首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of a 24-h fast on serum lipids and lipoprotein profiles in commercial laying hens were investigated. Blood was analyzed at 34 and 46 weeks of age from Single Comb White Leghorn hens that had been either fed ad libitum or had been fasted for 24 h prior to collection. At 12 weeks, birds were divided into 16 biological isolation units, with 8 replicate units assigned to each treatment group. Four birds out of 10 in each unit were tagged for bleeding. Parameters evaluated included total serum cholesterol and triglycerides, mean diameters of very low density lipoproteins (VLDLs) for the 10th, 50th, and 90th percentiles of serum total VLDL, mean total population VLDL particle diameter (MPD), and percentage serum cholesterol recovered in VLDL, low density lipoprotein (LDL), and high density lipoprotein (HDL) fractions. Fasting led to decreases in total serum cholesterol and triglycerides, and a decrease in mean serum VLDL particle diameter in the 90th population percentile. At Week 34, percentage serum cholesterol recovered from LDL was increased, whereas percentage serum cholesterol recovered from HDL was decreased due to fasting. At Week 46, MPD and percentage serum cholesterol recovered from VLDL were decreased, whereas percentage serum cholesterol recovered from HDL was increased due to fasting. It was concluded that a 24-h fast decreased serum lipids (cholesterol and triglycerides) and the size of VLDL particles in the 90th population percentile in commercial laying hens. Furthermore, bird age influenced the effects of a 24-h fast on MPD and the redistribution of serum cholesterol among VLDL, LDL, and HDL particles.  相似文献   

2.
Lipoprotein lipase enhances the cholesteryl ester transfer protein (CETP)-mediated transfer of cholesteryl esters from plasma high density lipoproteins (HDL) to very low density lipoproteins (VLDL). In time course studies the stimulation of cholesteryl ester transfer by bovine milk lipase was correlated with accumulation of fatty acids in VLDL remnants. As the amount of fatty acid-poor albumin in the incubations was increased, there was decreased accumulation of fatty acids in VLDL remnants and a parallel decrease in the stimulation of cholesteryl ester transfer by lipolysis. Addition of sodium oleate to VLDL and albumin resulted in stimulation of the CETP-mediated transfer of cholesteryl esters from HDL to VLDL. The stimulation of transfer of cholesteryl esters into previously lipolyzed VLDL was abolished by lowering the pH from 7.5 to 6.0, consistent with a role of lipoprotein ionized fatty acids. CETP-mediated cholesteryl ester transfer from HDL to VLDL was also augmented by phosholipase A2 and by a bacterial lipase which lacked phospholipase activity. When VLDL and HDL were re-isolated after a lipolysis experiment, both lipoproteins stimulated CETP activity. Postlipolysis VLDL and HDL bound much more CETP than native VLDL or HDL. Lipolysis of apoprotein-free phospholipid/triglyceride emulsions also resulted in enhanced binding of CETP to the emulsion particles. Incubation conditions which abolished the enhanced cholesteryl ester transfer into VLDL remnants reduced binding of CETP to remnants, emulsions, and HDL. In conclusion, the enhanced CETP-mediated transfer of cholesteryl esters from HDL to VLDL during lipolysis is related to the accumulation of products of lipolysis, especially fatty acids, in the lipoproteins. Lipids accumulating in VLDL remnants and HDL as a result of lipolysis may augment binding of CETP to these lipoproteins, leading to more efficient transfer of cholesteryl esters from HDL to VLDL.  相似文献   

3.
We have studied the cholesteryl ester transfer between HDL and VLDL in cyclophosphamide-treated rabbits, in order to explain the abnormal cholesteryl ester partition between these two lipoprotein classes. The hypertriglyceridemia caused by treatment with the drug was associated with cholesteryl ester- and triacylglycerol-rich VLDL and with HDL poor in esterified cholesterol but relatively enriched in triacylglycerol. These two lipoprotein classes were characterized by their chemical composition and by gel filtration chromatography. VLDL particles were slightly larger in size, compared with controls. Different transfer combinations were envisaged between these abnormal lipoproteins and control ones. The transfer study involved the plasma fraction of d greater than 1.21 g/ml containing the cholesteryl ester transfer protein (CETP). It appeared that the chemical composition of lipoproteins was responsible for the level of cholesteryl ester transfer between lipoproteins. Actually, when the cholesteryl ester acceptor lipoproteins (VLDL) were enriched in triacylglycerol, the transfer was enhanced. Therefore, the effect of lipolysis on the transfer has also been explored. Lipoprotein lipase seemed to enhance the transfer of cholesteryl ester from HDL to VLDL when these lipoproteins were normal, but an important decline was obtained when triacylglycerol-rich VLDL were lipolyzed. This study defines the relationship between lipoprotein chemical composition and transfer activity of cholesteryl ester from HDL to VLDL.  相似文献   

4.
Three fractionation procedures (immunoaffinity chromatography, two-dimensional nondenaturing electrophoresis, and heparin-agarose affinity chromatography) have been compared in determining the kinetics of free and ester cholesterol transfer in normolipemic native plasma. Similar results were obtained in each case. Cell-derived free cholesterol is initially enriched in high density lipoproteins (HDL) (mainly HDL without apoE); at longer time periods (greater than 10 min) greater proportions are observed in very low density lipoproteins (VLDL) and low density lipoproteins (LDL). The major part of cholesteryl ester (about 90%) was retained in HDL, while VLDL and LDL, which contained about 75% of total cholesteryl ester mass, received only about 10% of cell-derived cholesteryl ester. Within HDL, almost all cholesteryl ester was in the apoE-free fraction. These data provide evidence that lipoprotein free and esterified cholesterol are not at chemical equilibrium in normal plasma, and that cell-derived cholesterol is preferentially directed to HDL. The techniques used had a comparable effectiveness for the rapid fractionation of labile lipoprotein lipid radioactivity.  相似文献   

5.
These studies were undertaken to examine the effects of lipoprotein lipase (LPL) and cholesteryl ester transfer protein (CETP) on the transfer of cholesteryl esters from high density lipoproteins (HDL) to very low density lipoproteins (VLDL). Human or rat VLDL was incubated with human HDL in the presence of either partially purified CETP, bovine milk LPL or CETP plus LPL. CETP stimulated both isotopic and mass transfer of cholesteryl esters from HDL into VLDL. LPL caused only slight stimulation of cholesteryl ester transfer. However, when CETP and LPL were both present, the transfer of cholesteryl esters from HDL into VLDL remnants was enhanced 2- to 8-fold, compared to the effects of CETP alone. The synergistic effects of CETP and LPL on cholesteryl ester transfer were more pronounced at higher VLDL/HDL ratios and increased with increasing amounts of CETP. In time course studies the stimulation of cholesteryl ester transfer activity occurred during active triglyceride hydrolysis. When lipolysis was inhibited by incubating LPL with either 1 M NaCl or 2 mM diethylparanitrophenyl phosphate, the synergism of CETP and LPL was reduced or abolished, and LPL alone did not stimulate cholesteryl ester transfer. These experiments show that LPL enhances the CETP-mediated transfer of cholesteryl esters from HDL to VLDL. This property of LPL is related to lipolysis.  相似文献   

6.
Free cholesterol is a potent regulator of lipid transfer protein function   总被引:6,自引:0,他引:6  
This study investigates the effect of altered lipoprotein free cholesterol (FC) content on the transfer of cholesteryl ester (CE) and triglyceride (TG) from very low- (VLDL), low- (LDL), and high-(HDL) density lipoproteins by the plasma-derived lipid transfer protein (LTP). The FC content of VLDL and HDL was selectively altered by incubating these lipoproteins with FC/phospholipid dispersions of varying composition. FC-modified lipoproteins were then equilibrated with [3H] TG, [14C]CE-labeled lipoproteins of another class to facilitate the subsequent modification of the radiolabeled donor lipoproteins. LTP was added and the extent of radiolabeled TG and CE transfer determined after 1 h. With either LDL or VLDL as lipid donor, an increase in the FC content of these lipoproteins caused a concentration-dependent inhibition (up to 50%) of CE transfer from these particles, without any significant effect on TG transfer. In contrast, with HDL as donor, increasing the HDL FC content had little effect on CE transfer from HDL, but markedly stimulated (up to 2.5-fold) the transfer of TG. This differential effect of FC on the unidirectional transfer of radiolabeled lipids from VLDL and HDL led to marked effects on LTP-facilitated net mass transfer of lipids. During long-term incubation of a constant amount of LTP with FC-modified VLDL and HDL, the extent of net mass transfer was linearly related to lipoprotein FC content; a 4-fold increase in FC content resulted in a 3-fold stimulation of the CE mass transferred to VLDL, which was coupled to an equimolar, reciprocal transfer of TG mass to HDL. Since lipid transfer between lipoproteins is integral to the process of reverse cholesterol transport, we conclude that lipoprotein FC levels are a potent, positive regulator of the pathways involved in sterol clearance. FC may modulate lipid transfer by altering the availability of CE and TG to LTP at the lipoprotein surface.  相似文献   

7.
Plasma lecithin:cholesterol acyltransferase (LCAT) activity is increased during the clearance phase of alimentary lipemia induced by a high-fat test meal in normal subjects. Ultracentrifugal fractionation of high density lipoproteins (HDL) into HDL(2), HDL(3), and very high density (VHD) subfractions followed by analyses of lipid and protein components has been accomplished at intervals during alimentary lipemia to seek associations with enzyme changes. HDL(2) lipids and protein increased substantially, characterized primarily by enrichment with lecithin. HDL(3), which contain the main LCAT substrates, revealed increased triglycerides and generally reduced cholesteryl esters which were reciprocally correlated, demonstrating a phenomenon previously observed in vitro by others. Both changes correlated with LCAT activation, but partial correlation analysis indicated that ester content is primarily related to triglycerides rather than LCAT activity. The VHD cholesteryl esters and lysolecithin were also reduced. Plasma incubation experiments with inactivated LCAT showed that alimentary lipemic very low density lipoproteins (VLDL) could reduce levels of cholesteryl esters in HDL by a nonenzymatic mechanism. In vitro substitution of lipemic VLDL for postabsorptive VLDL resulted in enhanced reduction of cholesteryl esters in HDL(3) and VDH, but not in HDL(2), during incubation. Nevertheless, augmentation of LCAT activity did not result, indicating that cholesteryl ester removal from substrate lipoproteins is an unlikely explanation for activation. Since VHD and HDL(3), which contain the most active LCAT substrates, were also most clearly involved in transfers of esters to VLDL and low density lipoproteins, the suggestion that LCAT product lipoproteins are preferentially involved in nonenzymatic transfer and exchange is made. The main determinant of ester transfer, however, appears to be the level of VLDL, both in vitro and in vivo. Rose, H. G., and J. Juliano. Regulation of plasma lecithin: cholesteryl acyltransferase in man. III. Role of high density lipoprotein cholesteryl esters in the activating effect of a high-fat test meal.  相似文献   

8.
Cholesterol ester transfer protein (CETP) moves triglyceride (TG) and cholesteryl ester (CE) between lipoproteins. CETP has no apparent preference for high (HDL) or low (LDL) density lipoprotein as lipid donor to very low density lipoprotein (VLDL), and the preference for HDL observed in plasma is due to suppression of LDL transfers by lipid transfer inhibitor protein (LTIP). Given the heterogeneity of HDL, and a demonstrated ability of HDL subfractions to bind LTIP, we examined whether LTIP might also control CETP-facilitated lipid flux among HDL subfractions. CETP-mediated CE transfers from [3H]CE VLDL to various lipoproteins, combined on an equal phospholipid basis, ranged 2-fold and followed the order: HDL3 > LDL > HDL2. LTIP inhibited VLDL to HDL2 transfer at one-half the rate of VLDL to LDL. In contrast, VLDL to HDL3 transfer was stimulated, resulting in a CETP preference for HDL3 that was 3-fold greater than that for LDL or HDL2. Long-term mass transfer experiments confirmed these findings and further established that the previously observed stimulation of CETP activity on HDL by LTIP is due solely to its stimulation of transfer activity on HDL3. TG enrichment of HDL2, which occurs during the HDL cycle, inhibited CETP activity by approximately 2-fold and LTIP activity was blocked almost completely. This suggests that LTIP keeps lipid transfer activity on HDL2 low and constant regardless of its TG enrichment status. Overall, these results show that LTIP tailors CETP-mediated remodeling of HDL3 and HDL2 particles in subclass-specific ways, strongly implicating LTIP as a regulator of HDL metabolism.  相似文献   

9.
Although numerous studies have investigated the relationship between cholesteryl ester transfer protein (CETP) and high density lipoprotein (HDL) remodeling, the relationship between CETP and low density lipoproteins (LDL) is still not fully understood. In the present study, we examined the effect of the inhibition of CETP on both LDL oxidation and the uptake of the oxidized LDL, which were made from LDL under condition of CETP inhibition, by macrophages using a monoclonal antibody (mAb) to CETP in incubated plasma. The 6-h incubation of plasma derived from healthy, fasting human subjects led to the transfer of cholesteryl ester (CE) from HDL to VLDL and LDL, and of triglycerides (TG) from VLDL to HDL and LDL. These net mass transfers of neutral lipids among the lipoproteins were eliminated by the mAb. The incubation of plasma either with or without the mAb did not affect the phospholipid compositions in any lipoproteins. As a result, the LDL fractionated from the plasma incubated with the mAb contained significantly less CE and TG in comparison to the LDL fractionated from the plasma incubated without the mAb. The percentage of fatty acid composition of LDL did not differ among the unincubated plasma, the plasma incubated with the mAb, and that incubated without the mAb. When LDL were oxidized with CuSO4, the LDL fractionated from the plasma incubated with the mAb were significantly resistant to the oxidative modification determined by measuring the amount of TBARS and by continuously monitoring the formation of the conjugated dienes, in comparison to the LDL fractionated from the plasma incubated without the mAb. The accumulation of cholesteryl ester of oxidized LDL, which had been oxidized for 2 h with CuSO4, in J774.1 cells also decreased significantly in the LDL fractionated from the plasma incubated with mAb in comparison to the LDL fractionated from the plasma incubated without the mAb. These results indicate that CETP inhibition reduces the composition of CE and TG in LDL and makes the LDL resistant to oxidation. In addition, the uptake of the oxidized LDL, which was made from the LDL under condition of CETP inhibition, by macrophages also decreased.  相似文献   

10.
The net transfer of core lipids between lipoproteins is facilitated by cholesteryl ester transfer protein (CETP). We have recently documented CETP deficiency in a family with hyperalphalipoproteinemia, due to a CETP gene splicing defect. The purpose of the present study was to characterize the plasma lipoproteins within the low density lipoprotein (LDL) density range and also the cholesteryl ester fatty acid distribution amongst lipoproteins in CETP-deficient subjects. In CETP deficiency, the conventional LDL density range contained both an apoE-rich enlarged high density lipoprotein (HDL) (resembling HDLc), and also apoB-containing lipoproteins. Native gradient gel electrophoresis revealed clear speciation of LDL subclasses, including a distinct population larger in size than normal LDL. Anti-apoB affinity-purified LDL from the CETP-deficient subjects were shown to contain an elevated triglyceride to cholesteryl ester ratio, and also a high ratio of cholesteryl oleate to cholesteryl linoleate, compared to their own HDL or to LDL from normal subjects. Addition of purified CETP to CETP-deficient plasma results in equilibration of very low density lipoprotein (VLDL) cholesteryl esters with those of HDL. These data suggest that, in CETP-deficient humans, the cholesteryl esters of VLDL and its catabolic product, LDL, originate predominantly from intracellular acyl-CoA:cholesterol acyltransferase (ACAT). The CETP plays a role in the normal formation of LDL, removing triglyceride and transferring LCAT-derived cholesteryl esters into LDL precursors.  相似文献   

11.
Hyperlipidemia is a prominent feature of the nephrotic syndrome. Lipoprotein abnormalities include increased very low and low density lipoprotein (VLDL and LDL) cholesterol and variable reductions in high density lipoprotein (HDL) cholesterol. We hypothesized that plasma cholesteryl ester transfer protein (CETP), which influences the distribution of cholesteryl esters among the lipoproteins, might contribute to lipoprotein abnormalities in nephrotic syndrome. Plasma CETP, apolipoprotein and lipoprotein concentrations were measured in 14 consecutive untreated and 7 treated nephrotic patients, 5 patients with primary hypertriglyceridemia, and 18 normolipidemic controls. Patients with nephrotic syndrome displayed increased plasma concentrations of apoB, VLDL, and LDL cholesterol. The VLDL was enriched with cholesteryl ester (CE), shown by a CE/triglyceride (TG) ratio approximately twice that in normolipidemic or hypertriglyceridemic controls (P < 0.001). Plasma CETP concentration was increased in patients with untreated nephrotic syndrome compared to controls (3.6 vs. 2.3 mg/l, P < 0.001), and was positively correlated with the CE concentration in VLDL (r = 0.69, P = 0.004) and with plasma apoB concentration (r = 0.68, P = 0.007). Treatment with corticosteroids resulted in normalization of plasma CETP and of the CE/TG ratio in VLDL. An inverse correlation between plasma CETP and HDL cholesterol was observed in hypertriglyceridemic nephrotic syndrome patients (r = -0.67, P = 0.03). The dyslipidemia of nephrotic syndrome includes increased levels of apoB-lipoproteins and VLDL that are unusually enriched in CE and likely to be atherogenic. Increased plasma CETP probably plays a significant role in the enrichment of VLDL with CE, and may also contribute to increased concentrations of apoB-lipoproteins and decreased HDL cholesterol in some patients.  相似文献   

12.
Baboons from some families have a higher concentration of plasma high density lipoproteins (HDL) on a chow diet and accumulate large HDL (HDL1) when challenged with a high cholesterol and high saturated fat (HCHF) diet. HDL1 from high HDL1 animals contained more (1.5-fold) cholesteryl ester than HDL (HDL2 + HDL3) from high or low HDL1 animals. HDL from high HDL1 baboons had lower triglyceride content than that from low HDL1 baboons. HDL3 or HDL labeled with [3H]cholesteryl linoleate was incubated with entire lipoprotein fraction (d less than 1.21 g/ml) or very low density lipoprotein + low density lipoprotein (VLDL + LDL) (d less than 1.045 g/ml) and with lipoprotein-deficient serum (LPDS), and the radioactive cholesteryl ester and mass floating at d 1.045 g/ml (VLDL + LDL) after the incubation was measured. The transfer of cholesteryl esters from either HDL or HDL3, prepared from plasma of high HDL1 animals fed chow or the HCHF diet, was slower than the transfer from either HDL or HDL3 of low HDL1 animals, regardless of the source of transfer activity or the ratio of LDL:HDL-protein used in the assay. Addition of HDL from high HDL1 baboons into an assay mixture of plasma components from low HDL1 baboons decreased the transfer of cholesteryl ester radioactivity and mass from HDL to VLDL and LDL. In addition to HDL, a fraction of intermediate density lipoprotein (IDL) and denser HDL were also effective in inhibiting the transfer. These observations suggest that accumulation of HDL1 in high HDL1 baboons fed an HCHF diet is associated with a slower transfer of cholesteryl esters from HDL to LDL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of two different levels of dietary cholesterol (0.16 mg/Kcal and 0.79 mg/cal) on the composition of thoracic lymph duct lipoproteins was studied in two species of nonhuman primates, Ceropithecus aethiops (African green monkey) and Macaca fascicularis (cynomolgus monkey). Diet was infused intraduodenally at a constant rate to facilitate comparisons among animals. The higher level of dietary cholesterol resulted in an increase in the amount of cholesteryl ester in lymph chylomicrons and VLDL. Cholesteryl oleate was the predominant cholesteryl ester present in lymph d less than 1.006 g/ml lipoproteins and it was the predominant cholesteryl ester formed from exogenous radiolabeled cholesterol. The percentage of saturated and monounsaturated cholesteryl esters in lymph chylomicrons and VLDL significantly increased with the higher dietary cholesterol level. The apoprotein distribution of chylomicrons and VLDL was qualitatively similar during infusions of both diets. The apoprotein B of intestinal chylomicrons and VLDL, termed apoprotein B2, was qualitatively similar during low and high cholesterol diet infusion and was significantly smaller than that of plasma LDL apoB, termed apoprotein B1, as indicated by its electrophoretic mobility in SDS-polyacrylamide gels. The major phospholipid present in lymph chylomicrons and VLDL was phosphatidylcholine and the phospholipid composition of the particles was not affected by diet. Lymph d greater than 1.006 g/ml lipoproteins were separated and the cholesterol mass distribution among lipoprotein fractions was found to be similar during both diet infusions. With an increase in the level of dietary cholesterol, the percentage esterification of cholesterol mass and of exogenous cholesterol radioactivity increased in LDL and HDL from lymph. Lymph LDL and HDL contained less free and esterified cholesterol when their composition was compared to that for these lipoproteins in plasma. We conclude that the primary effect of increased dietary cholesterol level was to increase the cholesteryl ester content of all lymph lipoproteins; cholesterol distribution among lymph lipoproteins was unaffected.  相似文献   

14.
Lipoprotein lipase (LPL)-mediated hydrolysis of triglycerides (TG) contained in chylomicrons requires the presence of a cofactor, apolipoprotein (apo) C-II. The physiological mechanism by which chylomicrons gain apoC-II necessary for LPL activation in whole plasma is not known. Using a gum arabic stabilized TG emulsion, activation of LPL by lipoprotein apoC-II was studied. Hydrolysis of TG by LPL was greater in the presence of serum than with addition of either high density lipoproteins (HDL) or very low density lipoproteins (VLDL). LPL activation by either VLDL or HDL increased with addition of the lipoprotein-free fraction of plasma. A similar increase in LPL activity by addition of the lipoprotein-free fraction together with HDL or VLDL was observed when another TG emulsion (Intralipid) or TG-rich lipoproteins from an apoC-II deficient subject were used as a substrate. Human apoA-IV, apoA-I, apoE, and cholesteryl ester transfer protein were assessed for their ability to increase LPL activity in the presence of VLDL. At and below physiological concentrations, only apoA-IV increased LPL activity. One hundred percent of LPL activity measured in the presence of serum was achieved using VLDL plus apoA-IV. In the absence of an apoC-II source, apoA-IV had no effect on LPL activity. Removal of greater than 80% of the apoA-IV from the nonlipoprotein-containing fraction of plasma by incubation with Intralipid markedly reduced its ability to activate LPL in the presence of VLDL or HDL. Gel filtration chromatography demonstrated that incubation of the nonlipoprotein-containing fraction of plasma with HDL and the TG emulsion caused increased transfer of apoC-II to the emulsion and association of apoA-IV with HDL. Our studies demonstrate that apoA-IV increases LPL activation in the presence of lipoproteins. We hypothesize that apoA-IV is required for efficient release of apoC-II from either HDL or VLDL, which then allows for LPL-mediated hydrolysis of TG in nascent chylomicrons.  相似文献   

15.
The in vivo role of the liver in lipoprotein homeostasis in the preruminant calf, a functional monogastric, has been evaluated. To this end, the hydrodynamic and physicochemical properties, density distribution, apolipoprotein content, and flow rates of the various lipoprotein particle species were determined in the hepatic afferent (portal vein and hepatic artery) and efferent (hepatic vein) vessels in fasting, 3-week-old male preruminant calves. Plasma lipoprotein profiles were established by physicochemical analyses of a series of subfractions isolated by isopycnic density gradient ultracentrifugation. Triglyceride-rich very low density lipoproteins (VLDL) (d less than 1.018 g/ml) were minor plasma constituents (approximately 1% or less of total d less than 1.180 g/ml lipoproteins). The major apolipoproteins of VLDL were apoB-like species, while the complement of minor components included bovine apoA-I and apoC-like peptides. Particles with diameters (193-207 A) typical of low density lipoproteins (LDL) were present over the density interval 1.026-1.076 g/ml; however, only LDL of d 1.026-1.046 g/ml were present as a unique and homogeneous size subspecies, containing the two apoB-like species as major protein components in addition to elevated cholesteryl ester contents. LDL represented approximately 10% of total d less than 1.180 g/ml lipoproteins in fasting plasma from all three hepatic vessels. Overlap in the density distribution of particles with the diameters of LDL and of high density lipoproteins (HDL) occurred in the density range from 1.046 to 1.076 g/ml; these HDL particles were 130-150 A in diameter. HDL were the major plasma particles (approximately 90% of total d less than 1.180 g/ml substances) and presented as two distinct populations which we have termed light (HDLL) and heavy (HDLH) HDL. Light HDL (d 1.060-1.091 g/ml) ranged in size from 120 to 140 A, and were distinguished by their high cholesteryl ester (29-33%) and low triglyceride (1-3%) contents; apoA-I was the principal apolipoprotein. Small amounts of apolipoproteins with Mr less than 60,000, including apoC-like peptides, were also present. Heavy HDL (d 1.091-1.180 g/ml) accounted for almost half (47%) of total calf HDL, and like HDLL, were also enriched in cholesteryl ester and apoA-I; they ranged in size from 93 to 120 A. The protein moiety of HDLH was distinct in its possession of an apoA-IV-like protein (Mr 42,000). Blood flow rates were determined by electromagnetic flowmetry, thereby permitting determination of net lipoprotein balance across the liver. VLDL were efficiently removed during passage through the liver (net uptake 1.06 mg/min per kg body weight).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The fate of cholesteryl esters in high density lipoprotein (HDL) was studied to determine whether the transfer of esterified cholesterol from HDL to other plasma lipoproteins occurred to a significant extent in man. HDL cholesteryl ester, labelled in vitro with [3H] cholesterol, was injected into human subjects. Labelling of cholesteryl esters in very low density (VLDL) occurred rapidly and by 3 h, the esterified cholesterol in VLDL reached peak specific radioactivity. The removal rate of cholesteryl esters from HDL appeared to be exponential and of the order of 0.2/h; calculation of the apparent flux was about 150 mg/h which approximates reported values for total cholesterol esterification in human plasma in vivo. The rapid rate of labelling of VLDL from HDL suggests that the transfer of HDL cholesteryl esters to VLDL may represent a significant pathway for the disposal of HDL cholesterol.  相似文献   

17.
As a further appraisal of lipoprotein interconversion and equilibration of lipid components a detailed examination was made of the chemical class and molecular species interrelationships among the major fasting plasma lipoprotein fractions within each of six male Type III and Type IV hyperlipemic subjects subsisting on free choice diets. The lipoprotein fractions were prepared by conventional ultracentrifugation and the lipid class and molecular species composition of the corresponding lipoprotein fractions were determined by gas chromatography of the intact glycerol esters and ceramides. In general, each lipoprotein fraction possessed a well defined lipid class composition, which was characterized by a dramatically decreasing triacylglycerol and increasing phospholipid and cholesteryl ester content, when progressing from the very low (VLDL) to the low (LDL) and high (HDL) density lipoproteins, as already established for normolipemic subjects. Likewise, the LDL, and LDL2 of the hyperlipemic subjects contained about two times higher proportion of total phospholipid as sphingomyelin than VLDL and HDL. Furthermore, the sphingomyelins of the HDL fraction contained about 30% more of the higher and 30% less of the lower molecular weight species than the sphingomyelins of the VLDL. Smaller differences were seen in the molecular species composition of the phosphatidylcholines, cholesteryl esters and triacylglycerols among the corresponding lipoproteins. In comparison to normolipemic subjects analyzed previously, the hyperlipemic subjects showed greater individual variability. Despite this variability the lipid class and molecular species composition in the hyperlipemic subjects was again incompatible with the hypothesis which postulates direct VLDL conversion into LDL and HDL under the influence of lipoprotein lipase and lecithin: cholesterol acyltransferase. The main differences between normolipemic and hyperlipemic plasma were found to reside in the number of the VLDL and LDL, lipoprotein particles and not in their chemical composition or physical structure, or in the apparent mechanism of their metabolic interconversion.  相似文献   

18.
The regulation of lipoprotein secretion in the cell line HepG2 was studied. HepG2 cells were preincubated with chylomicron remnants (triglyceride- and cholesterol-rich) or with beta very low density lipoproteins (beta-VLDL) (cholesterol-rich). The medium was removed and the cells were incubated for and additional 24 hr in a lipoprotein-free medium that contained either [2-3H]glycerol or DL-[2-3H]mevalonate. Cells and media were harvested, and lipoproteins were separated and fractionated. The mass and radioactivity of the lipids in cells and in the lipoproteins were measured. The activities of cellular acyl-CoA:cholesterol acyltransferase (ACAT) and 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase were also determined. Preincubation with chylomicron remnants induced an increase in cellular triglyceride and stimulated both HMG-CoA reductase and ACAT. Preincubation with beta-VLDL induced an increase in cellular free and esterified cholesterol, inhibited HMG-CoA reductase and stimulated ACAT. Although the absolute amount of VLDL is small, chylomicron remnants induced large relative increases in the amount of triglyceride and phospholipid secreted in VLDL and decreases in the amount of triglyceride secreted in low density (LDL) and high density (HDL) lipoproteins as well as a decrease in the amount of phospholipid secreted in HDL. In contrast, preincubation with beta-VLDL did not affect triglyceride secretion, but markedly stimulated the amount of phospholipid secreted in HDL. Comparison of the mass of glycerolipid actually secreted with that calculated from the cellular specific activity suggested that glycerolipids are secreted from single, rapidly equilibrating pools. Cholesterol and cholesteryl ester secretion were affected differently. Preincubation with chylomicron remnants increased the amount of free cholesterol secreted in both VLDL and LDL, but did not alter cholesteryl ester secretion. Preincubation with beta-VLDL increased free cholesterol secretion in all lipoprotein fractions and increased cholesteryl ester secretion in VLDL and LDL, but not HDL. Comparison of isotope and mass data suggested that the cholesteryl ester secreted came primarily from a preformed, rather than an newly synthesized, pool. In summary, these data provide insight to the mechanism whereby a liver cell regulates the deposition of exogenous lipid.  相似文献   

19.
In this report we have described the purification of a human plasma phospholipid transfer protein, designated LTP-II, which displayed the following characteristics: i) facilitated both the exchange and net mass transfer of lipoprotein phospholipids; ii) did not facilitate the transfer of lipoprotein cholesteryl esters (CE) or triglycerides (TG); iii) was not recognized by antibody to the human cholesteryl ester transfer protein (LTP-I); iv) showed no amino acid sequence homology to the cholesteryl ester transfer protein (LTP-I); v) has an apparent molecular weight (Mr) of 70,000 off Sephacryl S200, and 69,000 off sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE); vi) has an apparent isoelectric point of 5.0 by chromatofocusing; and vii) when added to an incubation mixture of VLDL, HDL3, and the human plasma cholesteryl ester transfer protein (LTP-I), enhanced the observed transfer of cholesteryl esters from HDL3 to VLDL, even though LTP-II has no intrinsic cholesteryl ester transfer activity of its own. These results show that this phospholipid transfer protein is unique from the human plasma cholesteryl ester transfer protein, and may play an important role in human lipoprotein lipid metabolism.  相似文献   

20.
The role of human plasma lipid transfer protein (LTP) in lipoprotein metabolism was studied in the rat, a species without endogenous cholesteryl ester and triacylglycerol transfer activity. Partially purified human LTP was injected intravenously into rats. The plasma activity was between 1.5- and 4-fold that of human plasma during the experiments. 6 h after the injection of LTP, a significant increase in serum apoB, and no significant changes in serum total cholesterol, free cholesterol, triacylglycerols, apoA-I, apoE, or apoA-IV were noted. Cholesterol was increased in very-low density and low-density lipoproteins (VLDL and LDL) and decreased in large-sized apoE-rich HDL. ApoA-I-containing particles with a size smaller than in normal rats were present in serum of LTP-treated rats. The mean diameter of HDL particles decreased and apoE, normally present on large-sized HDL, was present on smaller sized particles. The metabolic fate of cholesteryl ester, originally associated with HDL, was studied by injection of [3H]cholesteryl linoleyl ether-labelled apoA-I-rich HDL in the absence and in the presence of LTP. The disappearance of [3H]cholesteryl linoleyl ether, injected as part of apoA-I-rich HDL, from serum was increased in the LTP-treated rats; the t1/2 changed from 3.9 to 2.2 h, resulting in an increased accumulation of [3H]cholesteryl linoleyl ether in the liver. This can be explained by the redistribution of HDL [3H]cholesteryl linoleyl ether to VLDL and LDL in the presence of LTP, leading to the combined contribution of VLDL, LDL and HDL to the hepatic uptake. The present findings show profound effects of LTP on the chemical composition of HDL subspecies, the size of HDL and on the plasma turnover and hepatic uptake of cholesteryl esters originally present in apo A-I-rich HDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号