filament disruption. However, antibody injected into a keratinocyte-derived cell line, rich in desmosomes, brought on a superfasciculation of keratin filament bundles, which appeared to pull desmosomal junctions together, suggesting that desmosomes can move in the plane of the plasma membrane and may only be 'fixed' by their anchoring to the cytoplasmic filament network. Our observations suggest that keratin filaments are not involved in the establishment or maintenance of cell shape in cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号