首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously found that ANG II infusion into rats causes iron deposition in the kidney and heart, which may have a role in the regulation of profibrotic gene expression and tissue fibrosis. In the present study, we have investigated whether ANG II can also induce iron accumulation in the liver. Prussian blue staining detected frequent iron deposition in the interstitium of the liver of rats treated with pressor dose ANG II for 7 days, whereas iron deposition was absent in the livers of control rats. Immunohistochemical and histological analyses showed that some iron-positive nonparenchymal cells were positive for ferritin and heme oxygenase-1 (HO-1) protein and TGF-beta1 mRNA and were judged to be monocytes/macrophages. It was shown that ANG II infusion caused about a fourfold increase in ferritin and HO-1 protein expression by Western blot analysis and about a twofold increase in TGF-beta1 mRNA expression by Northern blot analysis, which were both suppressed by treating ANG II-infused rats with losartan and deferoxamine. In addition, mild interstitial fibrosis was observed in the liver of rats that had been treated with pressor dose ANG II for 7 days or with nonpressor dose ANG II for 30 days, the latter of which also caused loss of hepatocytes and intrahepatic hemorrhage in the liver. Taken together, our data suggest that ANG II infusion induces aberrant iron homeostasis in the liver, which may have a role in the ANG II-induced upregulation of profibrotic gene expression in the liver.  相似文献   

2.
Heme oxygenase (HO) is a heme-catabolizing enzyme that converts heme into biliverdin, iron, and carbon monoxide. HO-1, an inducible form of HO, is thought to act as an endogenous antioxidant defense mechanism. To determine whether chronic administration of angiotensin II affects HO-1 expression in the heart, expression and localization of HO-1 were investigated in the heart of rats receiving angiotensin II infusion (0.7 mg. kg(-1). day(-1)) via osmotic minipump for up to 7 days. Angiotensin II induced formation of granulation tissue, characterized by myofibroblast proliferation, fibrous deposition, and inflammatory cell migration. Angiotensin II also upregulated cardiac HO-1 expression. Immunohistochemistry revealed that HO-1 was intensively expressed in the granulation tissue. The selective AT(1)-receptor antagonist, losartan, completely, but hydralazine only partially, suppressed angiotensin II-induced granulation tissue formation and HO-1 upregulation. Chronic norepinephrine infusion (2.8 mg. kg(-1). day(-1)) did not induce granulation tissue formation or HO-1 upregulation. Our data suggest that angiotensin II upregulates cardiac HO-1 expression in the newly formed inflammatory lesion, which may represent an adaptive response to angiotensin II-induced cardiac damage.  相似文献   

3.
Although Smad3 is a key mediator for fibrosis, its functional role and mechanisms in hypertensive nephropathy remain largely unclear. This was examined in the present study in a mouse model of hypertension induced in Smad3 knockout (KO) and wild-type (WT) mice by subcutaneous angiotensin II infusion and in vitro in mesangial cells lacking Smad3. After angiotensin II infusion, both Smad3 KO and WT mice developed equally high levels of blood pressure. However, disruption of Smad3 prevented angiotensin II-induced kidney injury by lowering albuminuria and serum creatinine (P < 0.01), inhibiting renal fibrosis such as collagen type I and IV, fibronectin, and α-SMA expression (all P < 0.01), and blocking renal inflammation including macrophage and T cell infiltration and upregulation of IL-1β, TNF-α, and monocyte chemoattractant protein-1 in vivo and in vitro (all P < 0.001). Further studies revealed that blockade of angiotensin II-induced renal transforming growth factor (TGF)-β1 expression and inhibition of Smurf2-mediated degradation of renal Smad7 are mechanisms by which Smad3 KO mice were protected from angiotensin II-induced renal fibrosis and NF-κB-driven renal inflammation in vivo and in vitro. In conclusion, Smad3 is a key mediator of hypertensive nephropathy. Smad3 promotes Smurf2-dependent ubiquitin degradation of renal Smad7, thereby enhancing angiotensin II-induced TGF-β/Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation. Results from this study suggest that inhibition of Smad3 or overexpression of Smad7 may be a novel therapeutic strategy for hypertensive nephropathy.  相似文献   

4.
Abnormal vascular smooth muscle cells proliferation is the pathophysiological basis of cardiovascular diseases, such as hypertension, atherosclerosis, and restenosis after angioplasty. Angiotensin II can induce abnormal proliferation of vascular smooth muscle cells, but the molecular mechanisms of this process remain unclear. Here, we explored the role and molecular mechanism of monocyte chemotactic protein-1, which mediated angiotensin II-induced proliferation of rat aortic smooth muscle cells. 1,000 nM angiotensin II could stimulate rat aortic smooth muscle cells' proliferation by angiotensin II type 1 receptor (AT(1)R). Simultaneously, angiotensin II increased monocyte chemotactic protein-1 expression and secretion in a dose-and time-dependent manner through activation of its receptor AT(1)R. Then, monocyte chemotactic protein-1 contributed to angiotensin II-induced cells proliferation by CCR2. Furthermore, we found that intracellular ERK and JNK signaling molecules were implicated in angiotensin II-stimulated monocyte chemotactic protein-1 expression and proliferation mediated by monocyte chemotactic protein-1. These results contribute to a better understanding effect on angiotensin II-induced proliferation of rat smooth muscle cells.  相似文献   

5.
Dai HY  Kang WQ  Wang X  Yu XJ  Li ZH  Tang MX  Xu DL  Li CW  Zhang Y  Ge ZM 《Regulatory peptides》2007,140(1-2):88-93
As the most potent vasoconstrictor in mammals, urotensin II (U II) has recently been demonstrated to play an important role in adverse cardiac remodeling and fibrosis. However, the mechanisms of U II-induced myocardial fibrosis remain to be clarified. We postulated that U II alters transforming growth factor-beta1 (TGF-beta1) expression, and thereby modulates cardiac fibroblast collagen metabolism. Experiments were conducted using cardiac fibroblast from neonatal Wistar rats to determine the expression of TGF-beta1, and the role of U II receptor UT in this process. The functional role of TGF-beta1 and UT in modulating U II effects on type I, III collagen mRNA expression and 3H-proline incorporation was also analyzed. TGF-beta1 gene and protein expression were consistently identified in quiescent cardiac fibroblasts. U II increased the expression of TGF-beta1 mRNA and protein in a time-dependent manner. This effect was UT mediated, because UT antagonist urantide abolished U II-induced TGF-beta1 expression. U II-induced increase in type I, III collagen mRNA expression and 3H-proline incorporation were both inhibited by a specific TGF-beta1 neutralizing antibody and UT receptor antagonist urantide. Hence, our results indicate that TGF-beta1 is upregulated in cardiac fibroblasts by U II via UT and modulates profibrotic effects of U II. These findings provide novel insights into U II-induced cardiac remodeling.  相似文献   

6.
This study aimed to identify the intracellular signaling pathway in angiotensin II (Ang II)-induced upregulation of plasminogen activator inhibitor type 1 (PAI-1) mRNA expression in cultured rat glomerular mesangial cells, and to examine the interaction between Ang II and TGF-beta signaling. Ang II-induced upregulation of PAI-1 mRNA expression was prevented by a protein kinase C (PKC) inhibitor, bisindorylmaleimide I. While phorbol 12-myristate 13-acetate (PMA) upregulated the PAI-1 mRNA expression, a calcium ionophore, ionomycin, had little effect. Mesangial cells pretreated with PMA for 24 h to downregulate PKC demonstrated attenuated response to Ang II. A protein tyrosine kinase inhibitor, genistein, completely blocked both Ang II- and PMA-induced PAI-1 mRNA expression. Transforming growth factor-beta1 (TGF-beta1) alone induced the expression, and in the presence of Ang II, TGF-beta1 superinduced PAI-1 mRNA expression to a higher extent. Both bisindorylmaleimide I and genistein suppressed the Ang II plus TGF-beta1-induced PAI-1 mRNA upregulation to the basal level, while downregulation of PKC attenuated the synergistic upregulation of PAI-1 mRNA expression to the level comparable to TGF-beta1 alone. These data suggest that, in rat mesangial cells, (1) PKC and protein tyrosine kinase(s) are involved in the Ang II signaling cascade, (2) protein tyrosine kinase(s) works downstream from PKC in the cascade, and (3) there is an interaction between the Ang II and TGF-beta signal pathways downstream from PKC. In in vivo settings, local activation of renin-angiotensin and TGF-beta systems in the glomeruli may synergistically augment PAI-1 expression, promote mesangial matrix accumulation and progression of glomerular injury.  相似文献   

7.
Angiotensin II plays an important role in the development of cardiac hypertrophy and fibrosis, but the underlying cellular and molecular mechanisms are not completely understood. Recent studies have shown that bone marrow-derived fibroblast precursors are involved in the pathogenesis of cardiac fibrosis. Since bone marrow-derived fibroblast precursors express chemokine receptor, CCR2, we tested the hypothesis that CCR2 mediates the recruitment of fibroblast precursors into the heart, causing angiotensin II-induced cardiac fibrosis. Wild-type and CCR2 knockout mice were infused with angiotensin II at 1,500 ng·kg(-1)·min(-1). Angiotensin II treatment resulted in elevated blood pressure and cardiac hypertrophy that were not significantly different between wild-type and CCR2 knockout mice. Angiotensin II treatment of wild-type mice caused prominent cardiac fibrosis and accumulation of bone marrow-derived fibroblast precursors expressing the hematopoietic markers, CD34 and CD45, and the mesenchymal marker, collagen I. However, angiotensin II-induced cardiac fibrosis and accumulation of bone marrow-derived fibroblast precursors in the heart were abrogated in CCR2 knockout mice. Furthermore, angiotensin II treatment of wild-type mice increased the levels of collagen I, fibronectin, and α-smooth muscle actin in the heart, whereas these changes were not observed in the heart of angiotensin II-treated CCR2 knockout mice. Functional studies revealed that the reduction of cardiac fibrosis led to an impairment of cardiac systolic function and left ventricular dilatation in angiotensin II-treated CCR2 knockout mice. Our data demonstrate that CCR2 plays a pivotal role in the pathogenesis of angiotensin II-induced cardiac fibrosis through regulation of bone marrow-derived fibroblast precursors.  相似文献   

8.
Murine sclerodermatous graft-vs-host disease (Scl GVHD) models human scleroderma, with prominent skin thickening, lung fibrosis, and up-regulation of cutaneous collagen mRNA. Fibrosis in Scl GVHD may be driven by infiltrating TGF-beta1-producing mononuclear cells. Here we characterize the origin and types of those cutaneous effector cells, the cytokine and chemokine environments, and the effects of anti-TGF-beta Ab on skin fibrosis, immune cell activation markers, and collagen and cytokine synthesis. Donor cells infiltrating skin in Scl GVHD increase significantly at early time points post-transplantation and are detectable by PCR analysis of Y-chromosome sequences when female mice are transplanted with male cells. Cutaneous monocyte/macrophages and T cells are the most numerous cells in Scl GVHD compared with syngeneic controls. These immune cells up-regulate activation markers (MHC class II I-A(d) molecules and class A scavenger receptors), suggesting Ag presentation by cutaneous macrophages in early fibrosing disease. Early elevated cutaneous mRNA expression of TGF-beta1, but not TGF-beta2 or TGF-beta3, and elevated C-C chemokines macrophage chemoattractant protein-1, macrophage inflammatory protein-1alpha, and RANTES precede subsequent skin and lung fibrosis. Therefore, TGF-beta1-producing donor mononuclear cells may be critical effector cells, and C-C chemokines may play important roles in the initiation of Scl GVHD. Abs to TGF-beta prevent Scl GVHD by effectively blocking the influx of monocyte/macrophages and T cells into skin and by abrogating up-regulation of TGF-beta1, thereby preventing new collagen synthesis. The Scl GVHD model is valuable for testing new interventions in early fibrosing diseases, and chemokines may be new potential targets in scleroderma.  相似文献   

9.
Endothelial-to-mesenchymal transition (EndMT) is involved in cardiac fibrosis induced by angiotensin II (Ang II). A disintegrin and metalloproteinase 8 (ADAM8), a member of ADAMs family, participates in cell adhesion, proteolysis and various signaling. However, its effects on the development of cardiac fibrosis remain completely unknown. This study aimed to reveal whether ADAM8 aggravates cardiac fibrosis induced by Ang II in vivo and in vitro. The C57BL/6J mice or cardiac endothelial cells were subjected to Ang II infusion to induce fibrosis. The results showed that systolic blood pressure and diastolic blood pressure were significantly increased under Ang II infusion, and ADAM8 was up-regulated. ADAM8 inhibition attenuated Ang II-induced cardiac dysfunction. ADAM8 knockdown suppressed Ang II-induced cardiac fibrosis as evidenced by the down-regulation of CTGF, collagen I, and collagen III. In addition, the endothelial marker (VE-cadherin) was decreased, whilst mesenchymal markers (α-SMA and FSP1) were increased following Ang II infusion. However, ADAM8 repression inhibited Ang II-induced EndMT. Moreover, ADAM8 silencing repressed the activation of TGF-β1/Smad2/Smad3 pathways. Consistent with the results in vivo, we also found the inhibitory effects of ADAM8 inhibition on EndMT in vitro. All data suggest that ADAM8 promotes Ang II-induced cardiac fibrosis and EndMT via activating TGF-β1/Smad2/Smad3 pathways.  相似文献   

10.
Abnormal growth of cardiac fibroblasts is critically involved in the pathophysiology of cardiac hypertrophy/remodeling. Hexarelin is a synthetic growth hormone secretagogue (GHS), which possesses a variety of cardiovascular protective activities mediated via the GHS receptor (GHSR), including improving cardiac dysfunction and remodeling. The cellular and molecular mechanisms underlying the effect of GHS on cardiac fibrosis are, however, not clear. In this report, cultured cardiac fibroblasts from 8-day-old rats were stimulated with ANG II or FCS to induce proliferation. The fibroblast proliferation and DNA and collagen synthesis were evaluated utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, (3)H-thymidine incorporation, and (3)H-proline incorporation. The level of mRNA of transforming growth factor (TGF)-beta was evaluated by RT-PCR, and the active TGF-beta1 release from cardiac fibroblasts was evaluated by ELISA. The level of cellular cAMP was measured by radioimmunoassay. In addition, the effects of 3,7-dimethyl-l-propargylxanthine (DMPX; a specific adenosine receptor A(2)R antagonist) and 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; a specific A(1)R antagonist) were tested. It was found that incubation with 10(-7) mol/l hexarelin for 24 h 1) inhibited the ANG II-induced proliferation and collagen synthesis and the 5% FCS- and TGF-beta-induced increase of DNA synthesis in cardiac fibroblast and 2) reduced ANG II-induced upregulation of TGF-beta mRNA expression and active TGF-beta1 release from fibroblasts. Hexarelin increased the cellular level of cAMP in cardiac fibroblasts. DMPX (10(-8) mol/l) but not DPCPX abolished the effect of hexarelin on cardiac fibroblast DNA synthesis. It is concluded that hexarelin inhibits DNA and collagen synthesis and proliferation of cardiac fibroblasts through activation of both GHSR and A(2)R and diminishment of ANG II-induced increase in TGF-beta expression and release.  相似文献   

11.
12.
Both monocyte chemoattractant protein-1 (MCP-1), a member of chemokine family, and angiotensinogen, a precursor of angiotensin (ANG) II, are produced by adipose tissue and increased in obese state. MCP-1 has been shown to decrease insulin-stimulated glucose uptake and several adipogenic genes expression in adipocytes in vitro, suggesting its pathophysiological significance in obesity. However, the pathophysiological interaction between MCP-1 and ANG II in adipose tissue remains unknown. The present study was undertaken to investigate the potential mechanisms by which ANG II affects MCP-1 gene expression in rat primary cultured preadipocytes and adipose tissue in vivo. ANG II significantly increased steady-state MCP-1 mRNA levels in a time- and dose-dependent manner. The ANG II-induced MCP-1 mRNA and protein expression was completely abolished by ANG II type 1 (AT1)-receptor antagonist (valsartan). An antioxidant/NF-kappaB inhibitor (pyrrolidine dithiocarbamate) and an inhibitor of 1kappaB-alpha phosphorylation (Bay 11-7085) also blocked ANG II-induced MCP-1 mRNA expression. ANG II induced translocation of NF-kappaB p65 subunit from cytoplasm to nucleus by immunocytochemical study. Luciferase assay using reporter constructs containing MCP-1 promoter region revealed that two NF-kappaB binding sites in its enhancer region were essential for the ANG II-induced promoter activities. Furthermore, basal mRNA and protein of MCP-1 during preadipocyte differentiation were significantly greater in preadipocytes than in differentiated adipocytes, whose effect was more pronounced in the presence of ANG II. Exogenous administration of ANG II to rats led to increased MCP-1 expression in epididymal, subcutaneous, and mesenteric adipose tissue. In conclusion, our present study demonstrates that ANG II increases MCP-1 gene expression via ANG II type 1 receptor-mediated and NF-kappaB-dependent pathway in rat preadipocytes as well as adipose MCP-1 expression in vivo. Thus the augmented MCP-1 expression by ANG II in preadipocytes may provide a new link between obesity and cardiovascular disease.  相似文献   

13.
Myocardial infarction (MI) is a severe coronary artery disease resulted from substantial and sustained ischemia. Abnormal upregulation of calcium and integrin binding protein 1 (CIB1) has been found in several cardiovascular diseases. In this study, we established a mouse model of MI by permanent ligation of the left anterior descending coronary artery. CIB1 was upregulated in the heart of MI mice. Notably, CIB1 knockdown by intramuscular injection of lentivirus-mediated short hairpin RNA (shRNA) targeting Cib1 improved cardiac function and attenuated myocardial hypertrophy and infarct area in MI mice. MI-induced upregulation of α-SMA, vimentin, Collagen I, and Collagen III, which resulted in collagen production and myocardial fibrosis, were regressed by CIB1 silencing. In vitro, cardiac fibroblasts (CFs) isolated from mice were subjected to angiotensin II (Ang II) treatment. Inhibition of CIB1 downregulated the expression of α-SMA, vimentin, Collagen I, and Collagen III in Ang II-treated CFs. Moreover, CIB1 knockdown inhibited Ang II-induced phosphorylation of PI3K-p85 and Akt in CFs. The effect of CIB1 knockdown on Ang II-induced cellular injury was comparable to that of LY294002, a specific inhibitor of the PI3K/Akt pathway. We demonstrated that MI-induced cardiac hypertrophy, myocardial fibrosis, and cardiac dysfunction might be attributed to the upregulation of CIB1 in MI mice. Downregulation of CIB1 alleviated myocardial fibrosis and cardiac dysfunction by decreasing the expression of α-SMA, vimentin, Collagen I, and Collagen III via inhibiting the PI3K/Akt pathway. Therefore, CIB1 may be a potential target for MI treatment.  相似文献   

14.
Peritoneal fibrosis formation is a consequence of inflammation/injury and a significant medical problem to be solved. The effects of soluble VEGF receptor type I (sFlt-1) gene transfer on experimental peritoneal fibrosis were examined and compared with soluble transforming growth factor-beta (TGF-beta) receptor type II (sTGF beta RII) gene transfer. Male C57BL/6 mice were injected with 1.5 x 10(8) plaque-forming unit of adenovirus encoding active TGF-beta (AdTGF beta) intraperitoneally. Some mice had been treated with sTGF betaRII or sFlt-1 plasmid injection into skeletal muscle with electroporation 4 days before virus administration. Mice were euthanized at day 14 after virus administration. AdTGF beta induced significant elevation of serum active TGF-beta, caused significant inflammatory response [weight loss, elevation of serum amyloid-P (SAP) and IL-12, increased expression of monocyte chemoattractant protein-1 (MCP-1) mRNA], and induced marked thickening of the peritoneum and collagen deposition. Gene transfer of sFlt-1 reduced the collagen deposition approximately 81% in mesenteric tissue. Treatment with sFlt-1 decreased ICAM-1 and MCP-1 mRNA expression significantly. Significant negative correlation between serum sFlt-1 and placental growth factor level was observed, whereas there was no significant negative correlation between sFlt-1 and VEGF. On the other hand, sTGF beta RII treatment enhanced the AdTGF beta-induced inflammation (significant elevation of SAP, TNF-alpha, and IL-12 levels and upregulation of ICAM-1 and MCP-1 mRNA expressions) and failed to prevent collagen deposition. These observations indicate that sFlt-1 gene transfer might be of therapeutic benefit in peritoneal fibrosis.  相似文献   

15.

Background and objective

Senescence marker protein 30 (SMP30) is assumed to behave as an anti-aging factor. Recently, we have demonstrated that deficiency of SMP30 exacerbates angiotensin II-induced cardiac hypertrophy, dysfunction and remodeling, suggesting that SMP30 may have a protective role in the heart. Thus, this study aimed to test the hypothesis that up-regulation of SMP30 inhibits cardiac adverse remodeling in response to angiotensin II.

Methods

We generated transgenic mice with cardiac-specific overexpression of SMP30 gene using α-myosin heavy chain promoter. Transgenic mice and wild-type littermate mice were subjected to continuous angiotensin II infusion (800 ng/kg/min).

Results

After 14 days, heart weight and left ventricular weight were lower in transgenic mice than in wild-type mice, although blood pressure was similarly elevated during angiotensin II infusion. Cardiac hypertrophy and diastolic dysfunction in response to angiotensin II were prevented in transgenic mice compared with wild-type mice. The degree of cardiac fibrosis by angiotensin II was lower in transgenic mice than in wild-type mice. Angiotensin II-induced generation of superoxide and subsequent cellular senescence were attenuated in transgenic mouse hearts compared with wild-type mice.

Conclusions

Cardiac-specific overexpression of SMP30 inhibited angiotensin II-induced cardiac adverse remodeling. SMP30 has a cardio-protective role with anti-oxidative and anti-aging effects and could be a novel therapeutic target to prevent cardiac hypertrophy and remodeling due to hypertension.  相似文献   

16.
Angiotensin II (Ang II) plays an important role on the pathogenesis of cardiac fibrosis. Prolong and overstimulation of angiotensin II type 1 receptor with Ang II-induced collagen synthesis and myofibroblast differentiation in cardiac fibroblasts, leading to cardiac fibrosis. Although adenosine and its analogues are known to have cardioprotective effects, the mechanistic by which adenosine A2 receptors (A2Rs) inhibit Ang II-induced cardiac fibrosis is not clearly understood. In the present study, we examined the effects of exogenous adenosine and endogenous adenosine on Ang II-induced collagen and myofibroblast differentiation determined by α-smooth muscle action (α-SMA) overexpression and their underlying signal transduction. Elevation of endogenous adenosine levels resulted in the inhibition of Ang II-induced collagen type I and III and α-SMA synthesis in cardiac fibroblasts. Moreover, treatment with exogenous adenosine which selectively stimulated A2Rs also suppressed Ang II-induced collagen synthesis and α-SMA production. These antifibrotic effects of both endogenous and exogenous adenosines are mediated through the A2B receptor (A2BR) subtype. Stimulation of A2BR exhibited antifibrotic effects via the cAMP-dependent and Epac-dependent pathways. Our results provide new mechanistic insights regarding the role for cAMP and Epac on A2BR-mediated antifibrotic effects. Thus, A2BR is one of the potential therapeutic targets against cardiac fibrosis.  相似文献   

17.
Advanced glycation end products (AGEs)-their receptor (RAGE) axis plays a central role in the pathogenesis of diabetic microangiopathy. Since the pathophysiological crosstalk between the AGEs-RAGE system and angiotensin II has also been associated with diabetic microangiopathy, we examined here whether and how telmisartan, a unique angiotensin II type 1 receptor blocker (ARB) with peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-modulating activity, could inhibit the AGEs-elicited endothelial cell injury by suppressing RAGE expression in vitro. Telmisartan suppressed RAGE expression at both mRNA and protein levels in human cultured microvascular endothelial cells (ECs), which were prevented by GW9662, an inhibitor of PPAR-gamma. Further, telmisartan was found to inhibit up-regulation of mRNA levels for monocyte chemoattractant protein-1, intercellular adhesion molecule-1 and vascular endothelial growth factor in AGEs-exposed ECs. These results suggest that telmisartan inhibits the AGEs-elicited EC injury by down-regulating RAGE expression via PPAR-gamma activation. Our present study provides a unique beneficial aspect of telmisartan. Specifically, it could work as an anti-inflammatory agent against AGEs via PPAR-gamma activation and may play a protective role against diabetic microangiopathy.  相似文献   

18.
Oxidative stress due to iron deposition in hepatocytes or Kupffer cells contributes to the initiation and perpetuation of liver injury. The aim of this study was to clarify the association between dietary iron and liver injuries in rats. Liver injury was initiated by the administration of thioacetamide or ligation of the common bile duct in rats fed a control diet (CD) or iron-deficient diet (ID). In the acute liver injury model induced by thioacetamide, serum levels of aspartate aminotransferase and alanine aminotransferase, as well as hepatic levels of lipid peroxide and 4-hydroxynonenal, were significantly decreased in the ID group. The expression of 8-hydroxydeoxyguanosine and terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling positivity showed a similar tendency. The expression of interleukin-1beta and monocyte chemotactic protein-1 mRNA was suppressed in the ID group. In liver fibrosis induced by an 8-wk thioacetamide administration, ID suppressed collagen deposition and smooth muscle alpha-actin expression. The expressions of collagen 1A2, transforming growth factor beta, and platelet-derived growth factor receptor beta mRNA were all significantly decreased in the ID group. Liver fibrosis was additionally suppressed in the bile-duct ligation model by ID. In culture experiments, deferoxamine attenuated the activation process of rat hepatic stellate cells, a dominant producer of collagen in the liver. In conclusion, reduced dietary iron is considered to be beneficial in improving acute and chronic liver injuries by reducing oxidative stress. The results obtained in this study support the clinical usefulness of an iron-reduced diet for the improvement of liver disorders induced by chronic hepatitis C and alcoholic/nonalcoholic steatohepatitis.  相似文献   

19.

Background

The natural triterpenes, erythrodiol and uvaol, exert anti-inflammatory, vasorelaxing and anti-proliferative effects. Angiotensin II is a well-known profibrotic and proliferative agent that participates in the cardiac remodeling associated with different pathological situations through the stimulation and proliferation of cardiac fibroblasts. Therefore, the aim of the study was to investigate the preventive effects of the natural triterpenes erythrodiol and uvaol on the proliferation and collagen production induced by angiotensin II in cardiac myofibroblasts. Their actions on cardiac hypertrophy triggered by angiotensin II were also studied.

Methodology/Principal Findings

The effect of erythrodiol and uvaol on angiotensin II-induced proliferation was evaluated in cardiac myofibroblasts from adult rats in the presence or the absence of the inhibitors of PPAR-γ, GW9662 or JNK, SP600125. The effect on collagen levels induced by angiotensin II was evaluated in cardiac myofibroblasts and mouse heart. The presence of low doses of both triterpenes reduced the proliferation of cardiac myofibroblasts induced by angiotensin II. Pretreatment with GW9662 reversed the effect elicited by both triterpenes while SP600125 did not modify it. Both triterpenes at high doses produced an increase in annexing-V binding in the presence or absence of angiotensin II, which was reduced by either SP600125 or GW9662. Erythrodiol and uvaol decreased collagen I and galectin 3 levels induced by angiotensin II in cardiac myofribroblasts. Finally, cardiac hypertrophy, ventricular remodeling, fibrosis, and increases in myocyte area and brain natriuretic peptide levels observed in angiotensin II-infused mice were reduced in triterpene-treated animals.

Conclusions/Significance

Erythrodiol and uvaol reduce cardiac hypertrophy and left ventricle remodeling induced by angiotensin II in mice by diminishing fibrosis and myocyte area. They also modulate growth and survival of cardiac myofibroblasts. They inhibit the angiotensin II-induced proliferation in a PPAR-γ-dependent manner, while at high doses they activate pathways of programmed cell death that are dependent on JNK and PPAR-γ.  相似文献   

20.
Ma F  Li Y  Jia L  Han Y  Cheng J  Li H  Qi Y  Du J 《PloS one》2012,7(5):e35144
Interleukin-6 (IL-6) is an important cytokine participating in multiple biologic activities in immune regulation and inflammation. IL-6 has been associated with cardiovascular remodeling. However, the mechanism of IL-6 in hypertensive cardiac fibrosis is still unclear. Angiotensin II (Ang II) infusion in mice increased IL-6 expression in the heart. IL-6 knockout (IL-6-/-) reduced Ang II-induced cardiac fibrosis: 1) Masson trichrome staining showed that Ang II infusion significantly increased fibrotic areas of the wild-type mouse heart, which was greatly suppressed in IL-6-/- mice and 2) immunohistochemistry staining showed decreased expression of α-smooth muscle actin (α-SMA), transforming growth factor β1 (TGF-β1) and collagen I in IL-6-/- mouse heart. The baseline mRNA expression of IL-6 in cardiac fibroblasts was low and was absent in cardiomyocytes or macrophages; however, co-culture of cardiac fibroblasts with macrophages significantly increased IL-6 production and expression of α-SMA and collagen I in fibroblasts. Moreover, TGF-β1 expression and phosphorylation of TGF-β downstream signal Smad3 was stimulated by co-culture of macrophages with cardiac fibroblasts, while IL-6 neutralizing antibody decreased TGF-β1 expression and Smad3 phosphorylation in co-culture of macrophage and fibroblast. Taken together, our results indicate that macrophages stimulate cardiac fibroblasts to produce IL-6, which leads to TGF-β1 production and Smad3 phosphorylation in cardiac fibroblasts and thus stimulates cardiac fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号