首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosystem Ⅱ reaction center D1/Dg/Cyt b559 complex is very sensitive to light. Besides pigments, some amino acids, like histidine and methionine residues on the polypeptide chain, were damaged and D1 and D2 proteins were degraded by illumination. SDS-PAGE analysis demonstrated an increased content of the D1 and D2 protein dimers and a new band with molecular weight of 41 kD after light treatment. Meanwhile, the D1 and D2 bands were shifted to apparent positions of higher molecular weight. During the consequent incubation in the dark following illumination, although there was no change in the composition of amino acids, the degradation process of D1 and D2 proteins and the production of 41 kD fragment continued. It was proposed that degradation of D1 and D2 proteins was probably due to the photodamage of some amino acids via chemical splitting and co-valent cross-linkage in this process.  相似文献   

2.
Cryptochromes are sensory blue light receptors mediating various responses in plants and animals. Studies on the mechanism of plant cryptochromes have been focused on the flowering plant Arabidopsis. In the genome of the unicellular green alga Chlamydomonas reinhardtii, a single plant cryptochrome, Chlamydomonas photolyase homologue 1 (CPH1), has been identified. The N-terminal 500 amino acids comprise the light-sensitive domain of CPH1 linked to a C-terminal extension of similar size. We have expressed the light-sensitive domain heterologously in Escherichia coli in high yield and purity. The 59-kDa protein bears exclusively flavin adenine dinucleotide in its oxidized state. Illumination with blue light induces formation of a neutral flavin radical with absorption maxima at 540 and 580 nm. The reaction proceeds aerobically even in the absence of an exogenous electron donor, which suggests that it reflects a physiological response. The process is completely reversible in the dark and exhibits a decay time constant of 200 s in the presence of oxygen. Binding of ATP strongly stabilizes the radical state after illumination and impedes the dark recovery. Thus, ATP binding has functional significance for plant cryptochromes and does not merely result from structural homology to DNA photolyase. The light-sensitive domain responds to illumination by an increase in phosphorylation. The autophosphorylation takes place although the protein is lacking its native C-terminal extension. This finding indicates that the extension is dispensable for autophosphorylation, despite the role it has been assigned in mediating signal transduction in Arabidopsis.  相似文献   

3.
Protein methylation in pea chloroplasts   总被引:1,自引:1,他引:0  
Niemi KJ  Adler J  Selman BR 《Plant physiology》1990,93(3):1235-1240
The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with [3H-methyl]-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. One is a polypeptide with a molecular mass of 64 kD, a second has an Mr of 48 kD, and the third has a molecular mass of less than 10 kD. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide, having a molecular mass of 24 kD, is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. One methyl-linkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile [3H]methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the [3H]methyl group.  相似文献   

4.
Mapping of in vivo protein phosphorylation sites in photosynthetic membranes of the green alga Chlamydomonas reinhardtii revealed that the major environmentally dependent changes in phosphorylation are clustered at the interface between the photosystem II (PSII) core and its light-harvesting antennae (LHCII). The photosynthetic membranes that were isolated form the algal cells exposed to four distinct environmental conditions affecting photosynthesis: (i) dark aerobic, corresponding to photosynthetic State 1; (ii) dark under nitrogen atmosphere, corresponding to photosynthetic State 2; (iii) moderate light; and (iv) high light. The surface-exposed phosphorylated peptides were cleaved from the membrane by trypsin, methyl-esterified, enriched by immobilized metal affinity chromatography, and sequenced by nanospray-quadrupole time-of-flight mass spectrometry. A total of 19 in vivo phosphorylation sites were mapped in the proteins corresponding to 15 genes in C. reinhardtii. Amino-terminal acetylation of seven proteins was concomitantly determined. Sequenced amino termini of six mature LHCII proteins differed from the predicted ones. The State 1-to-State 2 transition induced phosphorylation of the PSII core components D2 and PsbR and quadruple phosphorylation of a minor LHCII antennae subunit, CP29, as well as phosphorylation of constituents of a major LHCII complex, Lhcbm1 and Lhcbm10. Exposure of the algal cells to either moderate or high light caused additional phosphorylation of the D1 and CP43 proteins of the PSII core. The high light treatment led to specific hyperphosphorylation of CP29 at seven distinct residues, phosphorylation of another minor LHCII constituent, CP26, at a single threonine, and double phosphorylation of additional subunits of a major LHCII complex including Lhcbm4, Lhcbm6, Lhcbm9, and Lhcbm11. Environmentally induced protein phosphorylation at the interface of PSII core and the associated antenna proteins, particularly multiple differential phosphorylations of CP29 linker protein, suggests the mechanisms for control of photosynthetic state transitions and for LHCII uncoupling from PSII under high light stress to allow thermal energy dissipation.  相似文献   

5.
Abstract: Experiments were performed to determine whether ppsttranslational addition of amino acids to axonal proteins occurs in axons of the rat sciatic nerve. Two ligatures were placed 1 cm apart on sciatic nerves. Six days later, segments proximal to each ligature were removed, homogenized, centrifuged at 150,000 · g , and analyzed for the ability to incorporate 3H-amino acids into proteins. No incorporation of amino acids into proteins was found in the high-speed supernatant, but when the supernatant was passed through a Sephacryl S-200 chromatography column (removing molecules less than 20 kD), [3H]arginine, lysine, leucine and aspartic acid were incorporated into proteins in both proximal and distal nerve segments. Small but consistently greater amounts of radioactivity were incorporated into proteins in proximal segments compared with distal segments, indicating that the components necessary for the reaction are transported axonally. This reaction represents the posttranslational incorporation of a variety of amino acids into proteins of rat sciatic nerve axons. Other experiments showed that the incorporation of amino acids into proteins is by covalent bonding, that the amino acid donor is likely to be tRNA, and that the reaction is inhibited in vivo by a substance whose molecular mass is less than 20 kD. This inhibition is not affected by incubation with physiological concentrations of unlabeled amino acids, by boiling, or by treatment with Proteinase K. When the axonally transported component of the reaction was determined in regenerating nerves, the amount of incorporation of amino acids into protein was 15–150 times that in intact nerves. The results indicate that the components of this reaction are transported axonally in rat sciatic nerves and that the reaction is increased dramatically in growing axons during nerve regeneration.  相似文献   

6.
7.
The 1701-base nucleotide sequence (not including the poly(A) tail) of a cDNA for the gamma subunit of the ATP synthase from Chlamydomonas reinhardtii was determined. A start translation sequence, 23 bases in from the 5' end, initiates an 1074-base-long open reading frame. The sequence of the first 21 amino acids at the amino-terminal end of the mature gamma subunit from C. reinhardtii was determined and compared to the deduced amino acid sequence of the open reading frame. From this it was determined that the mature protein contains 323 amino acids, with the first 35 amino acids probably being part of the transit peptide. The length of the mature protein is the same as that for the mature gamma subunit from spinach, for which only a few of the amino acids of the transit peptide are known. The similarity of the two mature proteins at the nucleotide level is 56% while at the amino acid level it is 77%. In addition, the 3 cysteines, which in spinach are involved in the energy-linked catalytic functions of the ATP synthase, are conserved in the predicted amino acid sequence for the gamma subunit from C. reinhardtii. In contrast, the mature C. reinhardtii gamma subunit contains 3 additional cysteine residues not found in the spinach gamma subunit.  相似文献   

8.
There are four LhcII genes of Dunaliella salina have been submitted to the database of GenBank. However, little is known about Lhca genes of this green alga, although this knowledge might be available to study the composition and phylogenesis of Lhc gene family. Recently, one Lhca gene was been cloned from the green alga D. salina by PCR amplification using degenerate primers. This cDNA, designated as DsLhca1, contains an open reading frame encoded a protein of 222 amino acids with a calculated molecular mass of 27.8 kDa. DsLhca1 is predicted to contain three transmembrane domains and a N-terminal chloroplast transit peptide (cTP) with length of 33 amino acids. The genomic sequence of DsLhca1 is composed of five introns. The deduced polypeptide sequence of this gene showed a lower degree of identity (less than 30%) with LHCII proteins from D. salina. But its homology to Lhca proteins of other algae (Volvox carteri Lhca_AF110786) was higher with pairwise identities of up to 67.1%. Phylogenetic analysis indicated that DsLhcal protein cannot be assigned to any types of Lhca proteins in higher plants or in Chlamydomonas reinhardtii.  相似文献   

9.
Cryptochromes are a highly conserved class of UV-A/blue light photoreceptors. In Drosophila, cryptochrome is required for the normal entrainment of circadian rhythms to light dark cycles. The photocycle and molecular mechanism of animal cryptochrome photoreception are presently unknown. Drosophila cryptochrome undergoes light-dependent degradation when heterologously expressed in Schneider-2 cells. We have generated Drosophila luciferase-cryptochrome fusion proteins to more precisely monitor light-dependent cryptochrome degradation. We found that the luciferase-cryptochrome fusion protein undergoes light-dependent degradation with luciferase activity declining approximately 50% within 5 min of light exposure and approximately 85% within 1 h of light exposure. Degradation is inhibited by MG-132, consistent with a proteasomal degradation mechanism. Irradiance-response curves yield an action spectrum similar to absorption spectra for prokaryotic and eukaryotic cryptochromes with highest sensitivity in the UV-A. A luciferase-cryptochrome fusion protein lacking the terminal 15 amino acids is stably expressed in the dark but demonstrates increased sensitivity to light-induced degradation. The conferral of light-dependent degradation on a heterologous protein by fusion to cryptochrome may be a useful tool for probing protein function in cell expression systems.  相似文献   

10.
Metabolic labeling techniques have recently become popular tools for the quantitative profiling of proteomes. Classical stable isotope labeling with amino acids in cell cultures (SILAC) uses pairs of heavy/light isotopic forms of amino acids to introduce predictable mass differences in protein samples to be compared. After proteolysis, pairs of cognate precursor peptides can be correlated, and their intensities can be used for mass spectrometry-based relative protein quantification. We present an alternative SILAC approach by which two cell cultures are grown in media containing isobaric forms of amino acids, labeled either with 13C on the carbonyl (C-1) carbon or 15N on backbone nitrogen. Labeled peptides from both samples have the same nominal mass and nearly identical MS/MS spectra but generate upon fragmentation distinct immonium ions separated by 1 amu. When labeled protein samples are mixed, the intensities of these immonium ions can be used for the relative quantification of the parent proteins. We validated the labeling of cellular proteins with valine, isoleucine, and leucine with coverage of 97% of all tryptic peptides. We improved the sensitivity for the detection of the quantification ions on a pulsing instrument by using a specific fast scan event. The analysis of a protein mixture with a known heavy/light ratio showed reliable quantification. Finally the application of the technique to the analysis of two melanoma cell lines yielded quantitative data consistent with those obtained by a classical two-dimensional DIGE analysis of the same samples. Our method combines the features of the SILAC technique with the advantages of isobaric labeling schemes like iTRAQ. We discuss advantages and disadvantages of isobaric SILAC with immonium ion splitting as well as possible ways to improve it.  相似文献   

11.
Here we describe a proteomic analysis of Escherichia coli in which 3,199 protein forms were detected, and of those 2,160 were annotated and assigned to the cytosol, periplasm, inner membrane, and outer membrane by biochemical fractionation followed by two-dimensional gel electrophoresis and tandem mass spectrometry. Represented within this inventory were unique and modified forms corresponding to 575 different ORFs that included 151 proteins whose existence had been predicted from hypothetical ORFs, 76 proteins of completely unknown function, and 222 proteins currently without location assignments in the Swiss-Prot Database. Of the 575 unique proteins identified, 42% were found to exist in multiple forms. Using DIGE, we also examined the relative changes in protein expression when cells were grown in the presence and absence of amino acids. A total of 23 different proteins were identified whose abundance changed significantly between the two conditions. Most of these changes were found to be associated with proteins involved in carbon and amino acid metabolism, transport, and chemotaxis. Detailed information related to all 2,160 protein forms (protein and gene names, accession numbers, subcellular locations, relative abundances, sequence coverage, molecular masses, and isoelectric points) can be obtained upon request in either tabular form or as interactive gel images.  相似文献   

12.
Amyloid-deposited light chain (AL) amyloidosis is correlated with the overproduction of a monoclonal immunoglobulin light chain protein by a B-lymphocyte clone. Since the amyloid fibril deposits in AL amyloidosis most often consist of the N-terminal fragments of the light chain, the majority of studies have focused on the determination of the primary structure of the protein, and reducing agents have been used routinely in the initial purification process. In this study, two light chain proteins were isolated and purified, without reduction, from the urine of a patient diagnosed with kappa 1 (kappa1) AL amyloidosis. One protein had a relative molecular mass of 12,000 and the other 24,000. Electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry, in combination with enzymatic digestions, were used to verify the amino acid sequences and identify and locate posttranslational modifications in these proteins. The 12-kDa protein was confirmed to be the N-terminal kappa1 light chain fragment (variable region) consisting of residues 1-108 or 1-109 and having one disulfide bond. The 24-kDa protein was determined to be the intact kappa1 light chain containing a cysteinyl posttranslational modification at Cys214 and disulfide bonds located at Cys23-Cys88, Cys134-Cys194, and Cys214-Cys. The methods used in this report enable high-sensitivity determination of amino acid sequence and variation in intact and truncated light chains as well as posttranslational modifications. This approach facilitates consideration of the effect of cysteinylation on the native protein structure and the potential involvement of this modification in AL amyloidosis.  相似文献   

13.
14.
15.
16.
Schey KL  Gutierrez DB  Wang Z  Wei J  Grey AC 《Biochemistry》2010,49(45):9858-9865
Fatty acid acylation of proteins is a well-studied co- or posttranslational modification typically conferring membrane trafficking signals or membrane anchoring properties to proteins. Commonly observed examples of protein acylation include N-terminal myristoylation and palmitoylation of cysteine residues. In the present study, direct tissue profiling mass spectrometry of bovine and human lens sections revealed an abundant signal tentatively assigned as a lipid-modified form of aquaporin-0. LC/MS/MS proteomic analysis of hydrophobic tryptic peptides from lens membrane proteins revealed both N-terminal and C-terminal peptides modified by 238 and 264 Da which were subsequently assigned by accurate mass measurement as palmitoylation and oleoylation, respectively. Specific sites of modification were the N-terminal methionine residue and lysine 238 revealing, for the first time, an oleic acid modification via an amide linkage to a lysine residue. The specific fatty acids involved reflect their abundance in the lens fiber cell plasma membrane. Imaging mass spectrometry indicated abundant acylated AQP0 in the inner cortical region of both bovine and human lenses and acylated truncation products in the lens nucleus. Additional analyses revealed that the lipid-modified forms partitioned exclusively to a detergent-resistant membrane fraction, suggesting a role in membrane domain targeting.  相似文献   

17.
烟曲霉几丁质酶基因的克隆与表达   总被引:6,自引:0,他引:6  
Chi4 4是烟曲霉 (Aspergillusfumigatus)YJ-407产生的一种胞外几丁质酶。通过用真菌几丁质酶保守氨基酸序列与Chi44的N-端序列检索烟曲霉部分基因组序列数据库 ,获得一个编号为contig555的烟曲霉基因组序列 ,可能包含烟曲霉几丁质酶的基因。根据检索结果用RT-PCR方法从烟曲霉YJ-407中克隆到1.4kb的cDNA片段 ,该cDNA的ORF编码一个395个氨基酸的蛋白 ,分子量为43.6kD。对其推导氨基酸序列分析表明该蛋白与其它真菌来源的几丁质酶同源 ,而且活性中心与人巨噬细胞几丁质酶高度同源。该cDNA已在E .coliPichiapastorisGS115中获得表达 ,分别获得 43kD和44kD的重组蛋白 ,两种重组蛋白均有几丁质酶活性。与野生酶相比 ,大肠杆菌表达的43kD重组酶及Pichia酵母表达的44kD重组酶稳定性下降 ,说明Chi44的糖基化修饰可稳定酶蛋白.  相似文献   

18.
V Y Hook 《Life sciences》1990,47(13):1135-1139
Carboxypeptidase H (CPH) is one of the later enzymes in the cascade of proteolytic steps required for the posttranslational processing of peptide hormone precursors, including processing of proenkephalin. In this study, CPH activity in the soluble and membrane fractions of enkephalin-containing bovine chromaffin granules was competitively inhibited by its products arginine and lysine. Ki values for arginine and lysine were 4.6 +/- 1.3 and 7.6 +/- 1.9 mM, respectively, indicating that arginine was a more effective inhibitor than lysine. Other amino acids (at 10 mM) had no effect. The in vivo intragranular concentrations of lysine and arginine are similar to the measured Ki values, indicating that product inhibition of CPH by basic amino acids may occur in vivo.  相似文献   

19.
Two chlorophyll-deficient mutants of Chlamydomonas reinhardtii, chl1 and brs-1, are light sensitive and, when grown heterotrophically in the dark, accumulate protoporphyrin IX and exhibit yellow/orange pigmentation. The lesions in both mutants were mapped to the gene (CHLH) for the plastid-localized H subunit of the heterotrimeric magnesium chelatase that catalyzes the insertion of magnesium into protoporphyrin IX. The genetic defects in the mutants could be assigned to +1 frameshift mutations in exon 9 (chl1) and exon 10 (brs-1) of the CHLH gene. In both mutants, the H subunit of magnesium chelatase was undetectable, but, as shown for chl1, the steady-state levels of the I and D subunits were unaltered in comparison to wild type. The CHLH gene exhibits marked light inducibility: levels of both the mRNA and the protein product are strongly increased when cultures are shifted from from the dark into the light, suggesting that this protein may play a crucial role in the light regulation of chlorophyll biosynthesis.  相似文献   

20.
In this study, we investigate the structure of the mitochondrial F(0)F(1)-ATP synthase of the colorless alga Polytomella sp. with respect to the enzyme of its green close relative Chlamydomonas reinhardtii. It is demonstrated that several unique features of the ATP synthase in C. reinhardtii are also present in Polytomella sp. The alpha- and beta-subunits of the ATP synthase from both algae are highly unusual in that they exhibit extensions at their N- and C-terminal ends, respectively. Several subunits of the Polytomella ATP synthase in the range of 9 to 66 kD have homologs in the green alga but do not have known equivalents as yet in mitochondrial ATP synthases of mammals, plants, or fungi. The largest of these so-called ASA (ATP Synthase-Associated) subunits, ASA1, is shown to be an extrinsic protein. Short heat treatment of isolated Polytomella mitochondria unexpectedly dissociated the otherwise highly stable ATP synthase dimer of 1,600 kD into subcomplexes of 800 and 400 kD, assigned as the ATP synthase monomer and F(1)-ATPase, respectively. Whereas no ASA subunits were found in the F(1)-ATPase, all but two were present in the monomer. ASA6 (12 kD) and ASA9 (9 kD), predicted to be membrane bound, were not detected in the monomer and are thus proposed to be involved in the formation or stabilization of the enzyme. A hypothetical configuration of the Chlamydomonad dimeric ATP synthase portraying its unique features is provided to spur further research on this topic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号