首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In cowpea protoplasts infected with cowpea mosaic virus, a bottom-component (B) RNA-encoded 60-kilodalton (60K) polypeptide is synthesized, which is membrane-bound and represents the direct precursor to the genome-bound protein VPg. The relationship between this VPg precursor and other B-RNA-encoded polypeptides was studied. Digestion of the B-RNA-encoded 170K and 84K polypeptides with Staphylococcus aureus protease V8 and subsequent analysis of the generated peptides with antiserum against VPg showed that a VPg sequence resides internally in these polypeptides. Furthermore, a new B-RNA-encoded polypeptide was detected, with a size of 58K, which differed from the 60K polypeptide only in the lack of VPg sequences. A model is presented in which the 60K VPg precursor is generated from the 200K primary translation product from B RNA and further processed to a 58K polypeptide and single VPg.  相似文献   

2.
Translation of middle-component RNA of cowpea mosaic virus in vitro produced two polypeptides of 95 and 105 kilodaltons (95K and 105K, respectively) with overlapping amino acid sequences, which were specifically cleaved by a protease encoded by the bottom-component RNA. The proteolytic cleavage was studied by the addition of antibodies raised against various bottom-component RNA-encoded proteins to extracts prepared from bottom-component RNA-inoculated cowpea protoplasts. Since antiserum to the 32K polypeptide efficiently inhibited the proteolytic activity of such extracts, although antiserum to VPg or to the 170K polypeptide did not, evidence was obtained which indicates that the 32K polypeptide represents the protease involved. Fractionation of proteolytically active extract by glycerol gradient centrifugation demonstrated that 32K polypeptides do not exist as free proteins but are aggregated to the bottom-component RNA-encoded 170K, 84K, 60K, or 58K polypeptides. Maximal proteolytic activity was observed for 32K polypeptides associated with 170K polypeptides, suggesting that the activity was unstable and confined to newly synthesized molecules.  相似文献   

3.
Osman TA  Coutts RH  Buck KW 《Journal of virology》2006,80(21):10743-10751
Cereal yellow dwarf virus (CYDV) RNA has a 5'-terminal genome-linked protein (VPg). We have expressed the VPg region of the CYDV genome in bacteria and used the purified protein (bVPg) to raise an antiserum which was able to detect free VPg in extracts of CYDV-infected oat plants. A template-dependent RNA-dependent RNA polymerase (RdRp) has been produced from a CYDV membrane-bound RNA polymerase by treatment with BAL 31 nuclease. The RdRp was template specific, being able to utilize templates from CYDV plus- and minus-strand RNAs but not those of three unrelated viruses, Red clover necrotic mosaic virus, Cucumber mosaic virus, and Tobacco mosaic virus. RNA synthesis catalyzed by the RdRp required a 3'-terminal GU sequence and the presence of bVPg. Additionally, synthesis of minus-strand RNA on a plus-strand RNA template required the presence of a putative stem-loop structure near the 3' terminus of CYDV RNA. The base-paired stem, a single-nucleotide (A) bulge in the stem, and the sequence of a tetraloop were all required for the template activity. Evidence was produced showing that minus-strand synthesis in vitro was initiated by priming by bVPg at the 3' end of the template. The data are consistent with a model in which the RdRp binds to the stem-loop structure which positions the active site to recognize the 3'-terminal GU sequence for initiation of RNA synthesis by the addition of an A residue to VPg.  相似文献   

4.
A yam potyvirus was isolated from Dioscorea alata samples collected in Nigeria. The virus was not transmissible mechanically but was transmitted by Aphis craccivora to four cowpea cultivars (Ife Brown, IT84S-2114, IT82E-10 and TVu2657), and from which it could be mechanically transmitted between the cowpea cultivars. In infectivity- tests using cowpea extracts, the virus had a dilution end point of 10-4, a thermal inactivation point of 60–65°C and longevity in vitro of 2 days at room temperature. The virus coat protein had an estimated molecular weight of 32 100 daltons. The virus was identified as an isolate of Dioscorea alata virus (DAV; syn. yam virus 1) due to its biological characteristics and its serological reaction with antiserum raised against DAV. The virus is not related to yam mosaic virus, but distantly related to blackeye cowpea mosaic virus and cowpea aphid-borne mosaic virus.  相似文献   

5.
A partial amino acid sequence of cowpea mosaic virus (CPMV) VPg radiochemically modified by chloramine-T and Bolton-Hunter reagent has been determined. VPg covalently bound to viral RNA chains (VPg-RNA) was iodinated with chloramine-T and Bolton-Hunter reagent to label tyrosine and lysine residues, respectively. [125I]VPg-RNA was digested with nuclease P1 and the resulting [125I]VPg-pU was purified by SDS-polyacrylamide gel electrophoresis and subjected to automated Edman degradation. Control experiments with chemically synthesized poliovirus VPg showed the feasibility of radiochemical microsequence analysis of protein that had been radiochemically modified by chloramine-T and Bolton-Hunter reagent. Analysis of CPMV [125I]VPg-pU revealed the presence of tyrosine residues at position 12 and 14, and of lysine residues at position 3 and 20, respectively. In combination with Edman degradation of unlabeled CPMV VPg, which showed serine and arginine residues to be present at position 1 and 2, respectively, the data obtained allow the precise positioning of VPg within the 200 000 dalton (200 K) polyprotein encoded by CPMV B RNA and the prediction of its entire amino acid sequence. VPg is located at the COOH terminus of its 60 K, membrane-bound,precursor and proximal to the amino terminus of the protease-polymerase domain of the polyprotein. A processing scheme for the 200 K polyprotein is discussed in which Gln-Ser amino acid pairs act as the major signal for proteolytic cleavage.  相似文献   

6.
7.
The 1H-NMR spectrum of the viral-protein-genome-linked (VPg) polypeptide from cowpea mosaic virus, has been interpreted via application of 2-dimensional (2D) NMR techniques. The interpretation of the data was performed by a computer program called 'PROSPECT' (PROtein SPECTra), which detects the cross-peak patterns of the amino acid residues in the spectra, assigns these patterns to amino acid types, and finally performs the sequential assignments using the well-known 'sequential walks' obtained from the NOE spectrum. Due to the severe overlap of resonances in the NMR spectrum of the VPg polypeptide, several ways of performing these walks existed. The program detected six alternatives for the sequential assignments of backbone N alpha H-C beta H-C beta H moieties.  相似文献   

8.
The amino acid sequences deduced from the nucleic acid sequences of several animal picornaviruses and cowpea mosaic virus (CPMV), a plant virus, were compared. Good homology was found between CPMV and the picornaviruses in the region of the picornavirus 2C (P2-X protein), VPg, 3C pro (proteinase) and 3D pol (RNA polymerase) regions. The CPMV B genome was found to have a similar gene organization to the picornaviruses. A comparison of the 3C pro (proteinase) regions of all of the available picornavirus sequences and CPMV allowed us to identify residues that are completely conserved; of these only two residues, Cys-147 and His-161 (poliovirus proteinase) could be the reactive residues of the active site of a proteinase with analogous mechanism to a known proteinase. We conclude that the proteinases encoded by these viruses are probably cysteine proteinases, mechanistically related, but not homologous to papain.  相似文献   

9.
《FEBS letters》1987,215(2):247-251
Comoviruses have a bipartite RNA genome. It is suggested that a small protein, VPg, is covalently linked to both RNAs. We have found that both radish mosaic virus RNAs are linked to identical VPg molecules via a phosphodiester bond between their 5′-terminal nucleotides and a serine residue of VPg.  相似文献   

10.
The genomic organization of the bottom-component RNA of cowpea mosaic virus was studied. In vivo, this RNA encodes at least eight different polypeptides of 170, 110, 87, 84, 60, 58, 32, and 4 kilodaltons (K), the last polypeptide representing the genome-bound protein VPg. In rabbit reticulocyte lysates, bottom-component RNA is translated into a 200K polypeptide which is then processed to give the 32 and 170K polypeptides also found in vivo. By pulse-labeling the 200K primary translation product, we now show that the 32 and 170K polypeptides are derived from the NH2-terminal and COOH-terminal parts of this polypeptide, respectively. Comparison of the proteolytic peptide patterns of 170K polypeptides synthesized in vitro and pulse-labeled at either the NH2-terminal or the COOH-terminal end with the patterns of the 170 and 110K polypeptides found in vivo demonstrates that the order within the 200K primary translation product of cowpea mosaic virus bottom-component RNA is as follows: NH2-32K polypeptide-58K polypeptide-VPg-24K polypeptide-87K polypeptide-COOH.  相似文献   

11.
Translation initiation is a critical early step in the replication cycle of the positive-sense, single-stranded RNA genome of noroviruses, a major cause of gastroenteritis in humans. Norovirus RNA, which has neither a 5´ m7G cap nor an internal ribosome entry site (IRES), adopts an unusual mechanism to initiate protein synthesis that relies on interactions between the VPg protein covalently attached to the 5´-end of the viral RNA and eukaryotic initiation factors (eIFs) in the host cell. For murine norovirus (MNV) we previously showed that VPg binds to the middle fragment of eIF4G (4GM; residues 652–1132). Here we have used pull-down assays, fluorescence anisotropy, and isothermal titration calorimetry (ITC) to demonstrate that a stretch of ~20 amino acids at the C terminus of MNV VPg mediates direct and specific binding to the HEAT-1 domain within the 4GM fragment of eIF4G. Our analysis further reveals that the MNV C terminus binds to eIF4G HEAT-1 via a motif that is conserved in all known noroviruses. Fine mutagenic mapping suggests that the MNV VPg C terminus may interact with eIF4G in a helical conformation. NMR spectroscopy was used to define the VPg binding site on eIF4G HEAT-1, which was confirmed by mutagenesis and binding assays. We have found that this site is non-overlapping with the binding site for eIF4A on eIF4G HEAT-1 by demonstrating that norovirus VPg can form ternary VPg-eIF4G-eIF4A complexes. The functional significance of the VPg-eIF4G interaction was shown by the ability of fusion proteins containing the C-terminal peptide of MNV VPg to inhibit in vitro translation of norovirus RNA but not cap- or IRES-dependent translation. These observations define important structural details of a functional interaction between norovirus VPg and eIF4G and reveal a binding interface that might be exploited as a target for antiviral therapy.  相似文献   

12.
Intracellular localization studies of various potyvirus proteins have been made in hope of finding clues to their function(s). Immunocytological studies localized many of the tobacco etch virus (TEV)-encoded proteins in infected cells. We used antiserum against the nonstructural P3 protein of TEV to determine the subcellular location of the P3 protein in ultrathin sections of virus-infected cells. Immunogold labeling with the antiserum showed labels associated with nucleoli, nuclei, or NIs. Absorption of antiserum with purified NIs or P3 protein resulted in no labeling. TEV NIs are known to contain a bifunctional genome-linked protein–viral proteinase (NIa–VPg) and RNA-dependent RNA polymerase (NIb). It appeared that the TEV P3 protein was a third nonstructural viral protein of NIs of TEV if the NIa–VPg is considered one protein. The presence of P3 in NIs was also supported by Western blot assays. P3 protein in the nucleolus and nucleus could indicate that it, too, is involved in early stages of viral replication.  相似文献   

13.
A total of 103 rhizobial strains representing the cowpea miscellany and Rhizobium japonicum were studied with regard to growth rate, glucose metabolic pathways, and pH change in culture medium. Doubling times ranged from 1.4 ± 0.04 to 44.1 ± 5.2 h; although two populations of “fast-growing” and “slow-growing” rhizobia were noted, they overlapped and were not distinctly separated. Twenty-four strains which had doubling times of less than 8 h all showed NADP-linked 6-phosphogluconate dehydrogenase (6-PGD) activity, whereas only one slow-growing strain (doubling time, 10.8 ± 0.9 h) of all those tested showed 6-PGD activity. Doubling times among fast growers could not be explained solely by the presence or absence of 6-PGD activity (r2 = 0.14) because the tricarboxylic acid cycle and the Emden-Meyerhoff-Parnas pathway were operative in both 6-PGD-positive and 6-PGD-negative strains. Growth rate and pH change were unrelated to each other. Fast- or slow-growing strains were not associated with any particular legume species or group of species from which they were originally isolated, with the exception of Stylosanthes spp., all nine isolates of which were slow growers. We conclude that 6-PGD activity is a more distinctive characteristic among physiologically different groups of rhizobia than doubling times and that characterization of the cowpea rhizobia as slow-growing alkali producers is an invalid concept.  相似文献   

14.
The cowpea strain of tobacco mosaic virus was isolated from a range of leguminous hosts at Ibadan, but was rare in cultivated crops. Systemic symptoms in species infected experimentally are described.
A new virus of cowpea was also found in Nigeria. The physical properties (thermal inactivation point 56° C., dilution end-point 1/50,000 and longevity in vitro 4 days at 25° C.) differ from those for cowpea viruses reported elsewhere and the name cowpea yellow mosaic virus is proposed. This virus produces local lesions in French bean ( Phaseolus vulgaris L.) and local and systemic lesions in Bengal bean ( Mucuna aterrima Holland), but does not infect other leguminous hosts. The virus was purified and an antiserum prepared against it.
Both viruses are transmitted by a beetle ( Ootheca mutabilis Sahlb.) which loses infectivity within 48 hr. of leaving plants infected with either or both viruses.  相似文献   

15.
Olspert A  Arike L  Peil L  Truve E 《FEBS letters》2011,585(19):2979-2985
Positive sense ssRNA virus genomes from several genera have a viral protein genome-linked (VPg) attached over a phosphodiester bond to the 5' end of the genome. The VPgs of Southern bean mosaic virus (SBMV) and Ryegrass mottle virus (RGMoV) were purified from virions and analyzed by mass spectrometry. SBMV VPg was determined to be linked to RNA through a threonine residue at position one, whereas RGMoV VPg was linked to RNA through a serine also at the first position. In addition, we identified the termini of the corresponding VPgs and discovered three and seven phosphorylation sites in SBMV and RGMoV VPgs, respectively. This is the first report on the use of threonine for linking RNA to VPg.  相似文献   

16.
Salmonella organisms of an unknown serotype are inoculated in the center of a motility agar plate, and paper discs impregnated with antiflagellar antisera are placed in the periphery of the plate. The plate is incubated at room temperature overnight. During this time, the bacteria spread in a widening circle toward the discs, while the antiserum from each disc, in turn, diffuses centrifugally. When the motile organisms encounter an antiserum reacting with their flagella, they are immobilized. A semicircular line of immobilization is noted around the reactive antiserum disc. Eleven different Salmonella isolates were typed in duplicate by a standard method and by the immuno-immobilization method. Results obtained by the two methods were essentially identical. Simultaneously, single phases were isolated from the zone between the immobilization line and its antiserum disc. Isolates from this region were of the phase not immobilized by the antiserum disc. The dried discs, prepared in tris(hydroxymethyl)aminomethane buffer and stored at 4 C, were stable for at least 5 months. The method can be used for the study of relatedness of surface antigens of motile, growing bacteria, thus circumventing the need for solubilization of these antigens. The results obtained can be interpreted in a similar fashion to the “identity”-“nonidentity” lines of the Ochterlony double-diffusion technique for soluble antigens.  相似文献   

17.
Upon inoculation of cowpea protoplasts with the bottom component of cowpea mosaic virus, at least six virus-induced proteins (with sizes of 170, 110, 87, 84, 60, and 32 kilodaltons) are synthesized, but not the capsid proteins (37 and 23 kilodaltons). These bottom-component-induced proteins were studied with respect to their genetic origin and mode of synthesis. The analyses were based on their electrophoretic peptide patterns resulting from partial digestion with Staphylococcus aureus protease V8. Comparison of the peptide patterns of the virus-induced proteins with those of the cowpea mosaic virus RNA-coded polypeptides produced in rabbit reticulocyte lysate showed that the 170- and 32-kilodalton polypeptides, which are the first viral products in cowpea mosaic virus-infected cells, were actually coded by the bottom component RNA of the virus. The 110-, 87-, and 84-kilodalton polypeptides, and possibly the 60-kilodalton polypeptide, appeared to have amino acid sequences in common with the 170-kilodalton polypeptide, demonstrating that they were virus coded as well. The results indicated that cowpea mosaic virus bottom component RNA was translated in vivo into a single 200-kilodalton polyprotein from which probably all bottom-component-specific proteins arose by three successive cleavages.  相似文献   

18.
Polyprotein processing is a major strategy used by many plant and animal viruses to maximize the number of protein products obtainable from a single open reading frame. In Sesbania mosaic virus, open reading frame-2 codes for a polyprotein that is cleaved into different functional proteins in cis by the N-terminal serine protease domain. The soluble protease domain lacking 70-amino-acid residues from the N terminus (deltaN70Pro, where Pro is protease) was not active in trans. Interestingly, the protease domain exhibited trans-catalytic activity when VPg (viral protein genome-linked) was present at the C terminus. Bioinformatic analysis of VPg primary structure suggested that it could be a disordered protein. Biophysical studies validated this observation, and VPg resembled "natively unfolded" proteins. CD spectral analysis showed that the deltaN70Pro-VPg fusion protein had a characteristic secondary structure with a 230 nm positive CD peak. Mutation of Trp-43 in the VPg domain to phenylalanine abrogated the positive peak with concomitant loss in cis- and trans-proteolytic activity of the deltaN70Pro domain. Further, deletion of VPg domain from the polyprotein completely abolished proteolytic processing. The results suggested a novel mechanism of activation of the protease, wherein the interaction between the natively unfolded VPg and the protease domains via aromatic amino acid residues alters the conformation of the individual domains and the active site of the protease. Thus, VPg is an activator of protease in Sesbania mosaic virus, and probably by this mechanism, the polyprotein processing could be regulated in planta.  相似文献   

19.
Proteins inducible by dehydration and abscisic acid (ABA), termed dehydrins or RAB (Responsive to ABA) proteins, have been identified in a number of species and have been suggested to play a role in desiccation tolerance, particularly during seed development. Seeds (caryopses) of North American wild rice (Zizania palustris var interior [Fassett] Dore) are tolerant of dehydration to <10% moisture content (fresh weight basis) only under restricted dehydration and rehydration conditions. In comparison, seeds of paddy rice (Oryza sativa L.) readily tolerate desiccation to <5% water content. Expression of “dehydrin-like” proteins in Zizania and Oryza seedlings and embryos was examined to investigate the relationship between the presence of such proteins and desiccation tolerance. [35S]Methionine labeling of newly synthesized proteins showed that seedlings (first leaf stage) of both Zizania and Oryza synthesized a novel “heat-stable” protein of apparent molecular weight = 20,000 when dehydrated to <75% of their initial fresh weight. ABA (100 micromolar) induced synthesis of a protein with similar electrophoretic mobility in both species. Western blots using antiserum raised against maize (Zea mays L.) dehydrin detected a protein band from dehydrated Zizania shoots and mature embryonic axes that comigrated with the labeled 20-kilodalton polypeptide. Northern blots using a cDNA for an ABA-responsive protein from Oryza (rab 16a) showed that both seedlings and excised embryonic axes of Zizania accumulated RNA similar in sequence to rab 16a in response to water loss. Zizania seedlings and embryonic axes were also capable of ABA accumulation during dehydration. The intolerance of Zizania seeds to dehydration at low temperature is apparently not due to an absence of dehydrin-like proteins or an inability to accumulate ABA.  相似文献   

20.
The sedimentation coefficients (s020, w) of the two sedimenting nucleoprotein components of broad bean stain virus (BBSV) were 92 S and 113 S, and of Echtes Ackerbohnenmosaik-Virus (EAMV) were 93 S and 114 S. Particles from each of these sedimenting components contained a single RNA species and two polypeptides. Estimates of the molecular weights of these constituents obtained by electrophoresis in polyacrylamide gels were: 42000 and 22200 (BBSV) and 41400 and 21800 (EAMV) for the polypeptides; and 2–64 and 1·62 × 106 (BBSV) and 271 and 175 × 106 (EAMV) for the RNAs. In mixtures, the protein and RNA components of BBSV and EAMV were indistinguishable from those obtained from particles of the yellow strain of cowpea mosaic virus. In freshly made virus preparations each of the sedimenting components of BBSV contained two, and those of EAMV contained three electrophoretic components. After storage for 7–10 days, BBSV preparations contained only the component migrating fastest towards the anode. Both BBSV and EAMV are distantly related serologically to cowpea mosaic but, whereas BBSV reacted only with antiserum to the severe strain, EAMV reacted only with antiserum to the yellow strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号