首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-dimensional liquid chromatography is often presented as an alternative to two-dimensional (2-D) gel electrophoresis for separating complex protein mixtures. The vast majority of analytical-scale 2-D LC systems have employed either off-line fractionation or stepped gradients in the first dimension separation. The latter severely restrict flexibility in setting up the first dimension gradient. We propose a novel two-dimensional LC system that employs online fractionation of proteins into a series of small reversed phase trapping columns. These traps effectively decouple the two separation dimensions and avoid problems associated with off-line fraction collection. Flexibility in determining the gradient programs for the two separations is thus enhanced. The reduced diameter of the trapping columns concentrates analyte between chromatographic dimensions. The apparatus is coupled with online electrospray time-of-flight mass spectrometry to characterize ribosomal proteins of Caulobacter crescentus.  相似文献   

2.
An integrated protein concentration/separation platform, combining capillary isoelectric focusing (CIEF) with nano-reversed phase liquid chromatography (nano-RPLC), is developed to provide significant protein concentration and high resolving power for the analysis of complex protein mixtures. Upon completion of protein focusing, the proteins are sequentially and hydrodynamically loaded into individual trap columns using a group of microinjection and microselection valves. Repeated pro-tein loadings and injections into trap columns are carried out automatically until the entire CIEF cap-illary content is sampled and fractionated. Each CIEF fraction "parked" in separate trap columns is further resolved using nano-RPLC, and the eluants are analyzed using electrospray ionization-mass spectrometry.  相似文献   

3.
Analysis of intact protein mixtures by electrospray ionization mass spectrometry requires the resolution of a complex, overlapping set of multiply charged envelopes. To ascertain the ability of a moderate resolution mass spectrometer to resolve such mixtures, we have analyzed the soluble proteins of adult chick skeletal muscle. This is a highly specialized tissue showing a marked bias in expression of glycolytic enzymes in the soluble fraction. SDS-PAGE-resolved proteins were first identified by a combination of matrix-assisted laser desorption ionization time-of-flight (TOF) and electrospray ionization tandem mass spectrometry. Then the mixture of intact proteins was introduced into the electrospray source of a Q-TOF mass spectrometer either by direct infusion or via a C4 desalting trap. In both instances, the complex pattern of peaks could be resolved into true masses, and these masses could in many instances be reconciled with the masses predicted from the known protein sequences when qualified by expected co- and post-translational modifications. These included loss of the N-terminal initiator methionine residue and N-terminal acetylation. The ability to resolve such a complex mixture of proteins with a routine instrument is of considerable value in analyses of protein expression and in the confirmation of post-translational changes in mature proteins.  相似文献   

4.
A high-throughput approach for biomolecule analysis is demonstrated for a mixture of peptides from tryptic digest of four proteins as well as a tryptic digests of human plasma. In this method a chip based electrospray autosampler coupled to a hybrid ion mobility (IMS) mass spectrometer (MS) is utilized to achieve rapid sample analysis. This high-throughput measurement is realized by exploiting the direct infusion capability of the chip based electrospray with its rapid sample manipulating capability as well as a high sensitive IMS-MS with a recently developed IMS-IMS separation technique that can be multiplexed to provide greater throughput. From replicate IMS-MS runs of known mixtures, the average uncertainty of peak intensities is determined to be +/-7% (relative standard deviation), and a detection limit in the low attomole range is established. The method is illustrated by analyzing 124 human plasma protein samples in duplicate, a measurement that required 16.5 h. Current limitations as well as implications of the high-throughput approach for complex biological sample analysis are discussed.  相似文献   

5.
Mass spectrometry has become the technology of choice for detailed identification of proteins in complex mixtures. Although electrophoretic separation, proteolytic digestion, mass spectrometric analysis of unseparated digests, and database searching have become standard methods in widespread use, peptide sequence information obtained by collision-induced dissociation and tandem mass spectrometry is required to establish the most comprehensive and reliable results. Most tandem mass spectrometers in current use employ electrospray ionization. In this work a novel tandem mass spectrometer employing matrix-assisted laser desorption ionization-time-of-flight/time-of-flight operating at 200 Hz has been used to identify proteins interacting with known nucleoporins in the nuclear pore complex of Saccharomyces cerevisiae. Proteins interacting with recombinant proteins as bait were purified from yeast extracts and then separated by one-dimensional SDS-PAGE. Although peptide mass fingerprinting is sometimes sufficient to identify proteins, this study shows the importance of employing tandem mass spectrometry for identifying proteins in mixtures or as covalently modified forms. The rules for incorporating these features into MS-Tag are presented. In addition to providing an evaluation of the sensitivity and overall quality of collision-induced dissociation spectra obtained, standard conditions for ionization and fragmentation have been selected that would allow automatic data collection and analysis, without the need to adjust parameters in a sample-specific fashion. Other considerations essential for successful high throughput protein analysis are discussed.  相似文献   

6.
Proteome analysis requires a comprehensive approach including high-performance separation methods, mass spectrometric analysis, and bioinformatics. While recent advances in mass spectrometry (MS) have led to remarkable improvements in the ability to characterize complex mixtures of biomolecules in proteomics, a proper pre-MS separation step of proteins/peptides is still required. The need of high-performance separation and/or isolation/purification techniques of proteins is increasing, due to the importance of proteins expressed at extremely low levels in proteome samples. In this review, flow field-flow fractionation (F4) is introduced as a complementary pre-analytical separation method for protein separation/isolation, which can be effectively utilized for proteomic research. F4 is a set of elution-based techniques that are capable of separating macromolecules by differences in diffusion coefficient and, therefore, in hydrodynamic size. F4 provides protein separation without surface interaction of the analyte with packing or gel media. Separation is carried out in an open channel structure by a flow stream of a mobile phase of any composition, and it is solely based on the interaction of the analytes with a perpendicularly-applied, secondary flow of the fluid. Therefore, biological analytes such as proteins can be kept under a bio-friendly environment without losing their original structural configuration. Moreover, proteins fractionated on a size/shape basis can be readily collected for further characterization or proteomic analysis by MS using, for instance, either on-line or off-line methods based on electrospray ionization (ESI) or matrix-assisted laser desorption-ionization (MALDI). This review focuses on the advantages of F4 compared to most-assessed separation/isolation techniques for proteomics, and on selected applications based on size-dependent proteome separation. New method developments based on the hyphenation of F4 with on-line or off-line MS, and with other separation methods such as capillary isoelectric focusing (CIEF) are also described.  相似文献   

7.
The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for further top-down proteomics of individual HMW-GS and the entire wheat glutenin fraction.  相似文献   

8.
A reversed-phase HPLC coupled on-line to a radical scavenging detection system and MS/MS was developed in order to combine separation, activity determination and structural identification of anti-oxidants in complex mixtures in one run. The sample was separated by HPLC and the eluate split into two flows. The major portion was fed into an electrospray ionisation MS/MS system, while the minor part was mixed with a free radical, 2,2'-diphenyl-1-picrylhydrazyl (DPPH), and the reaction determined spectrophotometrically. The negative peaks, which indicated the presence of anti-oxidant activity, were monitored by measuring the decrease in absorbance at 517 nm. The developed method was successfully applied to the identification of anti-oxidant compounds in a fraction, obtained by solid-phase extraction, of an extract of a Thai medicinal plant, Butea superba Roxb. The anti-oxidant compounds were separated and identified as procyanidin B2, (-)-epicatechin and procyanidin B5.  相似文献   

9.
Reversed-phase liquid chromatography interfaced to electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) allows analysis of very complex peptide mixtures at great sensitivity, but it can be very time-consuming, typically using 60 min, or more, per sample analysis. We recently introduced the isocratic solid phase extraction-liquid chromatography (SPE-LC) technology for rapid separation (~8 min) of simple peptide samples. We now extend these studies to demonstrate the potential of SPE-LC separation in combination with a hybrid linear ion trap-Orbitrap tandem mass spectrometer for efficient analysis of peptide samples in proteomics research. The system performance of SPE-LC-MS/MS was evaluated in terms of sensitivity and efficiency for the analysis of tryptic peptide digests obtained from samples consisting of up to 12 standard proteins. The practical utility of the analytical setup was demonstrated by the analysis of <15 microg depleted human serum proteome by a combination of SDS-PAGE and SPE-LC-MS/MS. A total of 88 unique gene products spanning 3 orders of magnitude in serum protein concentration were identified using stringent database search criteria.  相似文献   

10.
Lu CY  Wu CY  Lin CH 《Analytical biochemistry》2007,368(2):123-129
In typical mass spectrometry-based protein identification using peptide fragmentation fingerprinting, front-end separation plays a critical role in successful peptide sequencing. This separation step demands a great deal of time and usually is the rate-limiting step for the whole process. Here we provide an alternative separation method, based on a simple nanoflow delivery system, that is able to shorten the separation time considerably. This system consists of a 25-mul syringe connected to a manually packed reversed-phase mini-capillary column that can be directly coupled to an electrospray ionization tandem mass spectrometer. A syringe pump is then used to deliver the peptide mixtures at a nanoscale flow rate. We examined the efficiency and efficacy of this method by analyzing the tryptic peptides of bovine serum albumin and of 10 Escherichia coli proteins separated by two-dimensional gel electrophoresis (2DE). The results showed that identification of each protein could be achieved successfully within 25 min by using the disposable mini-capillary column. Moreover, all 2DE-separated E. coli proteins were identified at high confidence levels. Together, our data suggest that this method is a suitable option for mass spectrometry-based protein identification.  相似文献   

11.
Görg A  Boguth G  Köpf A  Reil G  Parlar H  Weiss W 《Proteomics》2002,2(12):1652-1657
Due to their heterogeneity and huge differences in abundance, the detection and identification of all proteins expressed in eukaryotic cells and tissues is a major challenge in proteome analysis. Currently the most promising approaches are sample prefractionation procedures prior to narrow pH range two-dimensional gel electrophoresis (IPG-Dalt) to reduce the complexity of the sample and to enrich for low abundance proteins. We recently developed a simple, cheap and rapid sample prefractionation procedure based on flat-bed isoelectric focusing (IEF) in granulated gels. Complex sample mixtures are prefractionated in Sephadex gels containing urea, zwitterionic detergents, dithiothreitol and carrier ampholytes. After IEF, up to ten gel fractions alongside the pH gradient are removed with a spatula and directly applied onto the surface of the corresponding narrow pH range immobilized pH gradient (IPG) strips as first dimension of two-dimensional (2-D) gel electrophoresis. The major advantages of this technology are the highly efficient electrophoretic transfer of the prefractionated proteins from the Sephadex IEF fraction into the IPG strip without any sample dilution, and the full compatibility with subsequent IPG-IEF, since the prefactionated samples are not eluted, concentrated or desalted, nor does the amount of the carrier ampholytes in the Sephadex fraction interfere with subsequent IPG-IEF. Prefractionation allows loading of higher protein amounts within the separation range applied to 2-D gels and facilitates the detection of less abundant proteins. Also, this system is highly flexibile, since it allows small scale and large scale runs, and separation of different samples at the same time. In the current study, this technology has been successfully applied for prefractionation of mouse liver proteins prior to narrow pH range IPG-Dalt.  相似文献   

12.
A three-dimensional method has been developed to map the protein content of cells according to pI, M(w) and hydrophobicity. The separation of complex protein mixtures from cells is performed using isoelectric focusing (IEF) in the liquid phase in the first dimension, non-porous silica (NPS) RP-HPLC in the second dimension and on-line electrospray ionization (ESI) time-of-flight mass spectrometry (TOF-MS) detection in the third dimension. The experimentally determined pI, M(w) and hydrophobicity can then be used to produce a three-dimensional map of the protein expression of a cell, where now each protein can be tagged by three independent parameters. The ESI-TOF-MS provides an accurate M(w) for the intact protein while the hydrophobicity dimension results from the RP-HPLC component of the separation. The elution time, or percent acetonitrile at time of elution, of the protein is related to the hyrophobicity, which is an inherent property of the protein. 3D protein maps can thus be generated showing pI, M(w) and % acetonitrile at time of elution as well as pI, M(w) and hydrophobicity. The potential of the 3D plot for effective mapping of proteins from cells compared to current 2D methods is discussed.  相似文献   

13.
A noncommercial continuous-flow isoelectric focusing (CIF) apparatus which was formerly applied to separate mixtures of proteins was used to study the separation of red blood cells (RBC's) of different species. A mixture of human, mouse and rabbit erythrocytes, a good model for demonstration of cell separation by CIF, was completely separated into the three components. The separation was performed by isoelectric focusing in pH gradients, 3–10 and 5–7, using Ampholine carrier ampholytes at a field strength of 110 V/cm and a flow-through time of RBC's of 7 min. The isoionic points of human RBC's both determined by CIF and calculated from electrophoretic mobility measurements by extrapolation to zero electrophoretic mobility and zero ionic strength were found at pH 5.6–5.7. The method of CIF which is presently used to isolate a pure lysosomal fraction seems to be a valuable method for the separation of mixtures of cells or cell organelles.  相似文献   

14.
A method for high-resolution proteomics analyses of complex protein mixtures is presented using multidimensional HPLC coupled to MS (MDLC-MS). The method was applied to identify proteins that are differentially expressed during fruit ripening of tomato. Protein extracts from red and green tomato fruits were digested by trypsin. The resulting highly complex peptide mixtures were separated by strong cation exchange chromatography (SCX), and subsequently analyzed by RP nano-LC coupled to quadrupole-TOF MS. For detailed quantitative comparison, triplicate RP-LC-MS runs were performed for each SCX fraction. The resulting data sets were analyzed using MetAlign software for noise and data reduction, multiple alignment and statistical variance analysis. For each RP-LC-MS chromatogram, up to 7000 mass components were detected. Peak intensity data were compared by multivariate and statistical analysis. This revealed a clear separation between the green and red tomato samples, and a clear separation of the different SCX fractions. MS/MS spectra were collected using the data-dependent acquisition mode from a selected set of differentially detected peptide masses, enabling the identification of proteins that were differentially expressed during ripening of tomato fruits. Our approach is a highly sensitive method to analyze proteins in complex mixtures without the need of isotope labeling.  相似文献   

15.
An increasing number of proteomic strategies rely on liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect and identify constituent peptides of enzymatically digested proteins obtained from various organisms and cell types. However, sample preparation methods for isolating membrane proteins typically involve the use of detergents and chaotropes that often interfere with chromatographic separation and/or electrospray ionization. To address this problem, a sample preparation method combining carbonate extraction, surfactant-free organic solvent-assisted solubilization, and proteolysis was developed and demonstrated to target the membrane subproteome of Deinococcus radiodurans. Out of 503 proteins identified, 135 were recognized as hydrophobic on the basis of their calculated hydropathy values (GRAVY index), corresponding to coverage of 15% of the predicted hydrophobic proteome. Using the PSORT algorithm, 53 of the proteins identified were classified as integral outer membrane proteins and 215 were classified as integral cytoplasmic membrane proteins. All identified integral cytoplasmic membrane proteins had from 1 to 16 mapped transmembrane domains (TMDs), and 65% of those containing four or more mapped TMDs were identified by at least one hydrophobic membrane spanning peptide. The extensive coverage of the membrane subproteome (24%) by identification of highly hydrophobic proteins containing multiple TMDs validates the efficacy of the described sample preparation technique to isolate and solubilize hydrophobic integral membrane proteins from complex protein mixtures.  相似文献   

16.
Chemical reactions with unsaturated phospholipids in the respiratory tract lining fluid have been identified as one of the first important steps in the mechanisms mediating environmental ozone toxicity. As a consequence of these reactions, complex mixtures of oxidized lipids are generated in the presence of mixtures of non-oxidized naturally occurring phospholipid molecular species, which challenge methods of analysis. Untargeted mass spectrometry and statistical methods were employed to approach these complex spectra. Human bronchoalveolar lavage (BAL) was exposed to low levels of ozone, and samples with and without derivatization of aldehydes were analyzed by liquid chromatography electrospray ionization tandem mass spectrometry. Data processing was carried out using principal component analysis (PCA). Resulting PCA scores plots indicated an ozone dose-dependent increase, with apparent separation between BAL samples exposed to 60 ppb ozone and non-exposed BAL samples as well as a clear separation between ozonized samples before and after derivatization. Corresponding loadings plots revealed that more than 30 phosphatidylcholine (PC) species decreased due to ozonation. A total of 13 PC and 6 phosphatidylglycerol oxidation products were identified, with the majority being structurally characterized as chain-shortened aldehyde products. This method exemplifies an approach for comprehensive detection of low-abundance, yet important, components in complex lipid samples.  相似文献   

17.
Next to the identification of proteins and the determination of their expression levels, the analysis of post-translational modifications (PTM) is becoming an increasingly important aspect in proteomics. Here, we review mass spectrometric (MS) techniques for the study of protein glycosylation at the glycopeptide level. Enrichment and separation techniques for glycoproteins and glycopeptides from complex (glyco-)protein mixtures and digests are summarized. Various tandem MS (MS/MS) techniques for the analysis of glycopeptides are described and compared with respect to the information they provide on peptide sequence, glycan attachment site and glycan structure. Approaches using electrospray ionization and matrix-assisted laser desorption/ionization (MALDI) of glycopeptides are presented and the following fragmentation techniques in glycopeptide analysis are compared: collision-induced fragmentation on different types of instruments, metastable fragmentation after MALDI ionization, infrared multi-photon dissociation, electron-capture dissociation and electron-transfer dissociation. This review discusses the potential and limitations of tandem mass spectrometry of glycopeptides as a tool in structural glycoproteomics.  相似文献   

18.
MS/MS is the technology of choice for analyzing complex protein mixtures. However, due to the intrinsic complexity and dynamic range present in higher eukaryotic proteomes, prefractionation is an important step to maximize the number of proteins identified. Off‐gel IEF (OG‐IEF) and high pH RP (Hp‐RP) column chromatography have both been successfully utilized as a first‐dimension peptide separation technique in shotgun proteomic experiments. Here, a direct comparison of the two methodologies was performed on ex vivo peripheral blood mononuclear cell lysate. In 12‐fraction replicate analysis, Hp‐RP resulted in more peptides and proteins identified than OG‐IEF fractionation. Distributions of peptide pIs and hydropathy did not reveal any appreciable bias in either technique. Resolution, defined here as the ability to limit a specific peptide to one particular fraction, was significantly better for Hp‐RP. This leads to a more uniform distribution of total and unique peptides for Hp‐RP across all fractions collected. These results suggest that fractionation by Hp‐RP over OG‐IEF is the better choice for typical complex proteome analysis.  相似文献   

19.
Wang W  Wu X  Xiong E  Tai F 《Proteomics》2012,12(7):938-943
The presence of high-abundance proteins in complex protein mixtures often masks low-abundance proteins and causes loss of resolution of 2DE. Protein fractionation steps conducted prior to 2DE can enhance the detection of low-abundance proteins and improve the resolution of 2DE. Here, we report a method to prefractionate soluble protein extracts based on protein thermal denaturation. Soluble proteins were extracted from maize embryos and leaves and Escherichia coli cells. Through heating at 95°C for 5 min, soluble protein extracts were prefractionated as heat stable protein fraction (the supernatant) and heat labile protein fraction (the precipitate). Our results showed that heat prefractionation enhanced the separation of proteins in both fractions by 2DE, thereby increasing the chance of detecting low-abundance proteins, many of which were nonvisible in unfractionated extract. In maize embryo, 330 spots were detected in soluble protein extract, while 577 spots were detected after prefractionation. Furthermore, this prefractionation method facilitated the enrichment, detection, and identification of de novo synthesized stress proteins. Because of its simplicity, the one-step heat prefractionation minimizes protein loss. Finally, heat prefractionation requires no expensive special hardware or reagents, and provides an alternative prefractionation for increasing the resolving power of 2DE.  相似文献   

20.
A novel reversed-phase (RP-) HPLC gradient profile applicable to multidimensional separations of complex protein mixtures is reported. This gradient profile elutes small numbers of proteins from the RP-HPLC column in discrete intervals while minimizing the amount of band broadening between elution intervals and maintaining constant flow through the HPLC column. Eluting the proteins in discrete intervals eases the instrumental requirements necessary for performing multidimensional separations and can be used to aid in the collection of well-defined fractions. The saw-tooth gradient was applied to the successful isolation of albumin from less abundant proteins in whole human serum and provides adequate separation of proteins in a low-molecular weight (LMW) fraction of human serum with resolution comparable to that achieved using a typical linear gradient profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号