首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The Drosophila segmentation gene paired, whose product is homologous to the Drosophila Gooseberry and mammalian Pax3 proteins, has three general functions: proper development of the larval cuticle, survival to adulthood and male fertility. Both DNA-binding domains, the conserved N-terminal paired-domain and prd-type homeodomain, are required within the same molecule for all general paired functions, whereas a conserved His-Pro repeat located near its C terminus is a transactivation domain potentiating these functions. The C-terminal moiety of Paired includes two additional functional motifs: one, also present in Gooseberry and Pax3, is required for segmentation and cuticle development; the other, retained only in Gooseberry, is necessary for survival. The male fertility function, which cannot be replaced by Gooseberry and Pax3, is specified by the conserved N-terminal rather than the divergent C-terminal moiety of Paired. We conclude that the functional diversification of paired, gooseberry and Pax3, primarily determined by variations in their enhancers, is modified by adaptations of their coding regions as a necessary consequence of their newly acquired spatiotemporal expression.  相似文献   

5.
6.
7.
8.
The placement of eyes on insect head is an important evolutionary trait. The stalk‐eyed fly, Cyrtodopsis whitei, exhibits a hypercephaly phenotype where compound eyes are located on lateral extension from the head while the antennal segments are placed inwardly on this stalk. This stalk‐eyed phenotype is characteristic of the family Diopsidae in the Diptera order and dramatically deviates from other dipterans, such as Drosophila. Like other insects, the adult eye and antenna of stalk‐eyed fly develop from a complex eye‐antennal imaginal disc. We analyzed the markers involved in proximo‐distal (PD) axis of the developing eye imaginal disc of the stalk‐eyed flies. We used homothorax (hth) and distalless (dll), two highly conserved genes as the marker for proximal and distal fate, respectively. We found that lateral extensions between eye and antennal field of the stalk‐eyed fly's eye‐antennal imaginal disc exhibit robust Hth expression. Hth marks the head specific fate in the eye‐ and proximal fate in the antenna‐disc. Thus, the proximal fate marker Hth expression evolves in the stalk‐eyed flies to generate lateral extensions for the placement of the eye on the head. Moreover, during pupal eye metamorphosis, the lateral extension folds back on itself to place the antenna inside and the adult compound eye on the distal tip. Interestingly, the compound eye in other insects does not have a prominent PD axis as observed in the stalk‐eyed fly.  相似文献   

9.
Drosophila adult structures derive from imaginal discs, which are sacs with apposed epithelial sheets, the disc proper (DP) and the peripodial epithelium (PE). The Drosophila TGF-beta family member decapentaplegic (dpp) contributes to the development of adult structures through expression in all imaginal discs, driven by enhancers from the 3' cis-regulatory region of the gene. In the eye/antennal disc, there is 3' directed dpp expression in both the DP and PE associated with cell proliferation and eye formation. Here, we analyze a new class of dpp cis-regulatory mutations, which specifically disrupt a previously unknown region of dpp expression, controlled by enhancers in the 5' regulatory region of the gene and limited to the PE of eye/antennal discs. These are the first described Drosophila mutations that act by solely disrupting PE gene expression. The mutants display defects in the ventral adult head and alter peripodial but not DP expression of known dpp targets. However, apoptosis is observed in the underlying DP, suggesting that this peripodial dpp signaling source supports cell survival in the DP.  相似文献   

10.
The fruit fly Drosophila melanogaster responds behaviorally to sound, gravity, and wind. Exposure to male courtship songs results in reduced locomotion in females, whereas males begin to chase each other. When agitated, fruit flies tend to move against gravity. When faced with air currents, they ‘freeze’ in place. Based on recent studies, Johnston’s hearing organ, the antennal ear of the fruit fly, serves as a sensor for all of these mechanosensory stimuli. Compartmentalization of sense cells in Johnston’s organ into vibration-sensitive and deflection-sensitive neural groups allows this single organ to mediate such varied functions. Sound and gravity/wind signals sensed by these two neuronal groups travel in parallel from the fly ear to the brain, feeding into neural pathways reminiscent of the auditory and vestibular pathways in the human brain. Studies of the similarities between mammals and flies will lead to a better understanding of the principles of how sound and gravity information is encoded in the brain. Here, we review recent advances in our understanding of these principles and discuss the advantages of the fruit fly as a model system to explore the fundamental principles of how neural circuits and their ensembles process and integrate sensory information in the brain.  相似文献   

11.
12.
As in many species, gustatory pheromones regulate the mating behavior of Drosophila. Recently, several ppk genes, encoding ion channel subunits of the DEG/ENaC family, have been implicated in this process, leading to the identification of gustatory neurons that detect specific pheromones. In a subset of taste hairs on the legs of Drosophila, there are two ppk23-expressing, pheromone-sensing neurons with complementary response profiles; one neuron detects female pheromones that stimulate male courtship, the other detects male pheromones that inhibit male-male courtship. In contrast to ppk23, ppk25, is only expressed in a single gustatory neuron per taste hair, and males with impaired ppk25 function court females at reduced rates but do not display abnormal courtship of other males. These findings raised the possibility that ppk25 expression defines a subset of pheromone-sensing neurons. Here we show that ppk25 is expressed and functions in neurons that detect female-specific pheromones and mediates their stimulatory effect on male courtship. Furthermore, the role of ppk25 and ppk25-expressing neurons is not restricted to responses to female-specific pheromones. ppk25 is also required in the same subset of neurons for stimulation of male courtship by young males, males of the Tai2 strain, and by synthetic 7-pentacosene (7-P), a hydrocarbon normally found at low levels in both males and females. Finally, we unexpectedly find that, in females, ppk25 and ppk25-expressing cells regulate receptivity to mating. In the absence of the third antennal segment, which has both olfactory and auditory functions, mutations in ppk25 or silencing of ppk25-expressing neurons block female receptivity to males. Together these results indicate that ppk25 identifies a functionally specialized subset of pheromone-sensing neurons. While ppk25 neurons are required for the responses to multiple pheromones, in both males and females these neurons are specifically involved in stimulating courtship and mating.  相似文献   

13.
14.
15.
16.
In many taxa, females signal during courtship when they are receptive. However, just because a female signals does not mean that the male responds to the signal. This study examines female signaling of receptivity (readiness to copulate) and male response in the parasitoid wasp Spalangia endius Walker. Females folded their antennae against their heads when they were receptive, and antennal folding has been shown to be effective in eliciting male copulation attempts in a confamilial. However, male S. endius did not respond to antennal folding: males did not contact the female's antennae during courtship, and how quickly a male attempted copulation was independent of whether or not the female had antennae. Males courted from on top of the female's abdomen and appeared to detect receptivity directly from the female's abdomen rising as her genital orifice opened. On females whose abdomens did not rise, initiation of male copulation attempts were delayed but not eliminated. Based on its current lack of function as a receptivity signal and on comparisons to published reports of mating behavior in confamilials, we hypothesize that female antennal folding at receptivity is a vestigial trait in S. endius.  相似文献   

17.
18.
Integrins are cell adhesion molecules that mediate numerous developmental processes in addition to a variety of acute physiological events. Two reports implicate a Drosophila beta integrin, betaPS, in olfactory behavior. To further investigate the role of integrins in Drosophila olfaction, we used Gal4-driven expression of RNA interference (RNAi) transgenes to knock down expression of myospheroid (mys), the gene that encodes betaPS. Expression of mys-RNAi transgenes in the wing reduced betaPS immunostaining and produced morphological defects associated with loss-of-function mutations in mys, demonstrating that this strategy knocked down mys function. Expression of mys-RNAi transgenes in the antennae, antennal lobes, and mushroom bodies via two Gal4 lines, H24 and MT14, disrupted olfactory behavior but did not alter locomotor abilities or central nervous system structure. Olfactory behavior was normal in flies that expressed mys-RNAi transgenes via other Gal4 lines that specifically targeted the antennae, the projection neurons, the mushroom bodies, bitter and sweet gustatory neurons, or Pox neuro neurons. Our studies confirm that mys is important for the development or function of the Drosophila olfactory system. Additionally, our studies demonstrate that mys is required for normal behavioral responses to both aversive and attractive odorants. Our results are consistent with a model in which betaPS mediates events within the antennal lobes that influence odorant sensitivity.  相似文献   

19.
Chen Y  Dai H  Chen S  Zhang L  Long M 《PloS one》2011,6(4):e18853
Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5' flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta). Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ~800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes.  相似文献   

20.
The imaginal discs of Drosophila melanogaster, which form the adult epidermal structures, are a good experimental model for studying morphogenesis. The genital disc forms the terminalia, which are the most sexually dimorphic structures of the fly. Both sexes of Drosophila have a single genital disc formed by three primordia. The female genital primordium is derived from 8(th) abdominal segment and is located anteriorly, the anal primordium (10 and 11(th) abdominal segments) is located posteriorly, and the male genital primordium from the 9(th) abdominal segment lies between them. In both sexes, only two of these three primordia develop to form the adult terminalia. The anal primordium develops in both sexes but, depending on the genetic sex, will form either male or female analia. However, only one of the genital primordia develops in each sex, forming either the male or the female genitalia. This depends on the genetic sex of the fly. Therefore, the genital disc is a very good experimental model of how the sex-determination and homeotic genes - which determine cell identity - interact to direct the development of a population of cells into male or female terminalia. It has been proposed that the sexually dimorphic development of the genital disc is the result of an integrated genetic input, made up by the sex-determination gene doublesex and the homeotic gene Abdominal-B. This input acts by modulating the response to Hedgehog, Wingless, and Decapentaplegic morphogenetic signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号