首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure of isolation of pigeon breast muscle NAD-kinase resulting in a 100--130-fold purification of the enzyme with a total yield of 30--35% is described. The enzyme is electrophoretically homogenous; its molecular weight as determined by SDS-electrophoresis is 45 000. The partially purified preparation contains multiple enzymic forms with molecular weights varying from 45 000 to 270 000, which represent an equilibrious system of structurally different oligomers. At the last purification step, i. e. ion-exchange chromatography, the enzyme loses its ability for oligomerization. Possible causes of disappearance of the enzyme multiple forms during purification are discussed.  相似文献   

2.
An electrophoretically homogeneous preparation of a NAD-kinase activator from rabbit liver was obtained and its physico-chemical properties were investigated. The molecular mass of the monomer and oligomer, pI, number of SH-groups per enzyme subunit and some other factors were determined. The similarity of activator properties to those of glutamate dehydrogenase and the revealed glutamate dehydrogenase activity of the NAD-kinase activator permitted to identify the latter as glutamate dehydrogenase. It was demonstrated that the enzyme activates NAD-kinase 2-4 times already at the glutamate dehydrogenase: NAD-kinase ratio of 2:1. The effect of glutamate dehydrogenase on the enzyme consists in an increase of Vmax; the KmNAD value for the NAD-kinase reaction remains thereby unchanged. The physiological role of the interaction between the two enzymes is discussed.  相似文献   

3.
The specific activity and molecular forms of NAD-kinase during ontogenesis of Neurospora crassa were investigated. The specific activity of the enzyme increased drastically at critical stages of fungal development, i.e. during conidia germination and during transition from the logarithmic to stationary growth stage, reaching 85 nmole NADP/hr/mg protein. By polyacrylamide gel electrophoresis four forms of NAD-kinase were revealed that had the following molecular masses: I-338,000, II-306,000, III-229,000, and IV-203,000. The vegetative mycelium contained predominantly form III, and conidia showed a high content of high-molecular-weight forms I and II.  相似文献   

4.
Zymographic analysis of the supernates from confluent cultures of a rat prostate adenocarcinoma cell line, PA-III, revealed the existence of two molecular forms of specific plasminogen activators, one of molecular weight of approximately 80 000 and another of approximate molecular weight of 45 000, in sodium dodecyl sulfate. The low molecular weight form has been purified 364-fold in 66% yield from the culture medium by a combination of gel filtration on Sephacryl S-200 and affinity chromatography on Sepharose 4B-benzamidine. The purified material possessed a specific activity of 192 000 urokinase CTA units mg-1. This enzyme displayed activity toward human Glu1-plasminogen, characterized by a Km of 1.7 +/- 0.2 microM and a Vmax of 0.53 +/- 0.1 pmol of plasmin min-1 unit-1. A synthetic chromogenic substrate, H-D-Ile-Pro-Arg-p-nitroanilide (S-2288), was found for the activator. The enzyme possessed a Km of 0.33 mM and a kcat of 55 s-1 for S-2288. The activator was found to be a serine protease, inhibited by diisopropyl fluorophosphate (iPr2PF). At a concentration of 1 mM iPr2PF, and 30 nM enzyme, the half-time of this inhibition was 3.8 min. The 45 000 molecular weight enzyme was found to be inhibited by rabbit antibodies to human urokinase, thus characterizing the activator as a member of the urokinase class. The 80 000 molecular weight enzyme was not neutralized by anti-human urokinase but was neutralized by rabbit anti-human melanoma activator, likely allowing it to be classified as the tissue activator type.  相似文献   

5.
PROPERTIES OF RAT BRAIN NAD-KINASE   总被引:1,自引:1,他引:0  
Abstract— NAD-kinase was purified from rat brain acetone powder according to the method of W ang and K aplan (1954). The acetate buffer supernatant showed only very low specific activity but was largely free of the factors that interfere with the enzyme assay. The Michaelis constants for both substrates were determined, the values were 0·5 m m for NAD and 4·0 m m for ATP. The optimal pH was 7·4 in tris-HCl buffer and the highest NAD-kinase activity was observed in the hyaloplasm fraction. NADH2 inhibited the enzyme whereas NADPH2 did not. Finally, the reversible inhibition of SH-binding compounds is described and the observed properties of rat brain NAD-kinase compared with the properties of NADP synthesizing enzymes from pigeon liver and rat liver.  相似文献   

6.
Spontaneous fluctuations in the time of the activity of the 280-300-fold purified NAD-kinase preparation from rabbit skeletal muscle following its dilution are described. Defrosted but undiluted enzyme preparation failed to exhibit any fluctuations in its activity.  相似文献   

7.
Three forms of brain acetylcholinesterase were purified from bovine caudate-nucleus tissue and determined by calibrated gel filtration to have mol.wts. of approx. 120 000 (C), 230 000 (B) and 330 000 (A). [3H]Di-isopropyl phosphorofluoridate (isopropyl moiety labelled) was purified from commercial preparations and its concentration estimated by an enzyme-titration procedure. Brain acetylcholinesterase preparations and enzyme from eel electric tissue were allowed to react with [3H]di-isopropyl phosphorofluridate in phosphate buffer until enzyme activity was inhibited by 98%. Excess of [3H]di-isopropyl phosphorofluoridate that had not reacted was separated from the labelled enzyme protein by gel filtration, or by vacuum filtration or by extensive dialysis. The specificity of active-site labelling was confirmed by use of the enzyme reactivator, pyridine 2-aldoxime. The forms of brain acetylcholinesterase were calculted to contain approximately two (C) four (B) and six (A) active sites per molecule respectively. Acetylcholinesterase (mol.wt. 250 000) from electric-eel tissue was estimated to contain two active sites per molecule. Gradient-gel electrophoresis was used to confirm the estimation of molecular weights of brain acetylcholinesterase forms made by gel filtration. Under the conditions of electrophoresis acetylcholinesterase form A was stable, but form B was converted into a species of approx. 120 000 mol. wt. Similarly, form C of the brain enzyme was converted into a 60 000-mol.wt. form during electrophoresis. These results are in general accord with the suggestion that the multiple forms of brain acetylcholinesterase may be related to the aggregation of a single low-molecular-weight species.  相似文献   

8.
A simple major protease, secreted into the medium during growth of Tetrahymena pyriformis strain W, has been purified about 4000-fold by (NH4)2SO4 precipitation, ion-exchange chromatography, gel filtration and affinity chromatography on organomercurial-Sepharose. The purified protease was homogeneous as judged by polyacrylamide gel electrophoresis and was a monomeric protein with a molecular weight of 22 000-23 000. Amino acid analysis showed that the enzyme was rich in acidic amino acids. In addition, the purified Tetrahymena protease consists of multiple forms with isoelectric point between pH 5.3 and 6.3. Optimum activity of the purified enzyme was in the pH range 6.5-8.0 with alpha-N-benzoyl-DL-arginine-p-nitroanilide and with azocasein, while it was in the lower pH range (4.5-5.5) for denatured hemoglobins. The purified enzyme was inhibited by compounds effective against thiol proteases. Leupeptin and chymostatin were potent inhibitors but pepstatin was without effect. This enzyme is similar to cathepsin B and appears to be a major proteolytic enzyme in Tetrahymena.  相似文献   

9.
A third metalloendopeptidase activity, gelatinase, has been completely separated from the collagenase and proteoglycanase activities of rabbit bone culture medium. Although the proteinase could not be purified to homogeneity in large amounts, it was possible to obtain accurate molecular weight values and activity after electrophoresis on non-reduced SDS/polyacrylamide gels. The latent form had an Mr of 65 000 which could be activated with 4-aminophenylmercuric acetate, APMA, to a form of Mr 61 000; under reducing conditions the latent and active forms had Mr of 72 000 and 65 000, respectively. Trypsin was a very poor activator of the latent enzyme. Gelatinase degraded gelatins derived from the interstitial collagens and it also had low activity on native types IV and V collagen and on insoluble elastin. Gelatinase acted synergistically with collagenase in degrading insoluble interstitial collagen. The specific mammalian tissue inhibitor of metalloproteinases inhibited gelatinase by forming a stable inactive complex. Comparison of the properties of gelatinase with those of collagenase and proteoglycanase suggest that the three proteinases form a family which together are capable of degrading all the major macromolecules of connective tissue matrices.  相似文献   

10.
R L Miller  H H Varner 《Biochemistry》1979,18(26):5828-5832
Lysyl hydroxylase from fetal porcine skin is shown to bind in a highly specific manner to aminoethyl-Sepharose 4B. When coupled to ammonium sulfate fractionation and DEAE-cellulose chromatography, chromatography of lysyl hydroxylase preparations on aminoethyl-Sepharose 4B has yielded a highly purified (greater than 95%) preparation of lysyl hydroxylase. The enzyme consists of two subunits with molecular weights of 70 000 and 115 000. The overall recovery of activity was 2.5%, yielding approximately to 3.5 mg of purified enzyme from 900 g of fetal porcine skin. The enzyme is more active at 30 degrees C than at 37 degrees C and has a pH optimum near 8.0. Both catalase and bovine serum albumin are required by the enzyme for maximum activity. The sulfhydryl reagents p-(chloromercuri)-benzoate, N-ethylmaleimide, and iodoacetamide are potent inhibitors of the enzyme, whereas dithiothreitol appears to be an activator.  相似文献   

11.
The palmitoyl-CoA hydrolase activity, which in human blood platelets is mainly localized in the cytosol fraction [Berge, Vollset & Farstad (1980) Scand. J. Clin. Lab. Invest. 40, 271--279], was found to be extremely labile. Inclusion of glycerol or palmitoyl-CoA stabilized the activity during preparation. Gel-filtration studies revealed multiple forms of the enzyme with molecular weights corresponding to about 70 000, 40 000 and 24 000. The relative recovery of the mol.wt.-70 000 form was increased by the presence of 20% (v/v) glycerol or 10 microM-palmitoyl-CoA. The three enzyme forms are probably unrelated, since they were not interconvertible. The three different species of palmitoyl-CoA hydrolase were purified by DEAE-cellulose and hydroxyapatite chromatography, isoelectric focusing and high-pressure liquid chromatography (h.p.l.c.) to apparent homogeneity. The three enzymes had isoelectric points (pI) of 7.0, 6.1 and 4.9. The corresponding molecular weights were 27 000--33 000, 66 000--72 000 and 45 000--49 000, calculated from h.p.l.c. and Ultrogel AcA-44 chromatography. The apparently purified enzymes were unstable, as most of the activity was lost during purification. The enzyme with an apparent molecular weight of 45 000--49 000 was split into fractions with molecular weights of less than 10 000 by re-chromatography on h.p.l.c. concomitantly with a loss of activity. The stimulation of the activity by the presence of serum albumin seems to depend on the availability of palmitoyl-CoA, as has been reported for other palmitoyl-CoA hydrolases. [Berge & Farstad (1979) Eur. J. Biochem. 96, 393--401].  相似文献   

12.
Human placental sphingomyelinase activity was eluted as a single symmetrical peak from Sephadex G-200 with a molecular weight of 290000; however, the enzyme behaved heterogeneously on ion exchange chromatography. A specific species of sphingomyelinase was purified approx. 10 000-fold to a constant specific activity of 274 000 nanomol of sphingomyelin hydrolyzed per mg protein per h. When the purified enzyme was examined on sodium dodecyl sulfate disc gel electrophoresis, two distinct protein bands in approximately equal proportions with molecular weights of 36 800 and 28 300 were found. The specificity of the enzyme is directed towards both the hydrophilic phosphocholine and the hydrophobic ceramide moieties of sphingomyelin. Possible interrelationships between the heterogenous forms of placental sphingomyelinases are discussed.  相似文献   

13.
Human liver acidic alpha-D-mannosidase was purified 1400-fold by a relatively short procedure incorporating chromatography on concanavalin A-Sepharose and affinity chromatography on Sepharose 4B-epsilon-aminohexanoylmannosylamine. In contrast with the acidic enzymic activity the neutral alpha-mannosidase did not bind to the concanavalin A-Sepharose so the two types of alpha-mannosidase could be separated at an early stage in the purification. The only significant glycosidase contaminant after affinity chromatography on the mannosylamine ligand was alpha-L-fucosidase, which was selectively removed by affinity chromatography on the corresponding fucosylamine ligand. The final preparation was free of other glycosidase activities. The pI of the purified enzyme was increased from 6.0 to 6.45 on treatment with neuraminidase. Although the pI and the mol.wt. (220 000) suggested that alpha-mannosidase A had been purified selectively, ion-exchange chromatography on DEAE-cellulose indicated that the preparation consisted predominantly of alpha-mannosidase B. This discrepancy is discussed in relation to the basis of the multiple forms of human alpha-mannosidase. The purified enzyme completely removed the alpha-linked non-reducing terminal mannose from a trisaccharide isolated from the urine of a patient with mannosidosis. A comparison of the activity of the pure enzyme towards the natural substrate and synthetic substrates suggests that the same enzymic activity is responsible for hydrolysing all the substrates. These results validate the use of synthetic substrates for determining the mannosidosis genotype. They are also further evidence that mannosidosis is a lysosomal storage disease resulting from a deficiency of acidic alpha-mannosidase.  相似文献   

14.
Plasminogen activator from conditioned medium of human embryonal lung fibroblasts was purified by phosphocellulose P11 chromatography, followed by p-aminobenzamidine-agarose chromatography. Two forms of plasminogen activators were separated by chromatography on the heparin-sepharose. The high molecular weight form (53 kDa) with specific activity 130 000 IU/mg consists of two polypeptide chains (31 kDa and 20 kDa) and exhibits strong affinity for fibrin-celite, lysine-sepharose and heparin-sepharose. The low molecular weight form (32 kDa, 190 000 IU/mg) also binds to these sorbents, but more weakly, and its properties are very similar to those of low molecular weight urokinase. Activity of both forms of plasminogen activators are inhibited by monoclonal antibodies against urokinase. A number of enzymological chromatographic and immunological properties indicates, that the plasminogen activator from lung fibroblasts is of urokinase type.  相似文献   

15.
The human 66 000 mol. wt. plasminogen activator (HPA66; tissue-type plasminogen activator) has been purified from melanoma cells by a one-step affinity method with a monoclonal antibody. HPA66 purified in this way consists mainly of a one-polypeptide chain form with small amounts (15%) of a form containing two polypeptide chains held together by one or more disulphide bridges. The one-chain form was converted to the two-chain form by catalytic amounts of plasmin. During the conversion, the enzyme activity of HPA66, as measured by an [125I]plasminogen conversion assay and with a chromogenic substrate, increased linearly with the percentage of the two-chain form. A linear regression analysis showed that all enzyme activity could be accounted for by the two-chain form, while the one-chain form had no measurable enzyme activity (detection limit approximately 5% of the activity of the two-chain form). Together with previous findings of inactive proenzymes to murine and human approximately 50 000 mol. wt. (urokinase-type) plasminogen activators, these findings indicate that plasminogen activators are generally formed from inactive one-chain proenzymes which are converted to active two-chain enzymes by limited proteolysis, thus demonstrating a third step in a cascade reaction leading to extracellular proteolysis.  相似文献   

16.
Abstract— The activity of cyclic AMP phosphodiesterase of rat cerebral homogenates increased several-fold between 1 and 60 days of age. Enzyme activity in the cerebellum, on the other hand, did not increase during this period. A kinetic analysis of the phosphodiesterase activity revealed evidence for multiple forms of the enzyme and indicated that the postnatal increase in phosphodiesterase activity of rat cerebrum was due almost exclusively to the high Km enzyme. In cerebellum, the ratio of the high and low Km enzyme remained fairly constant during ontogenetic development. Physical separation of the phosphodiesterases contained in 100,000 g soluble supernatant fractions of sonicated brain homogenates by polyacrylamide disc gel electrophoresis confirmed the presence of multiple enzyme forms. In adult rats we found six distinct peaks of phosphodiesterase activity (designated I to VI according to the order in which they were eluted from the column) in cerebellum and 4 forms of the enzyme (Peaks I through IV) in cerebrum. Brains of newborn rats had a different pattern and ratio of phosphodiesterase activities. For example, Peak I phosphodiesterase was undetectable in cerebrum or cerebellum of newborn rats. Moreover, in the cerebellum of newborn rats Peak II was the dominant peak whereas in the cerebellum of adult rats Peak III was the largest peak. A comparison of the multiple forms of phosphodiesterase from the cerebrum of newborn and adult animals suggested that the postnatal increase in phosphodiesterase activity previously seen in crude homogenates was due largely to an increase in a high K, Peak II phosphodiesterase. The ratios of activities of the other peaks and their sensitivities to an activator of phosphodiesterase were similar in newborn and adult rats. An endogenous heat-stable activator of phosphodiesterase was found in cerebrum, cerebellum and brain stem. In newborn rats, the cerebellum contained several-fold less activity of this activator than did cerebrum or brain stem. However, the activity of this activator increased with age in the cerebellum and would appear to have decreased postnatally in cerebrum and brain stem. These results suggest that some multiple forms of phosphodiesterase can develop independently and that changes in activities of these phosphodiesterases may occur by increases in the quantity of enzyme or by changes in the quantity of an endogenous activator of phosphodiesterase.  相似文献   

17.
The plasminogen activator secreted by calcitonin-treated pig kidney cells was purified, characterized and compared with human urinary urokinase. The purification procedure was based on the following steps: sulphopropyl-Sephadex chromatography, p-aminobenzamidine-Sepharose chromatography, preparative sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and isoelectrofocusing. The purified enzyme was obtained from the conditioned medium with a yield of 13% and a purification factor of 390-fold. Analysis by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis under non-reducing conditions showed one closely spaced doublet with an Mr of 50 000; in the presence of reducing agents, two additional bands of Mr 30 000 and 20 000 appeared. The purified enzyme resembles the 53 000-Mr components of human urinary urokinase in amino acid composition and two-dimensional tryptic peptide maps and in its catalytic properties, and the two enzymes cross-react immunologically with rabbit antibodies raised against either. The enzyme appears to be different from tissue plasminogen activator secreted by HeLa cells.  相似文献   

18.
An isoelectric focusing technique was used to isolate multiple forms of cyclic nucleotide phosphodiesterase from a 105 000 times g soluble supernatant fraction of sonicated rat cerebrum. These separated peaks of activity had iso-electric points of 5.1, 5.6, 6.0, 6.6, 8.0, and 9.0. The activities were not stimulated by an endogenous activator of the enzyme but were inhibited by EGTA treatment. However, activator-sensitive forms of the enzyme could be separated from brain if the preparation of rat cerebrum was dialyzed against an EGTA containing buffer prior to electrofocusing. The procedure was also used to isolate a column fraction that stimulated maximum velocities of cyclic AMP and cyclic GMP hydrolysis. This fraction was itself devoid of phosphodiesterase activity and had an isoelectric point of 4.7.  相似文献   

19.
1. An activator catalysing specifically conversion of latent forms of human leucocyte collagenase and gelatin-specific protease into the active forms, has been isolated from rheumatoid synovial fluid and purified 55-fold with a yield of 16%. 2. Molecular weight of the activator is about 35 000. 3. The activator is thermolabile, and is irreversibly inactivated at pH below 5.5 or in the presence of low concentrations of trypsin or papain; it is resistant to the action of lysozyme, hyaluronidase, diisopropylfluorophosphate, soybean trypsin inhibitor, p-chloromercuribenzoate, iodoacetamide and dithiothreitol. 4. The activator did not show any activity towards collagen, gelatin, casein, haemoglobin, histones, elastin or p-phenylazobenzyloxycarbonyl-peptide.  相似文献   

20.
A new aspartic proteinase was isolated from porcine intestine mucosa by affinity chromatography on pepstatin-Sepharose 4B and gel filtration on Sephadex G-100. The enzyme was purified 1600-fold and appeared homogeneous upon polyacrylamide gel electrophoresis. The proteinase has a Mr 60 000 +/- 4000 Da. During sodium dodecyl sulfate polyacrylamide gel electrophoresis the enzyme produced a single protein band (Mr 30 000 +/- 3000 Da). Isoelectric focusing revealed that the enzyme has several multiple forms (pI 6.9, 7.5, 8,0). The enzyme is a glycoprotein containing 5.9% of carbohydrates; the mannose to galactose ratio is 1:3. The amino acid composition of the enzyme was studied. The proteinase splits an oxidized insulin B-chain and synthetic substrates. The pH optimum is 3.2. The enzyme is immunologically identical to porcine spleen cathepsin D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号