首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several serine proteases and protease inhibitors have been identified in the crustacean olfactory organ, which is comprised of the lateral flagellum of the antennule and its aesthetascs sensilla that house olfactory receptor neurons and their supporting cells. The function of these proteases in the olfactory organ is unknown, but may include a role in perireception (e.g., odor activation or inactivation) or in the development or survival of olfactory receptor neurons. To examine directly the function of proteases in the olfactory organ of the Caribbean spiny lobster Panulirus argus, we used different tissue fractions from the lateral flagellum in an enzyme activity assay with a variety of protease substrates and inhibitors. Trypsin-like serine protease activity occurs throughout the lateral flagellum but is enriched in the cell membranes from aesthetascs. Cysteine- and metalloprotease activities also occur in olfactory tissue, but are more abundant in tissue fractions other than aesthetascs. To assess the contribution of one of the olfactory serine proteases--CUB-serine protease (Csp)--Csp was immunoprecipitated using an antibody; results with the remaining fraction suggest that Csp accounts for at least 40% of the total serine protease activity in the olfactory organ. The amount of total serine protease activity follows a developmental axis in the lateral flagellum. Total protease activity is lowest in the proximal zone, which lacks aesthetascs, and the proliferation zone, where olfactory receptor neurons and associated cells are born, and highest in aesthetascs of the distally-located senescence zone, which has the oldest olfactory tissue.  相似文献   

2.
Several serine proteases and protease inhibitors have been identified in the crustacean olfactory organ, which is comprised of the lateral flagellum of the antennule and its aesthetascs sensilla that house olfactory receptor neurons and their supporting cells. The function of these proteases in the olfactory organ is unknown, but may include a role in perireception (e.g., odor activation or inactivation) or in the development or survival of olfactory receptor neurons. To examine directly the function of proteases in the olfactory organ of the Caribbean spiny lobster Panulirus argus, we used different tissue fractions from the lateral flagellum in an enzyme activity assay with a variety of protease substrates and inhibitors. Trypsin‐like serine protease activity occurs throughout the lateral flagellum but is enriched in the cell membranes from aesthetascs. Cysteine‐ and metalloprotease activities also occur in olfactory tissue, but are more abundant in tissue fractions other than aesthetascs. To assess the contribution of one of the olfactory serine proteases—CUB‐serine protease (Csp)—Csp was immunoprecipitated using an antibody; results with the remaining fraction suggest that Csp accounts for at least 40% of the total serine protease activity in the olfactory organ. The amount of total serine protease activity follows a developmental axis in the lateral flagellum. Total protease activity is lowest in the proximal zone, which lacks aesthetascs, and the proliferation zone, where olfactory receptor neurons and associated cells are born, and highest in aesthetascs of the distally‐located senescence zone, which has the oldest olfactory tissue. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

3.
This study investigated the role of prion infection of the olfactory mucosa in the shedding of prion infectivity into nasal secretions. Prion infection with the HY strain of the transmissible mink encephalopathy (TME) agent resulted in a prominent infection of the olfactory bulb and the olfactory sensory epithelium including the olfactory receptor neurons (ORNs) and vomeronasal receptor neurons (VRNs), whose axons comprise the two olfactory cranial nerves. A distinct glycoform of the disease-specific isoform of the prion protein, PrPSc, was found in the olfactory mucosa compared to the olfactory bulb, but the total amount of HY TME infectivity in the nasal turbinates was within 100-fold of the titer in the olfactory bulb. PrPSc co-localized with olfactory marker protein in the soma and dendrites of ORNs and VRNs and also with adenylyl cyclase III, which is present in the sensory cilia of ORNs that project into the lumen of the nasal airway. Nasal lavages from HY TME-infected hamsters contained prion titers as high as 103.9 median lethal doses per ml, which would be up to 500-fold more infectious in undiluted nasal fluids. These findings were confirmed using the rapid PrPSc amplification QuIC assay, indicating that nasal swabs have the potential to be used for prion diagnostics. These studies demonstrate that prion infection in the olfactory epithelium is likely due to retrograde spread from the olfactory bulb along the olfactory and vomeronasal axons to the soma, dendrites, and cilia of these peripheral neurons. Since prions can replicate to high levels in neurons, we propose that ORNs can release prion infectivity into nasal fluids. The continual turnover and replacement of mature ORNs throughout the adult lifespan may also contribute to prion shedding from the nasal passage and could play a role in transmission of natural prion diseases in domestic and free-ranging ruminants.  相似文献   

4.
DNA methylation-dependent gene silencing, mediated by DNA methyltransferases (DNMTs), is essential for normal mammalian development and its dysregulation has been implicated in neurodevelopmental disorders. Despite this, little is known about DNMTs in the developing or mature nervous system. Here, we show that DNMT1, 3a and 3b are expressed at discrete developmental stages in the olfactory neuron lineage, coincident with key shifts in developmental gene expression. DNMT1 is induced in cycling progenitors and is retained in post-mitotic olfactory receptor neurons (ORNs). DNMT3b is restricted to mitotic olfactory progenitors, whereas DNMT3a is expressed only in post-mitotic immature neurons prior to ORN terminal maturation, coincident with histone deacetylase 2 (HDAC2), a key downstream effector of methylation-dependent chromatin condensation. Similar stage-specific expression of DNMT3b and 3a was also found in other developing sensory and CNS neurons. This suggests that progressive lineage restriction regulated by methylation-dependent silencing could be a highly conserved mechanism shared by multiple lineages in the developing nervous system.  相似文献   

5.
The neural plasticity of sensory systems is being increasingly recognized as playing a role in learning and memory. We have previously shown that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila melanogaster olfactory receptor neurons (ORNs) for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. In this paper we address how long-term exposure to odor activates Notch and how Notch in conjunction with chronic odor mediates olfactory plasticity. We show that upon chronic odor exposure a non-canonical Notch pathway mediates an increase in the volume of glomeruli by a mechanism that is autonomous to ORNs. In addition to activating a pathway that is autonomous to ORNs, chronic odor exposure also activates the Notch ligand Delta in second order projection neurons (PNs), but this does not appear to require acetylcholine receptor activation in PNs. Delta on PNs then feeds back to activate canonical Notch signaling in ORNs, which restricts the extent of the odor induced increase in glomerular volume. Surprisingly, even though the pathway that mediates the increase in glomerular volume is autonomous to ORNs, nonproductive transsynaptic Delta/Notch interactions that do not activate the canonical pathway can block the increase in volume. In conjunction with chronic odor, the canonical Notch pathway also enhances cholinergic activation of PNs. We present evidence suggesting that this is due to increased acetylcholine release from ORNs. In regulating physiological plasticity, Notch functions solely by the canonical pathway, suggesting that there is no direct connection between morphological and physiological plasticity.  相似文献   

6.
7.
This article studies the morphological remodeling of olfactory organs in the fire salamander (Salamandridae, Caudata), from the larval stages of ontogeny to the adult and throughout the course of the annual cycle. The fire salamander exhibits adaptations to the aquatic environment during premetamorphic life and terrestrial adaptations after metamorphosis. During adulthood, the annual activity of this species is divided into three seasonal periods: a breeding period, a nonbreeding period, and hibernation. We observed significant differences in morphology of olfactory organs between developmental stages as well as between each period within the annual cycle. For the first time in caudates, we examined the morphology of olfactory organs during the winter period (wintering larvae, hibernating adults). The results show that the remodeling of olfactory organs during the life of the fire salamander occurs both on macro- and micromorphological levels. Macromorphological ontogenetic variability includes the shape of the main olfactory chamber (MOC) and the distribution of olfactory epithelium (OE) in the MOC and in the vomeronasal organ (VNO). In larvae, the vomeronasal epithelium (VNE) is in a separate cavity, while in the post-metamorphic stages of ontogeny, the VNE occurs in the diverticulum of the MOC. In adult fire salamanders, both olfactory organs are most developed during the breeding season and reduced during hibernation. The VNE and OE in the MOC are also reduced during hibernation. Micro-morphological changes included different types/subtypes of olfactory receptor neurons (ORNs) in the OE in particular stages of ontogeny and periods within the annual cycle, for example, ciliate ORNs are present in the VNE only in the larval stages and giant ORNs occur only in nonbreeding adults. Also, there was a variable set of types of olfactory supporting cells in the VNO of the fire salamander during pre- and postmetamorphic life stages.  相似文献   

8.
Theisen, B., Breucker, H., Zeiske, E., Melinkat, R. 1980. Structure and development of the olfactory organ in the garfish Belone belone (L.) (Teleostei, Atheriniformes). (Institute of Comparative Anatomy, University of Copenhagen, Denmark; Anatomisches Institut, Universität Hamburg, and Zoologisches Institut und Zoologisches Museum, Universität Hamburg, Federal Republic of Germany.) — Acta zool. (Stockh.) 61(3): 161–170. The structure and development of the olfactory organ in the garfish Belone belone (L.) were studied by light and electron microscopy (SEM and TEM). The olfactory organ has the shape of an open groove with a protruding papilla. In embryos and early juveniles the groove is smooth and is provided with a continuous sensory epithelium. During ontogenesis the papilla develops and the composition of the epithelium is changed as areas of nonsensory epithelium appear and eventually separate the sensory epithelium into islets. In adults the sensory epithelium consists of supporting, basal, and two types of receptor cells, ciliated and microvillous. In juveniles also ciliated nonsensory cells are present. This difference can be correlated with differing locomotory habits of adults and juveniles. The receptor cilia show a 9 + 0 microtubular pattern while the nonsensory cilia have the general 9 + 2 pattern. Deviating dendritic endings were found and are considered an indication of ongoing cell dynamics.  相似文献   

9.
The expression pattern of galectin-1 and galectin-3 in the human olfactory epithelium was investigated in relation to olfactory marker protein (OMP) using confocal laser immunofluorescence in human specimens and postmortem biopsies. OMP expression was found in olfactory receptor neurons (ORNs) in the olfactory mucosa and in fibers of the olfactory nerve crossing the submucous connective tissue. Galectin-1 was expressed in both the connective tissue of the nasal cavity and in the basal layer of the olfactory epithelium. In contrast, galectin-3 expression was limited to cells of the upper one-third of the olfactory epithelium. Expression of galectin-3 occurred in a subset of OMP-positive cells. However, between areas of galectin-1 and galectin-3 expression in the lower and upper portion of the epithelium, OMP-positive ORNs did not stain for both galectins. Considering the potential role of galectin-1 and galectin-3 in cell differentiation and maturation, the differential localization of galectins in the olfactory epithelium appears to be consistent with a significant role of these molecules in the physiological turnover of ORNs. Accepted: 20 December 1999  相似文献   

10.
Olfactory receptor neurons (ORNs) convey odor information to the central brain, but like other sensory neurons were thought to play a passive role in memory formation and storage. Here we show that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. Specifically, we show that Notch activity in ORNs is necessary for the odor specific increase in the volume of glomeruli that occurs as a consequence of prolonged odor exposure. Calcium imaging experiments indicate that Notch in ORNs is also required for the chronic odor induced changes in the physiology of ORNs and the ensuing changes in the physiological response of their second order projection neurons (PNs). We further show that Notch in ORNs acts by both canonical cleavage-dependent and non-canonical cleavage-independent pathways. The Notch ligand Delta (Dl) in PNs switches the balance between the pathways. These data define a circuit whereby, in conjunction with odor, N activity in the periphery regulates the activity of neurons in the central brain and Dl in the central brain regulates N activity in the periphery. Our work highlights the importance of experience dependent plasticity at the first olfactory synapse.  相似文献   

11.
Pheromones are used for conspecific communication by many animals. In Drosophila, the volatile male-specific pheromone 11-cis vaccenyl acetate (cVA) supplies an important signal for gender recognition. Sensing of cVA by the olfactory system depends on multiple components, including an olfactory receptor (OR67d), the co-receptor ORCO, and an odorant binding protein (LUSH). In addition, a CD36 related protein, sensory neuron membrane protein 1 (SNMP1) is also involved in cVA detection. Loss of SNMP1 has been reported to eliminate cVA responsiveness, and to greatly increase spontaneous activity of OR67d-expressing olfactory receptor neurons (ORNs). Here, we found the snmp11 mutation did not abolish cVA responsiveness or cause high spontaneous activity. The cVA responses in snmp1 mutants displayed a delayed onset, and took longer to reach peak activity than wild-type. Most strikingly, loss of SNMP1 caused a dramatic delay in signal termination. The profound impairment in signal inactivation accounted for the previously reported “spontaneous activity,” which represented continuous activation following transient exposure to environmental cVA. We introduced the silk moth receptor (BmOR1) in OR67d ORNs of snmp11 flies and found that the ORNs showed slow activation and deactivation kinetics in response to the BmOR1 ligand (bombykol). We expressed the bombykol receptor complex in Xenopus oocytes in the presence or absence of the silk moth SNMP1 (BmSNMP) and found that addition of BmSNMP accelerated receptor activation and deactivation. Our results thus clarify SNMP1 as an important player required for the rapid kinetics of the pheromone response in insects.  相似文献   

12.
13.
Murphy GJ  Isaacson JS 《Neuron》2003,37(4):639-647
Cyclic nucleotide-gated channels (CNGCs) on the dendritic cilia of olfactory receptor neurons (ORNs) are critical for sensory transduction in the olfactory system. Do CNGCs also play a role in the axons and/or nerve terminals of ORNs? We find that the cyclic nucleotides cAMP and cGMP can both facilitate and depress synaptic transmission between olfactory nerve fibers and their targets in olfactory bulb glomeruli. Cyclic nucleotides increase intracellular Ca(2+) in ORN terminals and enhance spontaneous transmitter release; at higher concentrations, cyclic nucleotides depress evoked transmission by altering olfactory nerve excitability. Cyclic nucleotides have no effect on transmission or nerve excitability, however, in mice lacking olfactory CNGCs. Taken together, our results identify a novel role for presynaptic CNGCs in modulating neurotransmission.  相似文献   

14.
Abstract: We have isolated from an American lobster ( Homarus americanus ) olfactory organ cDNA library a clone, lobGαs, with >70% identity to mammalian and arthropod Gαs sequences. In genomic Southern blots, a fragment of lobGαs detected only one band, suggesting the lobsters have a single Gαs gene. In brain and olfactory organ, lobGαs mRNA was expressed predominantly in neurons, including many of the neuronal cell body clusters of the brain. Gαs protein was also expressed broadly, appearing on western blots as a band of 51.8 kDa in brain, eyestalk, pereiopod, dactyl, tail muscle, olfactory organ, and aesthetasc hairs. These results suggest that lobGαs plays a role in a wide variety of signal transduction events. Its presence in the olfactory aesthetasc hairs, which are almost pure preparations of the outer dendrites of the olfactory receptor neurons, and the expression of lobGαs mRNA in the olfactory receptor neurons of the olfactory organ indicate that lobGαs may mediate olfactory transduction. That virtually all ORNs express lobGαs mRNA equally predicts that hyperpolarizing odor responses mediated by cyclic AMP are a property of all lobster olfactory receptor neurons.  相似文献   

15.
In this study, we investigated the role of damage to the nasal mucosa in the shedding of prions into nasal samples as a pathway for prion transmission. Here, we demonstrate that prions can replicate to high levels in the olfactory sensory epithelium (OSE) in hamsters and that induction of apoptosis in olfactory receptor neurons (ORNs) in the OSE resulted in sloughing off of the OSE from nasal turbinates into the lumen of the nasal airway. In the absence of nasotoxic treatment, olfactory marker protein (OMP), which is specific for ORNs, was not detected in nasal lavage samples. However, after nasotoxic treatment that leads to apoptosis of ORNs, both OMP and prion proteins were present in nasal lavage samples. The cellular debris that was released from the OSE into the lumen of the nasal airway was positive for both OMP and the disease-specific isoform of the prion protein, PrP(Sc). By using the real-time quaking-induced conversion assay to quantify prions, a 100- to 1,000-fold increase in prion seeding activity was observed in nasal lavage samples following nasotoxic treatment. Since neurons replicate prions to higher levels than other cell types and ORNs are the most environmentally exposed neurons, we propose that an increase in ORN apoptosis or damage to the nasal mucosa in a host with a preexisting prion infection of the OSE could lead to a substantial increase in the release of prion infectivity into nasal samples. This mechanism of prion shedding from the olfactory mucosa could contribute to prion transmission.  相似文献   

16.
In adult olfactory nerves of mammals and moths, a network of glial cells ensheathes small bundles of olfactory receptor axons. In the developing antennal nerve (AN) of the moth Manduca sexta, the axons of olfactory receptor neurons (ORNs) migrate from the olfactory sensory epithelium toward the antennal lobe. Here we explore developmental interactions between ORN axons and AN glial cells. During early stages in AN glial-cell migration, glial cells are highly dye coupled, dividing glia are readily found in the nerve and AN glial cells label strongly for glutamine synthetase. By the end of this period, dye-coupling is rare, glial proliferation has ceased, glutamine synthetase labeling is absent, and glial processes have begun to extend to enwrap bundles of axons, a process that continues throughout the remainder of metamorphic development. Whole-cell and perforated-patch recordings in vivo from AN glia at different stages of network formation revealed two potassium currents and an R-like calcium current. Chronic in vivo exposure to the R-type channel blocker SNX-482 halted or greatly reduced AN glial migration. Chronically blocking spontaneous Na-dependent activity by injection of tetrodotoxin reduced the glial calcium current implicating an activity-dependent interaction between ORNs and glial cells in the development of glial calcium currents.  相似文献   

17.
BACKGROUND: Drosophila larvae possess only 21 odorant-receptor neurons (ORNs), whereas adults have 1,300. Does this suggest that the larval olfactory system is built according to a different design than its adult counterpart, or is it just a miniature version thereof? RESULTS: By genetically labeling single neurons with FLP-out and MARCM techniques, we analyze the connectivity of the larval olfactory circuit. We show that each of the 21 ORNs is unique and projects to one of 21 morphologically identifiable antennal-lobe glomeruli. Each glomerulus seems to be innervated by a single projection neuron. Each projection neuron sends its axon to one or two of about 28 glomeruli in the mushroom-body calyx. We have discovered at least seven types of projection neurons that stereotypically link an identified antennal-lobe glomerulus with an identified calycal glomerulus and thus create an olfactory map in a higher brain center. CONCLUSIONS: The basic design of the larval olfactory system is similar to the adult one. However, ORNs and projection neurons lack cellular redundancy and do not exhibit any convergent or divergent connectivity; 21 ORNs confront essentially similar numbers of antennal-lobe glomeruli, projection neurons, and calycal glomeruli. Hence, we propose the Drosophila larva as an "elementary" olfactory model system.  相似文献   

18.
Nonvisual arrestins are a family of multifunctional adaptor molecules that regulate the activities of diverse families of receptors including G protein-coupled receptors, frizzled, and transforming growth factor-beta receptors. These activities indicate broad roles in both physiology and development for nonvisual arrestins. Drosophila melanogaster has a single nonvisual arrestin, kurtz, which is found at high levels within the adult olfactory receptor neurons (ORNs), suggesting a role for this gene in modulating olfactory sensitivity. Using heat-induced expression of a krz cDNA through development, we rescued krz(1) lethality. The resulting adults lacked detectable levels of krz in the olfactory system. The rescued krz(1) homozygotes have an incompletely penetrant antennal structural defect that was completely rescued by the neural expression of a krz cDNA. The krz(1) loss-of-function adults without visible antennal defects displayed diminished behavioral responsiveness to both aversive and attractive odors and also demonstrated reduced olfactory receptor potentials. Both the behavioral and electrophysiological phenotypes were rescued by the targeted expression of the krz cDNA within postdevelopmental ORNs. Thus, krz is required within the nervous system for antennal development and is required later in the ORNs for the maintenance of olfactory sensitivity in Drosophila. The reduced receptor potentials in krz(1) antenna indicate that nonvisual arrestins are required for the early odor-induced signaling events within the ORNs.  相似文献   

19.
Lobsters have a self-renewing olfactory system and, like many animals, continuously replace old or dying olfactory receptor neurons. In addition, lobsters are able to regenerate the peripheral olfactory system even after complete loss. The olfactory sensors in lobsters are located distally on a pair of antennules. These antennules are often damaged, but this has little impact on the lobster's sense of smell because damaged olfactory tissue is rapidly replaced. In this study, we investigated damage-induced regeneration of the olfactory system by measuring cell proliferation following controlled amputation. We show that amputation-induced regeneration occurs as a result of up-regulating the normal development of olfactory sensors. A unique feature of up-regulated development is the formation of patches of proliferating cells within the antennular epithelium. Epithelial patches were typically formed between 3 and 10 days postamputation on the amputated side. They were characterized by their: proximal position with respect to developing clusters of olfactory receptor neurons (ORNs); tendency to form two discrete patches within the borders of each existing annulus; cell size, which was approximately twice that of mature ORNs; and location within the ventral epithelium. The development of epithelial patches was immediately followed by proliferation of clusters of ORNs and associated glial cells, and the level of this proliferation increased significantly during the premolt stage of the lobster's molt cycle. These epithelial patches may represent populations of precursor cells, because they develop in response to amputation and immediately precede development of cell clusters composed of ORNs and glia. Possible regulatory signals controlling epithelial patch development are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号