首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the presented study was determined the effectiveness of action the gamma radiation on water suspension B. anthracis spores. The irradiation was performed using a Cobalt 60 (Co 60) source, by using single and fractionary irradiation doses. In the investigations was used B. anthracis stain "Sterne" 34F2. The obtained results show, that gamma radiation effectively inactivates B. anthracis spores. On the efficiency of sterilization process influence the irradiation's method and the number of spores in 1 ml suspension. In the suspension 1.5 x 10(9) spore in 1 ml, sporicidal doses gamma radiation amount to 25.0 kGy (single dose) or 41.5 kGy (fractionary dose). The volume suspension about definite inoculum of spores, subjected working the gamma rays has not influence on sporicidal effectiveness of radiation sterilization.  相似文献   

2.
AIMS: The hygienic risk associated with microbial soil on surfaces of milk processing lines was evaluated, based on experimental results. METHODS AND RESULTS: From a panel of Bacillus spores isolated from milk products, B. cereus CUETM 98/4, was found to be highly resistant to heat (D100=3.32 min in whole milk) and oxidant disinfectant (70% lethality of adherent spores with Ikalin 2%). From adhesion trials, up to 1.1 x 10(7) spores cm(-2) were found to be adherent to solid surfaces when suspended in saline or in custard (10(5) and 10(7) cfu ml(-1)), and over 10% of these adherent spores would resist the cleaning procedure. CONCLUSION: A highly contaminated milk (10(5) cfu ml(-1)) subjected to a current sterilization process (8 log reduction) led to a residual contamination of less than 1 cfu in the representative processing line after a complete production run. SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlighted the fact that under appropriate processing conditions (efficient sterilization and cleaning procedures), even disinfection would be sufficient to eliminate any contamination risk. Conversely, the disinfection procedure becomes an essential step under inappropriate processing conditions.  相似文献   

3.
Viability studies were conducted on microbial spores subjected to ultrahigh vacuum (UHV) in the 10(-9) to 10(-10) torr range. After 5 to 7 days in vacuum, they were exposed to ultraviolet (UV) or to gamma radiation either while still under vacuum or in the presence of dried air. Among the four test organisms subjected to UHV and ultraviolet radiation, Aspergillus niger was the most resistant; Bacillus megaterium, B. subtilis var. niger, and B. stearothermophilus were about equally less resistant. All four spores were more sensitive to ultraviolet radiation when UHV-dried than when desiccant-dried. Of the four test organisms subjected to UHV and gamma radiation, B. megaterium proved to be the most resistant; A. niger was the least resistant; and the remaining two organisms were of intermediate resistivity. All four organisms were less radiation resistant when UHV-dried than when irradiated in their normally hydrated state, and all showed an increased radiosensitivity after vacuum drying when oxygen was present. In addition, spores of B. subtilis var. niger and A. niger were less radiosensitive when UHV-dried and irradiated in vacuum than when "wet" and irradiated in air, whereas the reverse relationship was observed for the remaining two organisms. Based on the fact that microbial contaminants can be readily shielded from UV light by soils, metal particles, etc., and considering that the levels of ionizing radiations reported to be present in interstellar space are generally lower than those used in these experiments, the decrease in radioresistivity imparted by UHV drying is not of a sufficient magnitude to sterilize dependably portions of a spacecraft while on a mission.  相似文献   

4.
SUMMARY: Sodium benzylpenicillin, contaminated with Bacillus subtilis spores by freeze-drying a suspension of spores in an aqueous penicillin solution ( c . 50% w/v), was exposed to gamma radiation and a 70-tube dilution method was used to determine the surviving spores after various doses. The correlation coefficient between log10 percentage survival and dose was −0.9523. The regression of the former on the latter was calculated and the decimal reduction dose found to be 20.2 × 104 rads. The regression and the decimal reduction dose were similar to those obtained when suspensions of spores in distilled water were irradiated.  相似文献   

5.
AIMS: To study biomineralization of Monocrotophos (MCP) and identify the metabolites formed during biodegradation. METHODS AND RESULTS: Two cultures, namely Arthrobacter atrocyaneus MCM B-425 and Bacillus megaterium MCM B-423, were isolated by enrichment and adaptation culture technique from soil exposed to MCP. The isolates were able to degrade MCP to the extent of 93% and 83%, respectively, from synthetic medium containing MCP at the concentration of 1000 mg x l(-1), within 8 d, under shake culture condition at 30 degrees C. The cultures degraded MCP to carbon dioxide, ammonia and phosphates through formation of one unknown compound--Metabolite I, valeric or acetic acid and methylamine, as intermediate metabolites. The enzymes phosphatase and esterase, reported to be involved in biodegradation of organophosphorus compounds, were detected in both the organisms. CONCLUSIONS:Arthrobacter atrocyaneus MCM B-425 and B. megaterium MCM B-423 isolated from soil exposed to MCP were able to mineralize MCP to carbon dioxide, ammonia and phosphates. SIGNIFICANCE AND IMPACT OF THE STUDY: Pathway for biodegradation of MCP in plants and animals has been reported. A microbial metabolic pathway of degradation involving phosphatase and esterase enzymes has been proposed. The microbial cultures could be used for bioremediation of wastewater or soil contaminated with Monocrotophos.  相似文献   

6.
AIMS: The effect of spore density on the germination (time-to-germination, percent germination) of Bacillus megaterium spores on tryptic soy agar was determined using direct microscopic observation. METHODS AND RESULTS: Inoculum size varied from approximately 10(3) to 10(8) cfu ml(-1) in a medium where pH=7 and the sodium chloride concentration was 0.5% w/v. Inoculum size was measured by global inoculum size (the concentration of spores on a microscope slide) and local inoculum size (the number of spores observed in a given microscope field of observation). Both global and local inoculum sizes had a significant effect on time-to-germination (TTG), but only the global inoculum size influenced the percentage germination of the observed spores. CONCLUSIONS: These results show that higher concentrations of Bacillus megaterium spores encourage more rapid germination and more spores to germinate, indicating that low spore populations do not behave similarly to high spore populations. SIGNIFICANCE AND IMPACT OF THE STUDY: A likely explanation for the inoculum size-dependency of germination would be chemical signalling or quorum sensing between Bacillus spores.  相似文献   

7.
The paper handles the problem of the inactivation of the toxinogenic strain Aspergillus flavus following the application of gamma radiation to wheat. The amount of the applied dose and of the absorbed dose of ionizing radiation upon the inhibition of mycelium growth and toxin production were defined. The aflatoxin B1 was determined by extracting in chloroform and developed on Silufol R within the choroform; aceton system. The applied doses of gamma radiation (3-30 kGy) have show that the absorbed dose does not inhibit aflatoxin production. By combining the action of gamma radiation with humidity of the wheat (humidity 13-15%; 25% irradiation 6 kGy) an inactivation was reached. With the help of toxicologico-genetical tests (the Dominant Lethal Mutations Test, the Three Generations Test) the influence was traced of contaminated, irradiated substrates upon the health of experimental animals. It follows from the results obtained that in long-term feeding with contaminated wheat irradiated by gamma rays no positive mutagenic activity has been recorded. It allows to presume that wheat of humidity of 25% contaminated by a weakly toxigenic strain Aspergillus flavus irradiated by a dose of 6 kGy, and wheat of a humidity of 13-15%, contaminated by a strongly toxinogenic strain of Aspergillus flavus, irradiated by a dose of 6 kGy, are no genetic risk for white rats.  相似文献   

8.
The radiation sensitivity and the toxigenic potential of conidiospores of the fungus Aspergillus alutaceus var. alutaceus were determined after irradiation with 60Co gamma rays and high-energy electrons. Over the pH range of 3.6 to 8.8, the doses required for a 1 log10 reduction in viability based on the exponential portion of the survival curve ranged from 0.21 to 0.22 kGy, with extrapolation numbers (extrapolation of the exponential portion of the survival curve to zero dose) of 1.01 to 1.33, for electron irradiation, and from 0.24 to 0.27 kGy, with extrapolation numbers of 2.26 to 5.13, for gamma irradiation. Nonsterile barley that was inoculated with conidia of the fungus and then irradiated with either electrons or gamma rays and incubated for prolonged periods at 28 degrees C and at a moisture content of 25% produced less ochratoxin A with increasing doses of radiation. Inoculation of barley following irradiation resulted in enhanced ochratoxin levels compared with unirradiated controls. In these experiments, inoculation with 10(2) spores per g produced greater radiation-induced enhancement than inoculation with 10(5) spores per g. There was no radiation-induced enhancement when the barley was surface sterilized by chemical means prior to irradiation. These results are consistent with the hypothesis that a reduction in the competing microbial flora by irradiation is responsible for the enhanced mycotoxin production observed when nonsterile barley is inoculated with the toxigenic fungus A. alutaceus var. alutaceus after irradiation.  相似文献   

9.
The radiation sensitivity and the toxigenic potential of conidiospores of the fungus Aspergillus alutaceus var. alutaceus were determined after irradiation with 60Co gamma rays and high-energy electrons. Over the pH range of 3.6 to 8.8, the doses required for a 1 log10 reduction in viability based on the exponential portion of the survival curve ranged from 0.21 to 0.22 kGy, with extrapolation numbers (extrapolation of the exponential portion of the survival curve to zero dose) of 1.01 to 1.33, for electron irradiation, and from 0.24 to 0.27 kGy, with extrapolation numbers of 2.26 to 5.13, for gamma irradiation. Nonsterile barley that was inoculated with conidia of the fungus and then irradiated with either electrons or gamma rays and incubated for prolonged periods at 28 degrees C and at a moisture content of 25% produced less ochratoxin A with increasing doses of radiation. Inoculation of barley following irradiation resulted in enhanced ochratoxin levels compared with unirradiated controls. In these experiments, inoculation with 10(2) spores per g produced greater radiation-induced enhancement than inoculation with 10(5) spores per g. There was no radiation-induced enhancement when the barley was surface sterilized by chemical means prior to irradiation. These results are consistent with the hypothesis that a reduction in the competing microbial flora by irradiation is responsible for the enhanced mycotoxin production observed when nonsterile barley is inoculated with the toxigenic fungus A. alutaceus var. alutaceus after irradiation.  相似文献   

10.
AIM: To investigate Listeria monocytogenes contamination and behaviour in naturally contaminated French cold-smoked salmon (CSS). METHOD AND RESULTS: Between 2001 and 2004, L. monocytogenes was detected in 104 of 1010 CSS packs, produced by nine French plants, with different prevalence (from 0% to 41%). The initial contamination, measured with a sensitive filtration method, was low (92% of contaminated products below 1 CFU g(-1)) and growth was limited. CONCLUSION: Growth was consistent with results of a predictive model including microbial competition. SIGNIFICANCE AND IMPACT OF THE STUDY: To be included in a quantitative risk assessment.  相似文献   

11.
Decontamination of suspected packages, such as sealed envelopes, liquids and tools that are likely contaminated with biological agents is of great importance. In this study, we aimed to determine the gamma radiation dose required for the decontamination of paper, fabric and liquid materials without causing any damage to the structure of these materials. Each study group included 11 pieces of paper, fabric and sterile saline contaminated with 0.8 × 105 virulent Bacillus anthracis (B. anthracis) spores. These specimens were exposed to doses of 5.49, 11.58, 17.21, 21.75, 27 and 33.1 kilogray (kGy) of gamma radiation from a cobalt-60 source. After irradiation of all the samples, a viability assessment of the B. anthracis spores was performed. It was found that full decontamination was achieved with 11.58 kGy on the paper samples and 17.21 kGy on the fabric and liquid samples. It was concluded that a dose of 20 kGy of gamma radiation may be recommended for the inactivation of B. anthracis for some surfaces when especially sensitive and valuable materials cannot be wet decontaminated were exposed. In addition, serologic and molecular assays of the suspected packets can be performed for forensic purposes without damaging existing evidence in a bioterror incident.  相似文献   

12.
AIMS: To compare the relative sensitivity of Bacillus anthracis and spores of other Bacillus spp. deposited on different solid surfaces to inactivation by liquid chemical disinfecting agents. METHODS AND RESULTS: We prepared under similar conditions spores from five different virulent and three attenuated strains of B. anthracis, as well as spores of Bacillus subtilis, Bacillus atrophaeus (previously known as Bacillus globigii), Bacillus cereus, Bacillus thuringiensis and Bacillus megaterium. As spore-surface interactions may bias inactivation experiments, we evaluated the relative binding of different spores to carrier materials. The survival of spores deposited on glass, metallic or polymeric surfaces were quantitatively measured by ASTM standard method E-2414-05 which recovers spores from surfaces by increasing stringency. The number of spores inactivated by each decontaminant was similar and generally within 1 log among the 12 different Bacillus strains tested. This similarity among Bacillus strains and species was observed through a range of sporicidal efficacy on spores deposited on painted metal, polymeric rubber or glass. CONCLUSIONS: The data obtained indicate that the sensitivity of common simulants (B. atrophaeus and B. subtilis), as well as spores of B. cereus, B. thuringiensis, and B. megaterium, to inactivation by products that contain either: peroxide, chlorine or oxidants is similar to that shown by spores from all eight B. anthracis strains studied. SIGNIFICANCE AND IMPACT OF THE STUDY: The comparative results of the present study suggest that decontamination and sterilization data obtained with simulants can be safely extrapolated to virulent spores of B. anthracis. Thus, valid conclusions on sporicidal efficacy could be drawn from safer and less costly experiments employing non-pathogenic spore simulants.  相似文献   

13.
A sample of (1) children whose parents had been proximally exposed (i.e., less than 2,000 m from the hypocenter) at the time of the atomic bombings of Hiroshima and Nagasaki and (2) a suitable comparison group have been examined for the occurrence of mutations altering the electrophoretic mobility or activity of a series of 30 proteins. The examination of the equivalent of 667,404 locus products in the children of proximally exposed persons yielded three mutations altering electrophoretic mobility; the corresponding figure for the comparison group was three mutations in 466,881 tests. The examination of a subset of 60,529 locus products for loss of enzyme activity in the children of proximally exposed persons yielded one mutation; no mutations were encountered in 61,741 determinations on the children of the comparison group. When these two series are compared, the mutation rate observed in the children of proximally exposed persons is thus 0.60 x 10(-5)/locus/generation, with 95% confidence intervals between 0.2 and 1.5 x 10(-5), and that in the comparison children is 0.64 x 10(-5)/locus/generation, with 95% intervals between 0.1 and 1.9 x 10(-5). The average conjoint gonad doses for the proximally exposed parents are estimated to be 0.437 Gy of gamma radiation and 0.002 Gy of neutron radiation. If a relative biological effectiveness of 20 is assigned to the neutron radiation, the combined total gonad dose for the parents becomes 0.477 Sv. (Organ absorbed doses are expressed in gray [1 Gy = 100 rad]; where dose is a mixture of gamma and neutron radiation, it is necessary because of the differing relative biological effectiveness of gamma and neutron radiation to express the combined gamma-neutron gonad exposures in sieverts [1 Sv = 100 rem]).  相似文献   

14.
Experiments were carried out to study the effect of different doses of gamma irradiation (0, 5, 10, 15 and 20 kilo gray; kGy) on some nutritive components and chemical aspects pertaining to quality of fish meal and meat-bone meal. The radiation doses required to reduce the total microbial load and Salmonella sp. one log cycle (D(10)) in fish meal and meat-bone meal were determined. Results indicated that gamma irradiation of fish meal and meat-bone meal with 5-20 kGy doses had no effects on the total acidity values but increased the values of lipid oxidation and total volatile basic nitrogen. D(10) of total microbial load and Salmonella sp. were 833 and 313 Gy for fish meal and 526 Gy and 278 Gy for meat-bone meal, respectively. It can be concluded that radiation processing could be employed in the recycling of fish and meat-bone meals by using them as feedstuffs in poultry diets with no fear of losing their nutritive components.  相似文献   

15.
A model describing the dependence of the proportion of items contaminated ( P ) in a population of items on radiation dose ( D ) has been developed. The model was evaluated for a range of doses assuming a Poissonian distribution of micro-organisms on items prior to and during irradiation and radiation inactivation according to 'multiple-hit' kinetics; curves relating P and D were constructed. The influence on curve shape of changing the initial average number of micro-organisms on items and of varying parameters of microbial sensitivity to radiation was assessed. Consideration was given to the value of using sub-process radiation doses in microbiological quality control testing.  相似文献   

16.
AIMS: To determine the irradiation dose necessary to reduce the populations of Bacillus anthracis spores in a dry medium in postal envelopes. METHODS AND RESULTS: Bacillus anthracis Sterne 34F2 spores were dispersed in non-fat dry milk and then placed into standard business postal envelopes. The spores were treated with a sequence of irradiation doses to determine the decimal reduction value (D10) in kiloGrays (kGy). The average D10 value was 3.35 +/- 0.02 kGy. CONCLUSIONS: An irradiation dose of 40.2 kGy would be required to result in a process equivalent to the thermal canning process (12 D10 reduction) to eliminate Clostridium botulinum spores. SIGNIFICANCE AND IMPACT OF THE STUDY: Irradiation is an effective means of reducing or eliminating B. anthracis spores in a dry medium in postal envelopes.  相似文献   

17.
BACKGROUND: Preoperative production of autologous fibrin sealant has become a routine procedure during the last years. As a certain percentage of blood products is contaminated with bacteria, contamination of plasma used for the production of fibrin sealant cannot be excluded. Especially in the orthopaedic setting, application of contaminated fibrin sealant can cause severe infections. MATERIALS AND METHODS: We contaminated plasma with Staphylococcus epidermidis, Corynebacterium striatum, Bacillus subtilis or Escherichia coli and produced fibrin sealant by cryoprecipitation and alcohol precipitation. Additionally, the products were gamma-irradiated at a dose of 30 Gy, frozen at -55 degrees C and filtered through a 0.2 microm filter after thawing. After each preparation step, samples were drawn and numbers of colony forming units were counted after incubation on agar plates. RESULTS: Cryoprecipitation, irradiation, freezing at -55 degrees C, and alcohol precipitation have only little impact on numbers of colony forming units. Filtration through a bacterial filter results in a sterile product. CONCLUSION: Bacteria in plasma as a starting material for production of fibrin sealant survive all routine steps of production, including gamma irradiation and freezing. Filtration of the product through a qualified bacterial filter is the only safe means to provide a sterile product.  相似文献   

18.
Microbial population responses to combined effects of chronic irradiation and other stressors (chemical contaminants, other sub-optimal conditions) are important for ecosystem functioning and bioremediation in radionuclide-contaminated areas. Quantitative mathematical modeling can improve our understanding of these phenomena. To identify general patterns of microbial responses to multiple stressors in radioactive environments, we analyzed three data sets on: (1) bacteria isolated from soil contaminated by nuclear waste at the Hanford site (USA); (2) fungi isolated from the Chernobyl nuclear-power plant (Ukraine) buildings after the accident; (3) yeast subjected to continuous γ-irradiation in the laboratory, where radiation dose rate and cell removal rate were independently varied. We applied generalized linear mixed-effects models to describe the first two data sets, whereas the third data set was amenable to mechanistic modeling using differential equations. Machine learning and information-theoretic approaches were used to select the best-supported formalism(s) among biologically-plausible alternatives. Our analysis suggests the following: (1) Both radionuclides and co-occurring chemical contaminants (e.g. NO2) are important for explaining microbial responses to radioactive contamination. (2) Radionuclides may produce non-monotonic dose responses: stimulation of microbial growth at low concentrations vs. inhibition at higher ones. (3) The extinction-defining critical radiation dose rate is dramatically lowered by additional stressors. (4) Reproduction suppression by radiation can be more important for determining the critical dose rate, than radiation-induced cell mortality. In conclusion, the modeling approaches used here on three diverse data sets provide insight into explaining and predicting multi-stressor effects on microbial communities: (1) the most severe effects (e.g. extinction) on microbial populations may occur when unfavorable environmental conditions (e.g. fluctuations of temperature and/or nutrient levels) coincide with radioactive contamination; (2) an organism’s radioresistance and bioremediation efficiency in rich laboratory media may be insufficient to carry out radionuclide bioremediation in the field—robustness against multiple stressors is needed.  相似文献   

19.
Contaminated sites from man-made activities such as old-fashioned tanneries are inhabited by virulent microorganisms that exhibit more resistance against extreme and toxic environmental conditions. We investigated the effect of different Gamma radiation doses on microbial community composition in the sediment of an old-fashioned tannery. Seven samples collected from the contaminated sites received different gamma radiation doses (I = 0.0, II = 5, III = 10, VI = 15, V = 20, VI = 25, and VII = 30 kGy) as an acute exposure. The shift in microbial community structure was assessed using the high throughput 454 pyrosequencing. Variations in diversity, richness, and the shift in operational taxonomic units (OTUs) were investigated using statistical analysis. Our results showed that the control sample (I) had the highest diversity, richness, and OTUs when compared with the irradiated samples. Species of Halocella, Parasporobacterium, and Anaerosporobacter had the highest relative abundance at the highest radiation dose of 30 kGy. Members of the Firmicutes also increased by 20% at the highest radiation dose when compared with the control sample (0.0 kGy). Representatives of Synergistetes decreased by 25% while Bacteroidetes retained a steady distribution across the range of gamma radiation intensities. This study provides information about potential “radioresistant” and/or “radiotolerant” microbial species that are adapted to elevated level of chemical toxicity such as Cr and Sr in tannery. These species can be of a high biotechnological and environmental importance.  相似文献   

20.
The irradiation of hospital linen contaminated with radioresistant microorganisms or hospital microflora with gamma radiation in a dose of 10 kGy ensures the reliable microbial decontamination of such linen. Cotton linen has been found capable of withstanding 15 irradiation cycles in a dose of 10 kGy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号