首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.
These studies were carried out to characterize the activation of rat striatal tyroxine hydroxylase produced by depolarization of the medial forebrain bundle and to evaluate the possible role of cyclic AMP as a mediator of this activation. The enzymatic properties of tyrosine hydroxylase following in vivo depolarization were compared to those produced by treatment of striatal synaptosomes with dibutyryl cyclic AMP (dbcAMP). Similar effects were observed with regard to enzyme distribution, altered sensitivity to dopamine-induced inhibition, and activity as a function of tyrosine concentration. However, differences between the two treatments were also apparent. First, treatment with dbcAMP shifted the pH optimum from 6.2 to 7.0. In contrast, electrical stimulation decreased the rate of decline in activity as the pH was increased above the optimum, but did not shift the pH optimum. Second, plots of tyrosine hydroxylase activity versus cofactor concentration revealed two enzyme forms for both control and electrically stimulated preparations. However, dbcAMP treatment converted the enzyme to a single high affinity form. These results can be explained by one of the following: (1) cyclic AMP is the sole mediator of enzyme activation, but does not produce a maximally activated enzyme following in vivo depolarization (2) cyclic AMP is only one of several mediators involved or (3) cyclic AMP is not involved in depolarization-induced activation, with activation occurring via the mediation of other intracellular messengers, such as calcium.  相似文献   

2.
Abstract— A modified tritium release assay for the measurement of synaptosomal tyrosine hydroxyl-ation. with a sensitivity suitable for use on areas of the rat brain with a low density of catecholamine terminals. is described. The apparent Km , for tyrosine hydroxylase in the hippocampus was 9.3 μM. in the hypothalamus 6.1 μM and in the striatum 9.9 μM Preparations from all three regions showed a pH optimum of 6.0–6.2, and the activities were reduced to a small % of control by synaptosomal disruption. 3-iodotyrosine. noradrenaline and reserpine. Membrane depolarization at a pH of 6.1 did not elevate tyrosine hydroxylation rates in any of the regions studied, although striatal tyrosine hy-droxylation rates were elevated at a pH of 7.2 by 55 mM-K+. The addition of dibutyryl cyclic AMP (0.5 mM) to the medium produced a 20-30% elevation of the rates of hydroxylation in all three regions studied: addition of tetrahydrobiopterin (0.2 mM) elevated hydroxylation rates in the hypothalamus and striatum. These results indicate that many characteristics of tyrosine hydroxylase from the three regions are similar. In each case the enzyme is apparently sensitive to end-product inhibition and to cyclic AMP activation.  相似文献   

3.
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is subject to regulation by a variety of agents. Previous workers have found that cyclic AMP-dependent protein kinase and calcium-stimulated protein kinases activate tyrosine hydroxylase. We wanted to determine whether cyclic GMP might also be involved in the regulation of tyrosine hydroxylase activity. We found that treatment of rat PC12 cells with sodium nitroprusside (an activator of guanylate cyclase), 8-bromocyclic GMP, forskolin (an activator of adenylate cyclase), and 8-bromocyclic AMP all produced an increase in tyrosine hydroxylase activity measured in vitro or an increased conversion of [14C]tyrosine to labeled catecholamine in situ. Sodium nitroprusside also increased the relative synthesis of cyclic GMP in these cells. In the presence of MgATP, both cyclic GMP and cyclic AMP increased tyrosine hydroxylase activity in PC12 cell extracts. The heat-stable cyclic AMP-dependent protein kinase inhibitor failed to attenuate the activation produced in the presence of cyclic GMP. It eliminated the activation produced in the presence of cyclic AMP. Sodium nitroprusside also increased tyrosine hydroxylase activity in vitro in rat corpus striatal synaptosomes and bovine adrenal chromaffin cells. In all cases, the cyclic AMP-dependent activation of tyrosine hydroxylase was greater than that of the cyclic GMP-dependent second messenger system. These results indicate that both cyclic GMP and cyclic AMP and their cognate protein kinases activate tyrosine hydroxylase activity in PC12 cells.  相似文献   

4.
The activity of tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of dopamine, is stimulated by phosphorylation. In this study, we examined the effects of activation of NMDA receptors on the state of phosphorylation and activity of tyrosine hydroxylase in rat striatal slices. NMDA produced a time-and concentration-dependent increase in the levels of phospho-Ser(19)-tyrosine hydroxylase in nigrostriatal nerve terminals. This increase was not associated with any changes in the basal activity of tyrosine hydroxylase, measured as DOPA accumulation. Forskolin, an activator of adenylyl cyclase, stimulated tyrosine hydroxylase phosphorylation at Ser(40) and caused a significant increase in DOPA accumulation. NMDA reduced forskolin-mediated increases in both Ser(40) phosphorylation and DOPA accumulation. In addition, NMDA reduced the increase in phospho-Ser(40)-tyrosine hydroxylase produced by okadaic acid, an inhibitor of protein phosphatase 1 and 2A, but not by a cyclic AMP analogue, 8-bromo-cyclic AMP. These results indicate that, in the striatum, glutamate decreases tyrosine hydroxylase phosphorylation at Ser(40) via activation of NMDA receptors by reducing cyclic AMP production. They also provide a mechanism for the demonstrated ability of NMDA to decrease tyrosine hydroxylase activity and dopamine synthesis.  相似文献   

5.
Abstract: Using mouse brain cortical slices, we investigated the relative roles of cyclic AMP and of calcium ions as the intracellular messengers for the activation of glycogen phosphorylase (EC 2.4.1.1; α-1,4-glucan:orthophosphate glucosyltransferase) induced by noradrenaline and by depolarization. Activation of phosphorylase by 100 μM noradrenaline is mediated by β-adrenergic receptors and does not require the copresence of adenosine. The role of the concomitant small increase in cyclic AMP is questioned. Short-term treatment with EGTA or LaCl3 abolishes the noradrenaline activation of phosphorylase, pointing to a critical role of extracellular calcium. Depolarization by 25 m M K+ or 100 μ M veratridine produces a rapid and large (fourfold) activation of phosphorylase. Only veratridine increases the cyclic AMP levels; exogenous adenosine deaminase essentially blocks this cyclic AMP accumulation but not the phosphorylase activation. A halfmaximal activation of phosphorylase occurs at about 12 m M K+. Addition of EGTA or LaCl3, reduces the effect of both depolarizations to a slight and transient activation of phosphorylase. These results indicate that activation of glycogen phosphorylase by K+ or veratridine occurs by a cyclic AMP-independent and calcium-dependent mechanism. The calcium dependency of brain phosphorylase kinase renders this kinase the prime target enzyme for regulation of glycogenolysis by calcium ions.  相似文献   

6.
P Onali  M C Olianas 《Life sciences》1987,40(12):1219-1228
In rat striatal synaptosomes, 4 beta-phorbol 12-myristate 13-acetate (PMA) and 4 beta-phorbol 12,13-dibutyrate (PDBu), two activators of Ca2+-phospholipid-dependent protein kinase (protein kinase C) increased dopamine (DA) synthesis measured by following the release of 14CO2 from L-[1-14C] tyrosine. Maximal stimulation (21-28% increase of basal rate) was produced by 0.5 microM PMA and 1 microM PDBu. 4 beta-Phorbol and 4 beta-phorbol 13-acetate, which are not activators of protein kinase C, were ineffective at 1 microM. PMA did not change the release of 14CO2 from L-[1-14C]DOPA. Addition of 1 mM EGTA to a Ca2+-free incubation medium failed to affect PMA stimulation. KC1 (60 mM) enhanced DA synthesis by 25%. Exposure of synaptosomes to either PMA or PDBu prior to KC1 addition resulted in a more than additive increase (80-100%) of DA synthesis. A similar synergistic effect was observed when the phorbol diesters were combined with either veratridine or d-amphetamine but not with forskolin and dibutyryl cyclic AMP. Pretreatment of striatal synaptosomes with phorbol diesters produced an activation on of tyrosine hydroxylase (TH) associated with a 60% increase of the Vmax and a decrease of the Km for the pterine cofactor 6-methyl-5,6,7,8-tetrahydropterin. These results indicate that protein kinase C participates in the regulation of striatal TH in situ and that its activation may act synergistically with DA releasing agents in stimulating DA synthesis.  相似文献   

7.
Abstract: The systems responsible for phosphorylating tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosynthesis, were investigated in situ in adrenal medullary cells made permeable to solutes of up to 1,000 dalton by exposure to brief intense electric fields. Two different phosphorylation systems were found. One is dependent on Ca2+, the other on cyclic AMP. The Ca2+-dependent system is half-maximally activated by 1-2 μ M Ca2+ and 0.5 m M ATP, and follows a time course similar to that of secretion of catecholamines. Trifluoperazine (0.1 m M ) does not inhibit significantly Ca2+-dependent phosphorylation of tyrosine hydroxylase in situ. The cyclic AMP-dependent system is half-maximally activated by addition of 0.5 μ M cyclic AMP and about 0.3 m M ATP. Ca2+-dependent and cyclic AMP-dependent phosphorylations of tyrosine hydroxylase have roughly the same time course and are additive under conditions where one system is already saturated. Peptide maps of immunoprecipitated tyrosine hydroxylase, after in situ phosphorylation of the enzyme either in the presence of 10−8 M Ca2+ plus 2 × 10−5 M cyclic AMP or of 10−5 M Ca2+, show a marked difference indicating that the enzyme contains several phosphorylation sites. At least one of these sites is phosphorylated only by the Ca2+-dependent system, whereas the other site(s) are phosphorylated by both the Ca2+- and cyclic AMP-dependent systems. The effect of in situ phosphorylation of tyrosine hydroxylase on its enzymatic activity was also investigated.  相似文献   

8.
The mechanisms of tyrosine hydroxylase (TH) activation by depolarization or exposure of dopaminergic terminals to cyclic AMP have been compared using rat striatal slices. Tissues were incubated with veratridine or 60 mM K+ (depolarizing conditions), on the one hand, and forskolin or dibutyryl cyclic AMP, on the other. K+-(or veratridine-)induced depolarization triggered an activation of TH (+75%) that persisted in soluble extracts of incubated tissues. This effect disappeared when drugs (EGTA, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, Gallopamil) preventing Ca2+- and calmodulin-dependent processes were included in the incubating medium. In contrast, prior in vivo reserpine treatment or in vitro addition of benztropine did not affect the depolarization-induced activation of TH. In vitro studies of soluble TH extracted from depolarized tissues indicated that activation was associated with a marked increase in the enzyme Vmax but with no change in its apparent affinity for the pteridin cofactor 6-methyl-5,6,7,8-tetrahydropterin (6-MPH4) or tyrosine. Furthermore, the activated enzyme from depolarized tissues exhibited the same optimal pH (5.8) as native TH extracted from control striatal slices. In contrast, TH activation resulting from tissue incubation in the presence of forskolin or dibutyryl cyclic AMP was associated with a selective increase in the apparent affinity for 6-MPH4 and a shift in the optimal pH from 5.8 to 7.0-7.2. Clear distinction between the two activating processes was further confirmed by the facts that heparin- and cyclic AMP-dependent phosphorylation stimulated TH activity from K+-exposed (and control) tissues but not that from striatal slices incubated with forskolin (or dibutyryl cyclic AMP). In contrast, the latter enzyme but not that from depolarized tissues could be activated by Ca2+-dependent phosphorylation. These data strongly support the concept that Ca2+- but not cyclic AMP-dependent phosphorylation is responsible for TH activation in depolarized dopaminergic terminals.  相似文献   

9.
Abstract: Incubation of rat pheochromocytoma PC12 cells with 4β-phorbol-12β-myristate-13α-acetate (PMA), an activator of Ca2+/phospholipid-dependent protein kinase (protein kinase C), or forskolin, an activator of adenylate cyclase, is associated with increased activity and enhanced phosphorylation of tyrosine hydroxylase. Neither the activation nor increased phosphorylation of tyrosine hydroxylase produced by PMA is dependent on extracellular Ca2+. Both activation and phosphorylation of the enzyme by PMA are inhibited by pretreatment of the cells with trifluo-perazine (TFP). Treatment of PC 12 cells with l-oleoyl-2-acetylglycerol also leads to increases in the phosphorylation and enzymatic activity of tyrosine hydroxylase; 1, 2-diolein and 1, 3-diolein are ineffective. The effects of forskolin on the activation and phosphorylation of the enzyme are independent of Ca2+ and are not inhibited by TIT5. Forskolin elicits an increase in cyclic AMP levels in PC 12 cells. The increases in both cyclic AMP content and the enzymatic activity and phosphorylation of tyrosine hydroxylase following exposure of PC 12 cells to different concentrations of forskolin are closely correlated. In contrast, cyclic AMP levels do not increase in cells treated with PMA. Tryptic digestion of the phosphorylated enzyme isolated from untreated cells yields four phosphopeptides separable by HPLC. Incubation of the cells in the presence of the Ca2+ ionophore ionomycin increases the phosphorylation of three of these tryptic peptides. However, in cells treated with either PMA or forskolin, there is an increase in the phosphorylation of only one of these peptides derived from tyrosine hydroxylase. The peptide phosphorylated in PMA-treated cells is different from that phosphorylated in forskolin-treated cells. The latter peptide is identical to the peptide phosphorylated in dibutyryl cyclic AMP-treated cells. These results indicate that tyrosine hydroxylase is activated and phosphorylated on different sites in PC 12 cells exposed to PMA and forskolin and that phosphorylation of either of these sites is associated with activation of tyrosine hydroxylase. The results further suggest that cyclic AMP-dependent and Ca2+/ phospholipid-dependent protein kinases may play a role in the regulation of tyrosine hydroxylase in PC 12 cells.  相似文献   

10.
Previous work from these laboratories has shown that in PC12 cells the phosphorylation of a specific soluble protein is decreased by treatment with nerve growth factor. This protein, designated Nsp100, and its kinase have been separated and partially purified from PC12 cells. The present studies have been designed to investigate the role of calcium in this action of nerve growth factor. It is shown here, using PC12h cells, that A23187, a calcium ionophore, and high levels of K+, a depolarizing stimulus, also decrease phosphorylation of Nsp100. Furthermore, the actions of nerve growth factor as well as those of A23187 and high levels of K+ are prevented by treatment of the cells with the calcium chelator EGTA. It is also shown that agents that raise levels of cyclic AMP in the cells, specifically dibutyryl cyclic AMP and cholera toxin, also decrease phosphorylation of Nsp100 but, in addition, increase phosphorylation of tyrosine hydroxylase. The action of these latter agents on Nsp100 is blocked by EGTA, but their action on tyrosine hydroxylase is not, indicating that even agents such as cholera toxin act on Nsp100 through a Ca2+-dependent mechanism.  相似文献   

11.
—Preliminary experiments had shown that acetylcholine, the putative mediator of trans-synaptic induction of tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH) in vivo, did not lead to an increase in these enzyme activities in mouse superior cervical ganglia kept in organ culture. It was the aim of the present study to evaluate whether increases in tyrosine hydroxylase and dopamine β-hydroxylase evoked by other stimuli such as potassium or dibutyryl cyclic AMP in such an in vitro system are representative for in vivo trans-synaptic induction where changes in the levels of enzymes involved in norepinephrine synthesis or degradation are strictly confined to TH and DBH. In the presence of elevated concentrations of potassium or 5 mm dibutyryl cyclic AMP under organ culture conditions TH and DBH as well as DOPA decarboxylase and monoamine oxidase were significantly (P < 0.025) increased. The increase in total activities of TH and DBH were completely, those of DOPA decarboxylase and monoamine oxidase partially, inhibited by cycloheximide. In the presence of high concentrations of potassium, the total protein content of the ganglia was 28 per cent higher than in culture controls while dibutyryl cyclic AMP had no significant effect. Cycloheximide alone caused the protein content to fall to 70 per cent of that in control cultures. The loss of protein in the presence of cycloheximide was not accompanied by a simultaneous loss of TH, DOPA decarboxylase or monoamine oxidase, but DBH was decreased. Potassium was shown to increase the incorporation of [3H]leucine into TCA-insoluble protein during an early culture period but dibutyryl cyclic AMP showed no such effect. An increase in the rate of incorporation of [3H]leucine into protein was seen in both the control and elevated potassium cultures after 48 h. This increase did not occur in the presence of dbcAMP. The difference in enzyme patterns under conditions of elevated potassium and dibutyryl cyclic AMP and the fact that no changes in the levels of endogenous cyclic AMP were observed during exposure to 54 mm -potassium for a time period sufficient to initiate changes ultimately leading to elevated TH levels argues against the mediation of the potassium-induced enzyme increases by cAMP. Since changes in enzyme patterns caused by potassium and dbcAMP were not similar to patterns seen in vivo under conditions of trans-synaptic induction we conclude that use of this system as an in vitro model for in vivo trans-synaptic induction necessitates great caution.  相似文献   

12.
Tyrosine aminotransferase mRNA was quantitated by translation in a cell-free system derived from wheat germ followed by specific immunoprecipitation of the newly synthesized enzyme subunit. Hepatic poly(A)-containg RNA prepared from rats treated for 4 h with N6, O2'-dibutyryl cyclic AMP and theophylline was approximately 5.6 times more active in directing the synthesis of the tyrosine aminotransferase subunit relative to untreated controls. The overall template activity of the RNA prepared from control and cyclic AMP-treated animals was virtually identical, demonstrating that the cyclic nucleotide effect was specific for the tyrosine aminotransferase mRNA. At all times, after a single injection of dibutyryl cyclic AMP and theophylline, the increase in hepatic enzyme activity was accompanied by corresponding induction in the level of functional tyrosine aminotransferase mRNA. Other inducers of tyrosine aminotransferase, such as glucagon and hydrocortisone, also increased the level of tyrosine aminotransferase mRNA in proportion to their effect on enzyme activity. The RNA polymerase II inhibitor, alpha-amanitin, completely blocked the dibutyryl cyclic AMP-mediated increase in tyrosine aminotransferase mRNA activity. These studies demonstrate that, in intact animals, the induction of tyrosine aminotransferase activity by dibutyryl cyclic AMP can be completely accounted for by a corresponding increase in the level of functional mRNA coding for the enzyme.  相似文献   

13.
Incubation of rat pheochromocytoma PC12 cells with dibutyryl cyclic AMP or 56 mM K+ is associated with increased activity and enhanced phosphorylation of tyrosine hydroxylase in situ. Following incubation of the PC12 cells with 32Pi, rapid isolation of the tyrosine hydroxylase, and tryptic digestion of the enzyme, two distinct 32P-peptides can be identified after paper electrophoresis. 56 mM K+ increases 32Pi incorporation into both of these peptides, whereas dibutyryl cyclic AMP increases 32Pi incorporation into only one of these peptides. The rate of increase in the incorporation of 32Pi into these two peptides in cells treated with 56 mM K+ is similar. The phosphorylation of tyrosine hydroxylase in PC12 cells occurs exclusively on serine residues. These results suggest that tyrosine hydroxylase in PC12 cells is phosphorylated on serine residues at two or more distinct sites after 56 mM K+ -induced depolarization. Since only one of these sites is phosphorylated by cyclic AMP-dependent protein kinase, activation of tyrosine hydroxylase by 56 mM K+ may involve phosphorylation by multiple protein kinases in rat pheochromocytoma PC12 cells.  相似文献   

14.
Soluble tyrosine hydroxylase from human pheochromocytoma, bovine adrenal medulla and rat striatum can be activated by Mg2+, ATP and cyclic AMP. In pheochromocytoma, this activation is due to a decreased Km for the pterin cofactor, whereas in adrenal medulla, it is a result of an increase in the Vmax. Norepinephrine increases the Km for pterin cofactor for tyrosine hydroxylase from both of these tissues. The Ki for norepinephrine is not altered by the presence of Mg2+, ATP and cyclic AMP with enzyme from pheochromocytoma or adrenal medulla. On the other hand, striatal tyrosine hydroxylase shows a two-fold increase in the Ki for dopamine after exposure to Mg2+, ATP and cyclic AMP.  相似文献   

15.
Angiotensin II (AII) and N6,O2'-dibutyryladenosine 3':5'-cyclic monophosphate (dibutyryl cyclic AMP) both stimulated aldosterone synthesis in bovine adrenal glomerulosa cells. AII altered 45Ca2+ fluxes and increased 32PO4 incorporation into phosphatidylinositol in these cells, whereas dibutyryl cyclic AMP did not affect either process. Neither AII nor dibutyryl cyclic AMP increased the mass of phosphatidylinositol. Both agents are known to stimulate pregnenolone synthesis. Thus, although dibutyryl cyclic AMP and AII may increase aldosterone synthesis at a common site (pregnenolone synthesis), they do so by different mechanisms. AII stimulation of phosphatidylinositol labeling by 32PO4 (the "PI effect") was blocked when cells were incubated in a medium containing both EGTA and the calcium antagonist, 8-(N,N-diethylamino)-octyl 3,4,5-trimethoxy-benzoate hydrochloride (TMB-8), suggesting a calcium requirement for the PI effect.  相似文献   

16.
A new method was developed to study the unsupplemented tryptophan hydroxylase system in brain tissue slices from the raphe nuclei of the rat by high-performance liquid chromatography (HPLC) with fluorescence detection. Tryptophan hydroxylase activity was measured by determining 5-hydroxytryptophan (5-HTP) accumulation in raphe nuclei slices containing all of the enzyme system (the hydroxylase, tetrahydrobiopterin, and dihydropteridine reductase) in the presence of NSD-1055 (an inhibitor of aromatic l-amino acid decarboxylase). An optimum temperature was observed at 25°C and the reaction progressed linearly for 60 min. The hydroxylation of tryptophan was maximal by the addition of 0.2 mM tryptophan in the medium. A maximum 1.5-fold activation was shown at 0.2 mM 6-methyltetrahydropterin in the presence of 10 mM dithiothreitol. Dithiothreitol alone did not affect the activity. A 1.5-fold activation was observed when incubation was carried out under gas phase of 95% oxygen and 5% CO2 instead of air. The activity was inhibited by 75% at 10?4 M p-chlorophenylalanine. Both A-23187, a calcium ionophore, and dibutyryl cyclic AMP (DBc-AMP) stimulated the hydroxylation of tryptophan. The activation by A-23187 plus DBc-AMP was more than additive, suggesting the two activating mechanisms by Ca2+ and cyclic AMP may be operating synergistically.  相似文献   

17.
Tyrosine hydroxylase, an iron containing tetrahydrobiopterin dependent monooxygenase (tyrosine 3-monooxygenase; EC 1.14.16.2), catalyzes the rate-limiting step in which l-dopa is formed from the substrate l-tyrosine. l-Dopa concentration and activity of l-tyrosine hydroxylase enzyme were measured in roots, stem, leaves, pods, and immature seeds of Mucuna pruriens. Immature seeds contained maximum l-dopa content and mature leaves possessed maximum catalytic activity of tyrosine hydroxylase. Tyrosine hydroxylase from leaf homogenate was characterized as a 55 kDa protein by SDS-PAGE and Western-blot analysis with monoclonal mouse IgG2a tyrosine hydroxylase antibody. The conditions for maximum tyrosine hydroxylase activity from the leaf extract were optimized with respect to temperature, pH, cofactor 6-MPH4, and divalent metal ions. The tyrosine hydroxylase from leaf extract possessed a K m value of 808.63 μM for l-tyrosine at 37°C and pH 6.0. The activity of the enzyme was slightly inhibited at 2,000 μM l-tyrosine. Higher concentrations of the cofactor 6-MPH4, however, completely inhibited the synthesis of l-dopa. Tyrosine hydroxylase converted specific monophenols such as l-tyrosine (808.63 μM) and tyramine (K m 1.1 mM) to diphenols l-dopa and dopamine, respectively. Fe(II) activated the enzyme while higher concentration of other divalent metals reduced its activity. For the first time, tyrosine hydroxylase from M. pruriens is being reported in this study.  相似文献   

18.
Under phosphorylating conditions, addition of Ca2+ or cyclic AMP to the 100,000 g supernatant of purified bovine adrenal chromaffin cells increases both the incorporation of 32P into tyrosine hydroxylase and the activity of the enzyme. Combining maximally effective concentrations of each of these stimulating agents produces an additive increase in both the level of 32P incorporation into tyrosine hydroxylase and the degree of activation of the enzyme. The increased phosphorylation by Ca2+ is due to stimulation of endogenous Ca2+-dependent protein kinase activity and not inhibition of phosphoprotein phosphatases. When the chromaffin cell supernatant is subjected to diethylaminoethyl (DEAE) chromatography to remove calmodulin and phospholipids, tyrosine hydroxylase is no longer phosphorylated or activated by Ca2+; on the other hand, phosphorylation and activation of tyrosine hydroxylase by cyclic AMP are not affected. Subsequent replacement of either Ca2+ plus calmodulin or Ca2+ plus phosphatidylserine to the DEAE-fractionated cell supernatant restores the phosphorylation, but not activation of the enzyme. Reverse-phase HPLC peptide mapping of tryptic digests of tyrosine hydroxylase from the 100,000 g supernatant shows that the Ca2+-dependent phosphorylation occurs on three phosphopeptides, whereas the cyclic AMP-dependent phosphorylation occurs on one of these peptides. In the DEAE preparation, either cyclic AMP alone or Ca2+ in the presence of phosphatidylserine stimulates the phosphorylation of only a single phosphopeptide peak, the same peptide phosphorylated by cyclic AMP in the crude supernatant. In contrast, Ca2+ in the presence of calmodulin stimulates the phosphorylation of three peptides having reverse-phase HPLC retention times that are identical to peptides phosphorylated by Ca2+ addition to the crude unfractionated 100,000 g supernatant. Rechromatography of the peaks from each of the in vitro phosphorylations, either in combination with each other or in combination with each of the seven peaks generated from phosphorylation of tyrosine hydroxylase in situ, established that cyclic AMP, Ca2+/phosphatidylserine, and Ca2+/calmodulin all stimulate the phosphorylation of the same reverse-phase HPLC peptide: in situ peptide 6. Ca2+/calmodulin stimulates the phosphorylation of in situ peptides 3 and 5 as well. Thus, tyrosine hydroxylase can be phosphorylated in vitro by protein kinases endogenous to the chromaffin cell. Phosphorylation occurs on a maximum of three of the seven in situ phosphorylated sites, and all three of these sites can be phosphorylated by a Ca2+/calmodulin-dependent protein kinase.  相似文献   

19.
The effects of 5-hydroxytryptophan (5-HTP) and serotonin (5-HT) on dopamine synthesis and release in rat brain striatal synaptosomes have been examined and compared to the effects of tyramine and dopamine. Serotonin inhibited dopamine synthesis from tyrosine, with 25% inhibition occurring at 3 μM-5-HT and 60% inhibition at 200 μM. Dopamine synthesis from DOPA was also inhibited by 5-HT, with 30% inhibition occurring at 200 μ. At 200 μM-5-HTP, dopamine synthesis from both tyrosine and DOPA was inhibited about 70%. When just the tyrosine hydroxylation step was measured in the intact synaptosome, 5-HT, 5-HTP, tyramine and dopamine all caused significant inhibition, but only dopamine inhibited soluble tyrosine hydroxylase [L-tyrosine 3-monooxygenase; L-tyrosine, tetrahydropteridine oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2] prepared from lysed synaptosomes. Particulate tyrosine hydroxylase was not inhibited by 10 μM-5-HT, but was about 20% inhibited by 200 μM-5-HT and 5-HTP. At 200 μM both 5-HT and 5-HTP stimulated endogenous dopamine release. These experiments suggest that exposure of dopaminergic neurons to 5-HT or 5-HTP leads to an inhibition of dopamine synthesis, mediated in part by an intraneuronal displacement of dopamine from vesicle storage sites, leading to an increase in dopamine-induced feedback inhibition of tyrosine hydroxylase, and in part by a direct inhibition of DOPA decarboxylation.  相似文献   

20.
Abstract: Cyclic AMP (cAMP) is well known to enhance tyrosine hydroxylase activity in PC12 cells. We were able to demonstrate, however, that the cellular dopamine level in PC12 was lowered by dibutyryl cAMP. Furthermore, the decrease in the cellular level of dopamine was accompanied by about a 10-fold increase in the medium. The aim of this work was to elucidate the effect of cAMP on catecholamine transport. Dibutyryl cAMP did not induce exocytotic release of norepinephrine but rather inhibited its uptake. As with forskolin and cholera toxin, physiological signaling molecules such as vasoactive intestinal polypeptide (VIP) and AMP, for which PC12 cells are known to have receptors linked to activation of adenylate cyclase, also inhibited norepinephrine uptake. The inhibitory effects of dibutyryl cAMP, VIP, and AMP were dose dependent, and EC50 values were estimated to be 100 µ M , 10 n M , and 1.0 µ M , respectively. The inhibition profile of dibutyryl cAMP over the time course of norepinephrine uptake was biphasic: Inhibition became clearly detectable after the cytosolic pool of norepinephrine had been saturated. This profile is similar to that of reserpine. Nomifensine, however, inhibited uptake at a rather constant rate throughout the entire time course. The ATP-dependent serotonin uptake by digitonin-permeabilized cells was lowered to ∼50% that of the control by dibutyryl cAMP treatment before permeabilization, indicating inhibition of vesicular monoamine transport. This effect was also dependent on a dibutyryl cAMP concentration with an EC50 of ≤100 µ M . These results suggest that cAMP may be capable of elevating extracellular dopamine levels in the nervous system by inhibiting its translocation into storage vesicles while enhancing its synthesis in the cytosol. Moreover, endogenous neurotransmitters such as VIP, AMP, and adenosine may act as intrinsic antidepressants via the cAMP pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号